

多旋翼飞行器设计与控制系列实验

多旋翼飞行器半自主模式飞行设计实验

全权 副教授

qq_buaa@buaa.edu.cn

自动化科学与电气工程学院

北京航空航天大学

大纲

- 1. 基本原理
- 2. 基础实验
- 3. 分析实验
- 4. 设计实验
- 5. 小结

□半自主控制的三种模式

通常,根据自驾仪自主控制的程度,把处于半自主控制下的多旋翼分为3种模式:

- 自稳定模式(Stabilize Mode)
- · 高度控制模式 (Altitude Mode)
- · 位置控制模式 (Position Mode)

□半自主控制的三种模式

通常,根据自驾仪自主控制的程度,把处于半自主控制下的多旋翼分为3种模

式:

- · 自稳定模式(Stabilize Mode)
- · 高度控制模式 (Altitude Mode)
- · 位置控制模式 (Position Mode)

- 在自稳模式下飞控手可以利用遥控器的滚转/俯仰摇杆控制多旋翼的滚转/俯仰角,从而控制其前后左右飞行,此时,如果不同时调整升降摇杆,多旋翼的高度会改变,若想使多旋翼保持定点悬停,飞控手需要不断调整遥控器的所有摇杆。
- 当飞控手释放摇杆时,多旋翼会自动保持自身水平,但是位置会漂移。此外,飞控手可以利用遥控器的偏航摇杆控制多旋翼的偏航角。当飞控手释放偏航摇杆时,多旋翼会保持当前机头方向。

□半自主控制的三种模式

通常,根据自驾仪自主控制的程度,把处于半自主

图. 遥控器摇杆示意图

控制下的多旋翼分为3种模式:

- 自稳定模式(Stabilize Mode)
- 高度控制模式 (Altitude Mode)
- · 位置控制模式 (Position Mode)

- 如图所示,当油门摇杆位于死区范围时,油门被自动地调整来保持当前的高度,飞行器进入定高状态,飞控手需要不断地调整遥控器的滚转/俯仰摇杆保持悬停。
- 一旦油门摇杆离开死区范围,多旋翼将以期望的速度上升或下降。高度控制模式需要高度传感器的支持才能实现,例如气压计、超声波测距仪等。

□半自主控制的三种模式

通常,根据自驾仪自主控制的程度,把处于半自主控制下的多旋翼分为3种模式:

- 自稳定模式(Stabilize Mode)
- · 高度控制模式 (Altitude Mode)
- · 位置控制模式 (Position Mode

- 位置控制模式下,当飞控手释放滚转/俯仰摇杆, 偏航摇杆,并将油门摇杆推到死区范围时,多旋翼 将保持当前的水平位置、航向和高度,即进入悬停 状态。高精度的GPS位置信息、磁罗盘信息以及机 身低振动对保持良好的悬停效果非常重要。
- 飞控手可以通过推动摇杆使多旋翼以指定的速度在 三维空间中运动。位置控制模式需要测高仪器和位 置传感器的支持才能实现,例如GPS和摄像机等。

□遥控(RC)输出

- ch5是一个三段式开关,可以对应输出三种模式(自稳模式、高度控制模式、位置控制模式)。
- ch1、ch2通道的输出可同时转换 成期望姿态角和期望的水平速度。
- ch3通道的输出可同时转换成期望的油门和期望的垂直速度。
- ch4通道直接转换成期望的偏航 角速率,对角速率积分得到期望 偏航角。

□自驾仪半自主控制模式实现

(1) 自稳定模式 (Stabilize Mode)

自稳定模式根据期望姿态 $\theta_{\rm drc}$, $\psi_{\rm drc}$, $\psi_{\rm drc}$ 产生期望扭矩,期望油门即为 $f_{\rm drc}$ 。相当于纯姿态控制。控制器设计已知期望姿角 $\Theta_{\rm d}=[\theta_{\rm drc}$ $\phi_{\rm drc}$ $\psi_{\rm drc}]^{\rm T}$,设计控制器使得 $\lim_{t\to\infty}\|\mathbf{e}_{\Theta}(t)\|=0$,其中 $\mathbf{e}_{\Theta}\triangleq\Theta-\Theta_{\rm d}$ 。为了达到这个目的,我们先针对

$$\dot{\mathbf{\Theta}} = \mathbf{\omega}$$

设计角速度的期望Od为

$$\mathbf{\omega}_{\mathrm{d}} = -\mathbf{K}_{\mathbf{\Theta}}\mathbf{e}_{\mathbf{\Theta}}$$

其中 $K_{\Omega} \in \mathbb{R}^{3\times 3}$ 是正定的常值矩阵,所有元素都大于0。以上两式构成了角度控制环。

□自驾仪半自主控制模式实现

(1) 自稳定模式 (Stabilize Mode)

针对

$$J\dot{\omega} = \tau$$

设计转矩的期望T_d:

$$\mathbf{\tau}_{d} = -\mathbf{K}_{\omega_{p}} \mathbf{e}_{\omega} - \mathbf{K}_{\omega_{i}} \int \mathbf{e}_{\omega} - \mathbf{K}_{\omega_{d}} \dot{\mathbf{e}}_{\omega}$$

其中 $\mathbf{e}_{\omega} \stackrel{\triangle}{=} \omega - \omega_{\mathbf{d}}$, $\mathbf{K}_{\omega_{n}}$, $\mathbf{K}_{\omega_{i}}$, $\mathbf{K}_{\omega_{i}}$ $\in \mathbb{R}^{3\times3}$ 。以上两式构成了角速度控制环。

□自驾仪半自主控制模式实现

(2) 高度控制模式 (Altitude Mode)

高度控制模式下,期望的油门不再由遥控器直接指定,而是通过位置控制器中高度通道的输出给定。期望的力矩仍然由遥控器输入的期望姿态角经姿态控制器产生,这一点与自稳模式相同。

若给定期望高度,对

$$\dot{p}_{\rm z} = v_{\rm z}$$

设计期望的速度为

$$v_{z_d} = K_{p_z} (p_{z_d} - p_z) + v_{z_{drc}}$$

□自驾仪半自主控制模式实现

(2) 高度控制模式 (Altitude Mode)

针对

$$\dot{v}_z = g - \frac{f}{m}$$

设计期望的加速度为

$$\dot{v}_{z_d} = K_{v_z p} e_{v_z} + K_{v_z i} \int e_{v_z} + K_{v_z d} \dot{e}_{v_z}$$

其中 $e_{v_z} = v_{z_d} - v_z$

进一步得到期望油门值为

$$f_{\rm d} = m(g - K_{v_z p} e_{v_z} + K_{v_z i} \int e_{v_z} + K_{v_z d} \dot{e}_{v_z})$$

□自驾仪半自主控制模式实现

(2)高度控制模式(Altitude Mode) 油门摇杆进入死区范围的时刻记为 t_d ,此时高度估计量 $\hat{p}_z(t_d)$ 被保存为 $p_{z_{\text{tall}}} = \hat{p}_z(t_d)$, $v_{z_{\text{dec}}} = 0$ 。此时多旋翼将进入高度保持状态

$$p_{\mathrm{z_d}} = p_{\mathrm{z_{dold}}}$$

多旋翼高度被自动调节在 $\hat{p}_z(t_d)$ 。

当油门遥感不在死区范围内时, 多旋翼进入手动控制模式

$$p_{\rm z_d} = \hat{p}_{\rm z} \quad v_{\rm z_d} = v_{\rm z_{drc}}$$

此时油门通道控制的是Z轴方向的速度。与自稳定模式相似,由于没有水平位置反馈,多旋翼不能保持悬停。高度保持模式通常用在测高仪器可以正常使用而位置传感器不可使用的场合。

□自驾仪半自主控制模式实现

(3) 位置控制模式 (Position Mode)

位置控制模式下,期望的油门由位置控制器中高度通道的输出给定,这点与高度控制模式相同。期望力矩由位置控制器中水平位置通道产生的期望姿态角再经姿态控制器得出。

给定期望水平位置,对

$$\dot{\mathbf{p}}_{h} = \mathbf{v}_{h}$$

设计期望的速度为

$$\mathbf{v}_{\mathrm{hd}} = \mathbf{K}_{\mathrm{Ph}} (\mathbf{p}_{\mathrm{hd}} - \mathbf{p}_{\mathrm{h}}) + \mathbf{v}_{\mathrm{hdre}}$$

□自驾仪半自主控制模式实现

(3) 位置控制模式 (Position Mode)

针对

$$\dot{\mathbf{v}}_{h} = -g\mathbf{A}_{\psi}\mathbf{\Theta}_{h}$$

设计期望的加速度为

$$\dot{\mathbf{v}}_{\mathrm{hd}} = \mathbf{K}_{\mathbf{v}_{\mathrm{h}} \mathrm{p}} \mathbf{e}_{\nu_{\mathrm{h}}} + \mathbf{K}_{\mathbf{v}_{\mathrm{h}} \mathrm{i}} \int \mathbf{e}_{\mathbf{v}_{\mathrm{h}}} + \mathbf{K}_{\mathbf{v}_{\mathrm{h}} \mathrm{d}} \dot{\mathbf{e}}_{\nu_{\mathrm{h}}}$$

其中
$$\mathbf{e}_{v_h} = \mathbf{v}_{hd} - \mathbf{v}_h$$

进一步得到期望姿态角为

$$\mathbf{\Theta}_{hd} = -g^{-1}\mathbf{A}_{\psi}^{-1}(\mathbf{K}_{\mathbf{v}_h p}\mathbf{e}_{v_h} + \mathbf{K}_{\mathbf{v}_h i} \int \mathbf{e}_{\mathbf{v}_h} + \mathbf{K}_{\mathbf{v}_h d} \dot{\mathbf{e}}_{v_h})$$

水平通道的实现与高度控制模式完全相同。

□自驾仪半自主控制模式实现

(3) 位置控制模式 (Position Mode)

俯仰/滚转摇杆进入死区范围的时刻记为 ,此时水塘位置估计量 $\hat{\mathbf{p}}_h(t_d)$ 被保存为 $\mathbf{p}_{hdold}=\hat{\mathbf{p}}_h(t_d)$, $\mathbf{v}_{hdrc}=0$ 。此时多旋翼将进入位置保持状态

$$\mathbf{p}_{\mathrm{hd}} = \mathbf{p}_{\mathrm{hdold}}$$

多旋翼水平位置被自动调节在 $\hat{p}_h(t_d)$ 。

当俯仰/滚转摇杆不在死区范围内时,多旋翼进入手动控制模式

$$\mathbf{p}_{\mathrm{hd}} = \hat{\mathbf{p}}_{\mathrm{h}} \quad \mathbf{v}_{\mathrm{hd}} = \mathbf{v}_{\mathrm{hdrc}}$$

此时俯仰/滚转通道控制的是水平方向的速度。

当多旋翼进入位置保持状态和高度保持状态时,即此时摇杆全部回中,多旋翼将保持定点悬停(偏航通道仍可手动控制)。

以上原理可以详细参考"Quan Quan. Introduction to Multicopter Design and Control. Springer, Singapore, 2017" 或者"全权著. 杜光勋, 赵峙尧, 戴训华, 任锦瑞, 邓恒译. 《多旋翼飞行器设计与控制》, 电子工业出版社, 2018."的第11、13章。

□实验目标

■ 已知

- (1) 硬件方面, 遥控器, 遥控器接收机, Pixhawk。
- (2) 软件方面, Matlab2016b, Simulink_Pixhawk_Support基于模型开发软件, 自稳控制模式仿真以及硬件在环仿真Simulink模型及相关代码文件e7.1 (http://rfly.buaa.edu.cn/course.html)。

■目标

- (1) 在自稳模式下,手动控制飞行器,记录飞行过程中期望姿态与实际姿态的关系;以及期望姿态为0时,实际位置的值;以及油门杆都回中时,实际位置的值。
- (2) 在处理器在环仿真下体会自稳控制效果。

□实验步骤

- (1) Simulink仿真
- 1) 打开Simulink仿真模型。

打开

"e7/e7.1/StabilizeControl_Sim.slx" Simulink文件,如右图。运行同一文件夹下的Init_control.m文件进行参数初始化。可以看到模型在姿态角输出部分加了常值扰动,以模拟实际飞行过程中的偏差。

图. StabilizeControl_Sim.slx截图 为观测自稳模式下姿态和位置的输出,设置如图所示示波器观测姿态和位置的输出状态。

□实验步骤

- (1) Simulink仿真。
- 2) 开始仿真并分析记录实验结果。

点击Simulink开始仿真按钮,开始仿真,观察并记录波形,分析实验结果。

期望俯仰角和横滚角为0,实际滚转角和俯仰 角如图,因为常值干扰的存在,实际的滚转角开 始并不为0,然后在姿态控制器的调节下滚转角和 俯仰角趋近期望滚转角,最终达到稳态,逼近期 望值。

图. 实际横滚角和俯仰角

□实验步骤

- (1) Simulink仿真。
- 2) 开始仿真并分析记录实验结果

点击Simulink开始仿真按钮,开始仿真,观察并记录波形,分析实验结果。

位置输出如图所示,可以看到,因为干扰的存在,在输入为0时,水平位置输出并不为0。

图. 滚转、俯仰遥杆在中间时水平位置输出

□实验步骤

- (1) Simulink仿真
 - 2) 开始仿真并分析记录实验结果。

点击Simulink开始仿真按钮,开始 仿真,观察并记录波形,分析实验 结果。

图. 油门在中间时高度输出

在自稳模式下,多旋翼只能姿态稳定而不能保持位置稳定,悬停油门尽管是经过精确计算但由于舍入误差,高度仍然不能保持稳定。

□实验步骤

- (2) 处理器在环仿真。
- 1) 打开Simulink仿真模型

打开

"e7/e7. 1/StabilizeControl_HIL. slx"

Simulink文件,如右图。

图. StabilizeControl_HIL.slx截图

□实验步骤

- (2) 处理器在环仿真
 - 2) 硬件连接

图. 硬件系统连接

□实验步骤

- (2) 处理器在环仿真
- 3)将处理器在环仿真模型编译并下载文件到Pixhawk中。这样就可以在Pixhawk中运行我们自己设计的姿态控制程序。

□实验步骤

- (2) 处理器在环仿真
- 4) 模型仿真器软件配置。

双击文件"半物理仿真软件 \CopterSimSystem\CopterSimSystem. exe" 即可以打开多旋翼模拟器软件。依次点击 按钮"模型参数"-"存储并使用",软 件会自动匹配串口号,如果串口号有错请 手动选择,再点击"开始仿真"按钮就可 以进入半物理仿真模式。此时可以看到如 图所示的界面左下角收到飞控返回的相关 消息,以及PixHawk飞控上的灯光从蓝色 变为绿色闪烁。

图. 模型仿真器软件配置

□实验步骤

- (2) 处理器在环仿真
- 5) 3D Display三维显示软件配置。双击文件"半物理仿真软件\Show3d\ show3d. exe" 打开三维显示软件。
- 6)解锁多旋翼,实现手动控制。如图在3D Display软件界面左侧观察多旋翼状态变化, 界面右上角观察实时飞行数据,界面右下 角观察多旋翼运动轨迹。

图. 3D Display

□实验目标

■ 已知

- (1) 硬件方面, 遥控器, 遥控器接收机, Pixhawk。
- (2) 软件方面, Matlab2016b, Simulink_Pixhawk_Support基于模型开发软件, 自稳模式仿真以及硬件在环仿真Simulink模型及相关代码文件e7.2 (http://rfly.buaa.edu.cn/course.html)。

■目标

- (1) 在自稳模式的基础上改成定高模式。根据实验分析,与自稳模式相比,多旋翼在定高模式下姿态和位置输出值的变化。
 - (2) 在处理器在环仿真下体会定高的控制效果。

1 vz deadzone max_vz

□实验步骤

- (1) Simulink仿真
 - 1)设置定高死区。


```
function [y] = fcn(u)
     %将遥控输入的范围控制在1100~1900, 同时设置一个死
     区, 死区大小为 ± dead Zone
    RCMin = 1100;
    RCMax = 1900;
    RCMid = (RCMin + RCMax)/2;
    deadZoneRate = 0.05;
    deadZone = deadZoneRate*(RCMax-RCMin);
    k=1/(RCMax-RCMid-deadZone);
10
    %限幅
11
    if(u < RCMin)
12
      u = RCMin;
13
     elseif(u > RCMax)
14
      u = RCMax;
15
     end
16
     %死区
17
     if(u > RCMid+deadZone)
18
      y = (u-RCMid-deadZone)*k;
19
     elseif(u < RCMid-deadZone)
20
       y = (u-RCMid+deadZone)*k;
21
     else
22
       y = 0;
23
     end
24
25
     end
```


□实验步骤

- (1) Simulink仿真
- 2) 设置期望位置

当油门杆偏离中间时,期望位置即为当前位置,此时位置反馈无效,只存在速度反馈,将速度反馈并进行计算给出期望值,传给控制器进行计算。当油门杆在中间位置时,期望位置为摇杆回到中间时刻的当前位置,若遥感一直在中间位置,期望位置一直不变,即一直保持当前位置不变,设计如左图所示。

```
function [vx_d,vy_d,vz_d,x_d,y_d,z_d] = fcn(vzd,x,y,z,vx,vy,vz)
     persistent z1;
     if isempty(z1)
       z1=z;
     end
     persistent hold_z_flag;
     if isempty(hold z flag)
       hold z flag=0;
     end
11
     if abs(vzd)<0.001&&abs(vz)<0.5
12
       hold z=1;
13
     else
14
       hold_z=0;
     end
     %油门在中间位置,保持高度
     if (hold z>0.5)&&(hold z flag<0.5)
18
      z1=z;
19
      hold_z_flag=1;
     end
     %油门不在中间位置,期望高度即为当前高度。高度控制器只有速度环起作用
     if hold z<0.5
      z1=z:
     end
     x_d=x;y_d=y;z_d=z1;
     vx_d=vx;vy_d=vy;vz_d=vzd;
```


□实验步骤

- (1) Simulink仿真
 - 3) 建立高度控制模型

将前面设计的死区和期望位 置模块加入自稳模式模型中,并 将mode的输入由0改为1,表示使 用高度控制模式,即得到高度控 制模型。

□实验步骤

- (1) Simulink仿真
- 4) 开始仿真并进行试验结果分析

姿态和水平位置输出与自稳模 式下相同,即姿态能保持稳定,水 平位置不能保持稳定。

图. 位置变化

□实验步骤

- (1) Simulink仿真
 - 4) 开始仿真并进行试验结果分析

当高度输入在1460~1540之间时,即油门遥感在中间死区时,如右图。可以看到高度波动很小误差在 ±0.002m之间,可以认为高度保持稳定成立。

图. 油门遥感在死区时高度输出

□实验步骤

- (1) Simulink仿真
- 4) 开始仿真并进行试验结果分析

图. 油门为1600时高度输出

当油门超过死区,如油门输入为1600时,可以看到Z轴实际速度跟随期望速度并保持稳定,高度持续升高。

图.油门为1600时z轴速度输出

□实验步骤

- (2) 处理器在环仿真
- 1) 搭建处理器在环仿真模型

将StabilizeControl_HIL.slx模型中的Control System模块替换成高度控制模式的Simulink模型中的Control System模块即可得到高度控制模式的处理器在环仿真模型HeightControl_HIL.slx.

图. HeightControl_HIL.slx截图

□实验步骤

- (2) 处理器在环仿真
 - 2) 硬件连接

图. 硬件系统连接

□实验步骤

- (2) 处理器在环仿真
- 3)将处理器在环仿真模型编译并下载文件到Pixhawk中。这样就可以在Pixhawk中运行我们自己设计的姿态控制程序。

分析实验

□实验步骤

- (2) 处理器在环仿真
- 4) 模型仿真器软件配置。

双击文件"半物理仿真软件 CopterSimSystem、CopterSimSystem. exe" 即可以打开多旋翼模拟器软件。依次点击 按钮"模型参数"-"存储并使用",软 件会自动匹配串口号,如果串口号有错请 手动选择,再点击"开始仿真"按钮就可 以进入半物理仿真模式。此时可以看到如 图所示的界面左下角收到飞控返回的相关 消息,以及PixHawk飞控上的灯光从蓝色 变为绿色闪烁。

图. 模型仿真器软件配置

分析实验

- (2) 处理器在环仿真
- 5) 3D Display三维显示软件配置。双击文件"半物理仿真软件\Show3d\ show3d. exe" 打开三维显示软件。
- 6)解锁多旋翼,实现手动控制。如图在3D Display软件界面左侧观察多旋翼状态变化, 界面右上角观察实时飞行数据,界面右下 角观察多旋翼运动轨迹。

图. 3D Display

□实验目标

■ 已知

- (1) 硬件方面, 遥控器, 遥控器接收机, Pixhawk。
- (2) 软件方面, Matlab2016b, Simulink_Pixhawk_Support基于模型开发软件, 位置控制模式仿真以及硬件在环仿真Simulink模型及相关代码文件e7.3 (http://rfly.buaa.edu.cn/course.html)。

■目标

- (1) 在自稳模式的基础上改成定点模式。根据实验分析,与自稳模式相比,多旋翼在定点模式下姿态和位置输出值的变化。
 - (2) 利用三段拨码开关实现三种模式的自由切换,完成半物理仿真实验,进行验证。

- □自驾仪半自主控制三种模式实现
- $lacksymbol{\blacksquare}$ 遥控器ch3的输入被转换成两种输出,一个是期望油门 f_{drc} ,另一个是给位置控制器的期望的z轴速度 v_{zdrc} 。
- lacktriangledown ch1和ch2的输入也被转换成两种输出,一个是期望俯仰角和滚转角 eta_{drc} , ϕ_{drc} ,另一个是给位置控制器的期望x、y轴速度lacktriangledown 。

□自驾仪半自主控制三种模式实现

自稳模式: switch1选择 θ_{drc} , ϕ_{drc} 作为期

望姿态角 (期望偏航角在三种模式下的

来源相同), switch2选择 f_{drc} 作为期

望油门。

□自驾仪半自主控制三种模式实现

高度控制模式: switch1选择 θ_{drc} , ϕ_{drc} 作为期望姿态角, switch2选择 f_{dap} 作为期望油门。

□自驾仪半自主控制三种模式实现

位置控制模式: switch1选择 $\theta_{\mathrm{dap}},\phi_{\mathrm{dap}}$

作为期望姿态角,switch2选择 f_{dap}

作为期望油门。

□实验步骤

- (1) 位置控制模式Simulink仿真
- 1) 设置位置保持死区

位置保持死区设置与定高的死区设置相同。若给u输入(1000,2000)的斜坡信号,则对应的输出如图,这里同时对输入信号进行了归一化处理所以输出的信号幅值在(-1.1)。

图. 遥控器信号响应

图. 遥控器信号处理

□实验步骤

- (1) 位置控制模式Simulink仿真
- 2) 设置期望水平位置。

当摇杆偏离中间时,期望位置即为当前位置,此时位置反馈无效,只存在速度反馈。 当摇杆在中间位置时,期望位置为摇杆回到中间时刻的当前位置,若摇杆一直在中间位置,期望位置一直不变。

```
function [vx d,vy d,vz d,x d,v d,z d] = fcn(vxd,vyd,vzd,x,v,z,vx,vy,vz)
     persistent x1;
3
     if isempty(x1)
      x1=0:
     end
6
     persistent hold_x_flag;
8
     if isempty(hold_x_flag)
       hold_x_flag=0;
10
     end
11
     if abs(vxd)<0.001&&abs(vx)<0.5%摇杆进入死区,且速度较小,启用位置控制
13
       hold_x=1;
     else
15
      hold x=0;
16
     end
17
     if (hold x>0.5)&&(hold x flag<0.5)%启用了位置控制,进入定点状态
19
       x1=x:
20
       hold x flag=1;
21
     end
     if hold x<0.5%没有启用定高,期望位置即为当前位置
24
      x1=x:
25
     end
     x_d=x1;y_d=y1;z_d=z1;
     vx d=vxd;vv d=vvd;vz d=vzd;
```


□实验步骤

- (1) 位置控制模式Simulink仿真
 - 3) 建立位置控制模型

将前面设计的死区和期望位置模块加入自稳模式模型中,并将mode的输入由0改为2,表示使用位置控制模式,即得到位置控制模型。

- (1) 位置控制模式Simulink仿真
- 4) 开始仿真并进行试验结果分析 高度输出与高度控制模式相同, 即高度能保持稳定。

图. 中间位置时的高度变化

□实验步骤

- (1) 位置控制模式Simulink仿真
- 4) 开始仿真并进行试验结果分析

当滚转、俯仰遥感输入在1460~1540之间时, 水平位置输出和水平速度输出如图。可以看到,尽 管滚转、俯仰通道上固定干扰,但是在定点模式下, 这种干扰被很好地抑制了,位置变化在±0.05m以内。

图 . 滚转、俯仰遥感在中间时水平位置输出

4) 开始仿真并进行试验结果分析

当俯仰输入为1600时,观测的X轴的速度如下图所示。速度输出能够比较好的跟随期望速

度。

图. 俯仰输入为1600时X轴速度输出

图. 俯仰输入为1600时水平位置的偏移

- (2) 三种模式之间的切换处理器在环仿真 1400-1600 时,多旋翼为高度控制模式;
 - 1) 将遥控器输入转换成对应模式

对于ch 5,将其设置为值在 1000-1400 时,多旋翼为自稳模式;值在 1400-1600 时,多旋翼为高度控制模式;值在 1600-2000 时,多旋翼为位置控制模式。

```
1 function control_mode = fcn(ch5)
2 %0:自稳模式
3 %1:定高模式
4 %2:定点模式
5 if ch5<1400
6 control_mode=0;
7 elseif ch5<1600
8 control_mode=1;
9 else
10 control_mode=2;
11 end
```


□实验步骤

(2) 三种模式之间的切换处理器在环仿真

图. ModeSwitch_HIL.slx截图

2) 搭建处理器在环仿真模型 将StabilizeControl_HIL.slx模型中的 Control System模块替换成位置控制 模式的Simulink模型中的Control System模块,并加入遥控器的ch5通 道进行模式切换, 即可得到三种模式 切换的处理器在环仿真模型 ModeSwitch_HIL.slx.

□实验步骤

- (2) 处理器在环仿真
 - 2) 硬件连接

图. 硬件系统连接

- (2) 处理器在环仿真
- 3)将处理器在环仿真模型编译并下载文件到Pixhawk中。这样就可以在Pixhawk中运行我们自己设计的姿态控制程序。

□实验步骤

- (2) 处理器在环仿真
- 4) 模型仿真器软件配置。

双击文件"半物理仿真软件 \CopterSimSystem\CopterSimSystem. exe" 即可以打开多旋翼模拟器软件。依次点击 按钮"模型参数"-"存储并使用",软 件会自动匹配串口号,如果串口号有错请 手动选择,再点击"开始仿真"按钮就可 以进入半物理仿真模式。此时可以看到如 图所示的界面左下角收到飞控返回的相关 消息,以及PixHawk飞控上的灯光从蓝色 变为绿色闪烁。

图. 模型仿真器软件配置

- (2) 处理器在环仿真
- 5) 3D Display三维显示软件配置。双击文件"半物理仿真软件\Show3d\ show3d. exe" 打开三维显示软件。
- 6)解锁多旋翼,实现手动控制。如图在3D Display软件界面左侧观察多旋翼状态变化, 界面右上角观察实时飞行数据,界面右下 角观察多旋翼运动轨迹。

图. 3D Display

小结

- (1) 在基础实验中,如果不存在常值扰动时,是属于理想状态,此时不会出现任何偏差,多旋翼飞行器会在自稳模式下,保持期望的姿态和位置,但是由于环境的干扰和存在的测量误差,则会出现像仿真过程中给出的小扰动一样的结果,多旋翼飞行器出现了位置偏移。
- (2) 在自稳模式的设计中,主要是用到姿态控制器,将俯仰和滚转摇杆的值转化为期望的角度,从而将通过姿态控制器控制。而对定高的设计主要是将油门杆的死区设定好,在死区时,主要以位置反馈为主,从而保证高度不变,而对于不在死区的情况,主要是将其转换为速度,以速度进行反馈,实现对高度的控制。
- (3) 在自主设计实验中,要在理解定高模式设计的基础上,完成对定点模式的控制设计,利用滚转和俯仰摇杆控制水平(X,Y)的变化。对于模式切换的设计,只要是学会利用遥控器中的拨键,将输入转换成相应的控制量,实现对三种模式的自由切换,知道在控制器之中如何实现控制的转换。

资源

(1) 关于线上线下课程相关信息:

http://rfly.buaa.edu.cn/course.html

(2)课程讨论区

https://flyeval.com/forum

(3) 关注可靠飞行控制研究组公众号 buaarfly

谢 谢!