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What are the three attitude representation

methods and the relationship between their derivatives
and the aircraft body’s angular velocity?
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1. Coordinate System

2. Attitude Representation

— Euler Angles
— Rotation matrix
— Quaternion

3. Conclusion
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“2)) 1. Coordinate System

O Right-Hand Rule

1

Positive
rotation angl

(a) Coordinate axes (b) Positive direction of a rotation
Fig 5.1 Coordinate axes and the positive direction of a rotation using the right-hand rule

As shown iIn the figure above, the thumb of the right hand points to the positive
direction of the ox axis, the first finger points to the positive direction of the oy axis
and the middle finger points to the positive direction of the oz axis. Furthermore, as
shown in the figure above, in order to determine the positive direction of a rotation,
the thumb of the right hand points the positive direction of the rotation axis and the
direction of the bent fingers is the positive direction of rotation.
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Fig 5.2 The relationship

between the ABCF and the EFCF

,,% 1. Coordinate System

[0 EFCF and ABCF

The Earth-Fixed Coordinate Frame (EFCF) is used to study
multicopter’s dynamic state relative to the Earth’s surface
and to determine its 3D position. The Earth’s curvature is
ignored. The initial position of the multicopter or the center
of the Earth is often set as the coordinate origin O, the
axis 0.X,points to a certain direction in the horizontal plane
and the o,z axis points perpendicularly to the ground. Then,
the o,y, axis is determined according to the right-hand rule.

The Aircraft-Body Coordinate Frame (ABCF) is fixed to the
multicopter. The Center of Gravity (CoG) of the multicopter
Is chosen as the origin 0, . The 0,X, axis points to the nose
direction in the symmetric plane of the multicopter. The
axiso,zjs in the symmetric plane of the multicopter, pointing
downwards, perpendicular to the 0,X, axis. The 0,Y, axis is
determined according to the right-hand rule.

Subscript e represents the Earth, subscript b represents the Body.
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,,% 1. Coordinate System

@

[0 EFCF and ABCF

Define the following unit vectors

ooy 1] [o] [o
o e, =[0],e,=|1|e, =0
e 10 10 1
d 3 In the EFCF, the unit vectors along the o.x, axis, o.Y. axis and
% ° 0,2, axis are expressed as e, e,,e;, respectively. In the ABCF, the
o £ y, unit vectors along the 0,X, axis, 0,Y, axis and o,z, axis satisfy the
i following relationship (Superscript b represents the expression
, in ABCF of a vector)b b b
¢ b,=e¢, b,=¢,, 'b;=¢,
Fig 5.2 The relationship In the EFCF, the unit vectors along the o,x, axis, o,y, axis and

between the ABCF and the EFCF  0,Z, aXIS are expressed as °b,, °b,, °b, respectively. (Superscript
e represents the expression in EFCF of a vector).
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“‘ 2. Attitude Representation

@

0 Euler Angles

(1) Definition

The rotation from the EFCF to the ABCF is composed of three
elemental rotations about e,, K, ,n, axes by v, 8, ¢ separately.

o n,(b,)
k, ; e 0 ¢ ‘ 0
‘_ _ 17/;/ W" ‘9/'\\ kl HZM \\
R k \ ' ¢/ =\
e, () . k,(n,) ‘;‘\ \ I AN
\ b \
‘ n, i ‘ b
\/ Vv Vo~
e3 (ks) k3 n3
(a) Yaw angle (b) Pitch angle (c) Roll angle
Fig 5.3 Euler angles and frame transformation
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[0 Euler Angles
(1) Definition

. .. The pitch angle is positive
The roll angle is positive when

_ when the body pitches up
the body rolls to right N

Front view

The yaw angle is

positive when the

body yaws to right
Top view
Front view
Fig 5.4 Intuitive representation of the Euler angles ( , Y axis is green, z axis is blue)
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0 Euler Angles

(1) Definition

i y
0 /

e

,,% 2. Attitude Representation

The angles between the EFCF and the
ABCF are attitude angles, namely Euler
angles.

Pitch angle 6: the angle between the body
axis and the horizon plane. The pitch angle
IS positive when the aircraft nose pitches up.

Yaw angley : the angle between the
projection of the body axis in the horizon
plane and the earth’s axis. The yaw angle is
positive when the aircraft body turns to right.

Fig 5.5 Representation of Euler angles

Roll angle ¢ : the rotation angle of the
aircraft symmetry plane around the body
axis. The roll angle is positive when the
aircraft body rolls to right.
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,,% 2. Attitude Representation

@

0 Euler Angles

Yo
(1) Definition

0,

Roll angle

0 %
&/\\\, o’ The pitch angle & shown in the
X, / b PILA diigle &5
0 ﬁ left figure is positive;
Ye

Piteh angle The roll angle ¢ shown in the left
figure Is negative;

The yaw angle ¥ shown in the
left figure Is positive.

Fig 5.6 Diagram of the Euler angles
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0 Euler Angles

(2) Relationship between the attitude rate and the aircraft
body’s angular velocity

The angular velocity of the aircraft body’s rotation is

b T
0= [a)xb a)yb a)zb :|

Then o
a)xb _¢_
o |-|o D
o, | (V| ®
2016/12/25 = o= leiﬂﬁﬁfi-ﬁﬁﬁﬂﬁﬂﬁﬁﬁ 11
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* 2. Attitude Representation

@

0 Euler Angles

(2) Relationship between the attitude rate and the aircraft
body’s angular velocity

The angular velocity of the aircraft body’s rotation is
b T
o= [a)xb 0, 0, ]
b . _ - D ) b b Superscript b represents
W=y k3 +0 n, + ¢ bl the expression in ABCF
Then of a vector.
o, | [1 0 —sind | 4|
o, |=|0 cosg cos@sing || 6
o, |0 -sing cosdcosg _:/)_
2016/12/25 - 5 jtﬂﬁﬂi%‘ﬁﬁﬂﬁﬁ%ﬁ 12
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0 Euler Angles

(2) Relationship between the attitude rate and the aircraft
body’s angular velocity

Furthermore O=W-"o
0=+7/2
where ] (1 tandsing tanédcosg | Singularity
®:[¢ 0 l//] W=|0 COS ¢ —sing memem
|0 sing/cosé cosg/cosé |
When 0,§~0,0onehas
a)xb ¢
v, |=| 0
o, | LV
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[0 Rotation Matrix
(1) Definition

Define the rotation matrix as

RiR;' =R{'R; =1,

Rotation matrix from the ABCF to ‘l

the EFCF RE=[eb1 eb2 eb3:| det(RE)zl

Note: det() represents the determinant

The vectors In rotation matrix satisfy
‘b, =R -"b, =R -e,,°b, =R;-°b, =R’ -e,,°b, =R} -°b, =R} -e,

AN

Superscript b represents
the expression in ABCF
of a vector.

Superscript e represents
the expression in EFCF
of a vector.
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,ﬁ“‘ 2. Attitude Representation

@

- B, n, (b,)
. . 0 o _-OM
[0 Rotation Matrix SR ok
.ez ky kz(nz) ‘9\\
(1) Definition N 28
@) Yavf/ a;gle (b) Pit;h angle (c) Roll angle

The rotation from the EFCF to the ABCF is composed of three elemental
steps

_el ] I k, ] i n, ]2 > _bl = nl_
e, k, |—2%,/n, =k, b,
e, | R Ik, =e, | . n, | b,
where
[ cosy siny O] (cosd 0 —siné (1 0 0 |
R,(y)&|-siny cosy O, R,(A)2] 0 1 0 |\R(#)=|0 cosg sing|.
0 0 1 sind 0 cosd |0 —sing cos¢ |
2016/12/25 S ERAETRHARA 15
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] Rotation Matrix H
(1) Definition

:e3

|

R; =(R?)"
=R (v)R, ()R, (¢)
=R, (¥ )R, (-0)R,(~¢)
[ cos@cosy  cosy sin@sing—siny cosg  cosy sin@cosd+siny sing
=| cos@siny sinysin@sing+cosy cos¢ Sinysin@cos¢—cosy sing |.

| —sind singcosé COS @ Ccosd |
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2. Attitude Representation

Vi ::\_‘\

I:I Rotation Matrix
(1) Definition

ST PR T I I
Calculate Euler R:=|r, r, 4 tan(y) = ri V= amta”ﬁ
angles from the Mo el sin(0)=—r :> 0 — arcsin(—r
rotation matrix > ¥ (r »)
tan (@) = -2 ¢ = arctan 2
33 r33
When 8=+—,
¢ Infinite number
0 -sin(y¥g) cos(yF¢ of combinations
Ri=| 0 cos(wxg) sin(wFg)| /> It is assumed
E 0 0 | |6=xx/2 that ¢=01n
Singularity problem this case.
2016/12/25 i jtﬂﬁﬂi%?iﬁﬂﬁ%ﬁ 17
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] Rotation Matrix

(2) Relationship between the derivative of the rotatio
matrix and the aircraft body’s angular velocity

The cross product of two vectors a2[a, a, aZ]T and b=b,

IS defined as

where

[a]. £

axb=[a] b

axb = a[b]sin &n

b, b, ]

2016/12/25
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,,% 2. Attitude Representation
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] Rotation Matrix

(2) Relationship between the derivative of the rotation
matrix and the aircraft body’s angular velocity

If the rigid body’s rotation (without translation) is only considered,
then the derivative of a vectorer e R® satisfies (Similar to the circular
motion) d’r . f
= OXr °
dt
where the symbol X represents the vector cross
product. One has

d b, ‘b, °b,]
dt

Fig 5.7 The derivative of a vector
presented by the circular motion
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2. Attitude Representation
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I:I Rotation Matrix

(2) Relationship between the derivative of the rotation

matrix and the aircraft body’s angular velocity
According to @ =R - "o and the property of the cross product

Following property of
the cross product is
used : for a rotation
matrix R e R*®(det(R)=1)
=R;|"‘oxe, "oxe, ‘oxe] and any two vectors

RE[ } a b e R®, one has
(Ra)x(Rb)=R(axb)

o [(RePo)x(Rie,) (Ri'o)x(Rie;) (R: o)x(Rie

_Re( (oxel) Rﬁ(b(oxez) Rz(bmxeg)]

The use of the rotation matrix can avoid the singularity problem. However, since
has nine unknown variables, the computational burden of solving equation is heavy.
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I:I Qu aternion Eeow

1 on the *E“d?t

(1) Definition s

Quaternions are normally written as

|:q0 :|

q, Fig 5.8 Quaternion plaque on Brougham
] (Broom) Bridge, Dublin, and the image is from

where g, € R is the scalar part of qe R* and https://en.wikipedia.org/wiki/Quaternion

=[a a, @] R isthe vector part.

For a real number s e R, the Corresponding It reads “Here as he walked by on the 16th

of October 1843 Sir William Rowan

quaternlon Is defined as q= [S les] . For a Hamilton in a flash of genius discovered
vector veR’ the corresponding quaternion is O
T multiplication i2=j2=k?>=ijk=-1 & cut
q= [O \% ] , it on a stone of this bridge.”
2016/12/25 <8 jiltﬂﬁjﬁ'ﬂ HEHRRA 21
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“‘ 2. Attitude Representation

@

[d Quaternion
(2) Quaternions’ basic operation rules

T : P g e
e Addition and subtraction piq:{ 0}_{ 0}:{ 0 0}
pV qV pviqv
el
o Multiplication p®q:{p0:|®|:q0:|:{poqo q,p, }
pV qV pv X qv + quv + qopv

Multiplication properties (Note: g, r, m are guaternions, s Is a scalar,
u, v are column vectors)

q®(r+m)=q®r+q®m Sq= s :{sqo} q. 4. :L(j@{()} :{—uTV}

q®r®m=(q®r)®m=q®(r®m) sq, \Y uxvy

2016/12/25 : jtﬁﬁﬂi%ﬁﬁﬂﬁ%ﬁ 22
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“‘ 2. Attitude Representation

[d Quaternion

(2) Quaternions’ basic operation rules
e Conjugate

(a7) =q
of ) do : b
= = Some properties: (p®q) =q'®
1 |:qv:| j‘> 1 |:_qv:| Pop (p q)* q* p*
(p+q) =p"+q
e Norm
o <fosa]feed oo -folid
—q2+qlq, PFOPETHES. la’||=al
=0, +0; +0; +0;
2016/12/25 I"Zﬁﬁﬁfi-ﬁﬁﬁﬂﬁﬂ;ﬁﬁ 23
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2. Attitude Representation

I:I Qu aternion
(2) Quaternions’ basic operation rules

1
q®q1={ }
031

According to the definition of q", one has q

e |nverse

*

. q
i

 Unit quaternion
For a unit quaternion q, it satisfies|q|=1 . Let|p||=|lq|=1 . Then

[p®aq|=1
q =q
2016/12/25 jtﬁﬁﬂi%ﬁﬁﬂﬁﬁﬁ
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,,% 2. Attitude Representation

@

[d Quaternion
(3) Quaternions as rotations

Assume that q represents a rotation process and v, € R’
represents a vector. Then under the action of q, the

vector v, is turned into v, e R®. This process is v;
’ }
expressed as : The first row A \:\
0 0 |[«— .
— ®q* always stands S
' <
Vl V1_ \4
A unit quaternion can always be written in the form
S
COSE
q= ) 0 >’
vSIn—
| X

Readers can further refer to:

[1] Shoemake K. Quaternions. Department of Computer and Information Science, Fig 5.9 Physical meaning of unit quaternions
University of Pennsylvania, USA, 1994
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,,% 2. Attitude Representation
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[d Quaternion

(3) Quaternions as rotations

Define two unit vectorsv,, v, (v, # +v, ) with /2 being the angle between
them. Therefore, one has

- 0
V,V, = C0S—
2

vetorVi _ VoXVi  _ VoX W N,
12 2] VOXV1:VS|nE A Vo XV,

Mol v fsinsin

Define a unit quaternion, one has ///”’i'j“\\\
o7 ~
A / N
hdl ) \ ”
COSQ { VoV, } {O }@{O } . 5022 -
q = = = ~ - - A _ -
| Ly TP -
B 2 Fig 5.10 Rotation represented by quaternions

2016/12/25 < . jtﬂﬁﬁi%ﬁﬁﬂﬁ%ﬁ 26
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jf* 2. Attitude Representation

2016/12/25

[d Quaternion
(3) Quaternions as rotations

{0 :| K
\f! L Vo

0 } ( 0
Vi L Vo

Why can quaternions
represent the rotation?

v, lies in the same plane as v, and Y1, as shown
in the figure below, and also forms an angle /2

— — —

— —
-— — —

Fig 5.10 Rotation represented by quaternions
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[0 Quaternion

(3) Quaternions as rotations
 Vector rotation » Coordinate frame rotation

0 0 0 0
FREME el e
V1 V1 V1 V1

..
.o

>
4
2

0 > Y :

Pay attention to the difference !
2016/12/25 - jtﬂﬁﬂi%ﬁﬁﬂﬁﬁﬁﬁ 28
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[d Quaternion
(4) Quaternions and rotation matrix
It is assumed that the rotation from the EFCF to the ABCF is represented by

the quaternion q, =[q, g, q, q3]T , one has (Coordinate frame rotation)

0
°r

=q5®{

$GP=C(QS)br C(q.) =
SR-C@) L

2016/12/25

}(qﬁ)l@{fr}@qi
Jolat)

0,7+ 0 — 0, — 0,
2,0, + 05
2(Q1Q3 _ quZ)

%
—G4
—0;
—0;

2

G % G |G
Jo —0; 0, G
05 Qo & || Y%
_qz ql qo _Q3

2(q1q2 o qua)
2 2 2

QO _ql +CI2 _qs
2(0,9; +d,0;)

A ETTERRRE
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%
O

—0,

—0,
—0;
%
O

—0;

q, || O
—q, r

% |

2(Q1Q3 + Cquz)
2(q2q3 _ qul)

2

Oo” — 0> — 0, + 05
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I:I Quaternion

(5) Quaternions and Euler angles
According to the rotation order<

of Euler angles, one has

9. =4, (v)®q,(0)®q,(¢)

; cosﬁcosgcosﬂﬁingsinQsinK
(9) cos¢ sin¢ 0 O} 2 2
q, = ~ ~
2 2 singcosgcosﬂ—cosﬂsingsin
T q’ = 2 2
@)=|cos— 0 sin— 0 e
qy( ) COSgSinQCOSK+Sin£COSQSin
. 2 2 2
_ 4 -
q,(w)=|cos~ 0 0 S'”_} cosﬁcosgsinﬂ—sinfsingcos
2 2 ] 9 9
2016/12/25 . iltﬂﬁﬁfi-ﬁﬁﬁﬂﬁﬁﬁ 30
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()Yawa gl

(b)P h

(o]
n, b
A
‘b} "
: b,
= 4
n.

3
(c) Roll a

ngle

|

0

J =(a?)" ®{e0r} ®q;

b
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I:I Quaternion
(5) Quaternions and Euler angles

2. Attitude Representation

b0 IR
coszcoszcos%ﬁmEsmism% tan(¢) 2(9,9, +9,0,) ¢=arctanf£q§(zljqu§;
singcosgcos%—cosgsingsin% 1- Z(ql +q2) rcsin(s W
w=| L o 2 2 o o) sin(0)=2(q0,-44) 6 = arcsin (2( 0,0, 6% )
cosEsinEcosersin—cos—sinz ( 2(q 0. + 0 )
0os + G0 ) » = arctan| 2(%% * 4%
6 0. w . 6.0 v tan (v ) = 1-2(2 + )
C0sc0S Sin - —sin ~sin - cos 1- 2(q2 —|—q3) ) q; +0;
] ) cos(ﬂ ﬁj Infinite number
. . 2 2 f combination
When @ =+ z/2, the singularity problem occurs. 4 of combinations
Fsin Ki—) N
o N2 272 .
q, =— It is assumed
2(q0q2—q1q3):1||2(q0q2—qlqg):—l % | +cos KTrﬁj that ¢ =0.
2 2
2016/12/25 S ETEYTEHRRE " 22 31
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[d Quaternion

(6) Relationship between the derivative of the quaternions
and the aircraft body’s angular velocity

According to the composite rotation @(t):mqe(tmg—qe(t) \
quaternion in the case of rotating o e(0)®ag-a: (1)
coordinate frames, one has !Perturbaﬂon et At
q. (t+At)=q: (t)®Aq I_ qZ(t)@[l ;bwTAt} (1)
=1m
where Aircraft body’s M0 At
1 angular velocity 1] O —"oAt s b
qu[l Ebm . I3+2 At —[bmAtl 9. (1)-a. (1
_At—>0 At
The derivative of q; (t) is obtained as [0 el
\ "2 'e —[bml 0 /
2016/12/25 . jtﬂﬁﬂi%ﬁﬁﬂﬁﬁﬁ 32
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[0 Quaternion
(6) Relationship between the derivative of the quaternions

and the aircraft body’s angular velocity
qg:[qo qu]T _ 1 1 4

qb(t)% o Lo }lb(w m) S
e ‘o —[Po || 1
2@ |: (!)l qV:E(qOI3+[qV]X)bw

\
In practice, "o can be measured

i . Transformation
approximately by a three-axis @
gyroscope, then the equation

above Is linear! RS =C(q")

2016/12/25 - thﬂﬁﬁfi-ﬁﬁﬁﬂﬁﬁ;ﬁﬁ 33
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Relationship between the Euler angles and
the aircraft body’s angular velocity

Rotation
matrices

G) =W- o Singularity, Nonlinear

Relationship between the rotation matrix
and the aircraft body’s angular velocity

dR; e T b Non-singularity,
=R [ (o} o .
dt b «  High dimension

Relationship between the quaternions a
the aircraft body’s angular velocity

Singularity

Euler angles Quaternions

Unique

Fig 5.11 Mutual transformations

. . among three rotation expressions
on-singularity,

Lower dimension

autopilots of multicopters use this representation.
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Yangguang Cai Jinrui Ren Xunhua Dai
for material preparation.
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Thank you!

All course PPTs and resources can be downloaded at
http://rfly.buaa.edu.cn/course

For more detailed content, please refer to the textbook:

Quan, Quan. Introduction to Multicopter Design and Control. Springer,
2017. ISBN: 978-981-10-3382-7.

It is available now, please visit http://
www.springer.com/us/book/9789811033810
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