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What	are	the	three	attitude	representation	
methods	and	the	relationship	between	their	derivatives	

and	the	aircraft	body’s	angular	velocity?
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1. Coordinate System
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 Right-Hand Rule

As shown in the figure above, the thumb of the right hand points to the positive
direction of the ox axis, the first finger points to the positive direction of the oy axis
and the middle finger points to the positive direction of the oz axis. Furthermore, as
shown in the figure above, in order to determine the positive direction of a rotation,
the thumb of the right hand points the positive direction of the rotation axis and the
direction of the bent fingers is the positive direction of rotation.

Fig 5.1 Coordinate axes and the positive direction of a rotation using the right-hand rule
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 EFCF and ABCF
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Fig 5.2 The relationship 

between the ABCF and the EFCF

The Earth-Fixed Coordinate Frame (EFCF) is used to study
multicopter’s dynamic state relative to the Earth’s surface
and to determine its 3D position. The Earth’s curvature is
ignored. The initial position of the multicopter or the center
of the Earth is often set as the coordinate origin , the
axis points to a certain direction in the horizontal plane
and the axis points perpendicularly to the ground. Then,
the axis is determined according to the right-hand rule.
The Aircraft-Body Coordinate Frame (ABCF) is fixed to the
multicopter. The Center of Gravity (CoG) of the multicopter
is chosen as the origin . The axis points to the nose
direction in the symmetric plane of the multicopter. The
axis is in the symmetric plane of the multicopter, pointing
downwards, perpendicular to the axis. The axis is
determined according to the right-hand rule.

eo

bo

e eo x
e eo z

e eo y

b bo x

b bo z
b bo yb bo x

Subscript e represents the Earth, subscript b represents the Body.

1. Coordinate System
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 EFCF and ABCF
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Define the following unit vectors

In the EFCF, the unit vectors along the axis, axis and
axis are expressed as , respectively. In the ABCF, the

unit vectors along the axis, axis and axis satisfy the
following relationship (Superscript b represents the expression
in ABCF of a vector)

b b b
1 1 2 2 3 3, ,  b e b e b e

In the EFCF, the unit vectors along the axis, axis and
axis are expressed as , respectively. (Superscript

e represents the expression in EFCF of a vector).

e eo x e eo y

e eo z 1 2 3, ,e e e
b bo x b bo zb bo y

b bo x b bo y

b bo z e e e
1 2 3, ,b b b

Fig 5.2 The relationship 

between the ABCF and the EFCF

1. Coordinate System
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Fig 5.3 Euler angles and frame transformation

The rotation from the EFCF to the ABCF is composed of three
elemental rotations about axes by separately.3 2 1, ,e k n , ,  

2. Attitude Representation

 Euler Angles
(1) Definition



2. Attitude Representation
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 Euler Angles

Fig 5.4 Intuitive representation of the Euler angles (x axis is orange , y axis is green, z axis is blue)

(1) Definition
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 Euler Angles

Fig 5.5 Representation of Euler angles

(1) Definition

The angles between the EFCF and the
ABCF are attitude angles, namely Euler
angles.
Pitch angle the：ߠ angle between the body
axis and the horizon plane. The pitch angle
is positive when the aircraft nose pitches up.
Yaw angle ߰ ： the angle between the
projection of the body axis in the horizon
plane and the earth’s axis. The yaw angle is
positive when the aircraft body turns to right.
Roll angle 	߶： the rotation angle of the
aircraft symmetry plane around the body
axis. The roll angle is positive when the
aircraft body rolls to right.

2. Attitude Representation
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Fig 5.6 Diagram of the Euler angles

The pitch angle	ߠ shown in the
left figure is positive;
The roll angle ߶ shown in the left
figure is negative;
The yaw angle	߰ shown in the
left figure is positive.

Pitch  angle

Roll angle

Yaw angle

(1) Definition

 Euler Angles

2. Attitude Representation
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(2) Relationship between the attitude rate and the aircraft
body’s angular velocity

The angular velocity of the aircraft body’s rotation is

b b b

Tb
x y z     ω

Then

？

 Euler Angles

2. Attitude Representation
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b b b b
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Then

Superscript b represents 
the expression in ABCF 
of a vector.

The angular velocity of the aircraft body’s rotation is

b b b

Tb
x y z     ω

(2) Relationship between the attitude rate and the aircraft
body’s angular velocity

 Euler Angles

2. Attitude Representation
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Furthermore

1 tan sin tan cos
0 cos sin
0 sin cos cos cos

   
 

   

 
   
  

W
Singularity 
problem

2  

 T  Θ
where

When , one has, 0  

(2) Relationship between the attitude rate and the aircraft
body’s angular velocity

 Euler Angles

2. Attitude Representation

b Θ W ω
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 Rotation Matrix
(1) Definition

Define the rotation matrix as

The vectors in rotation matrix satisfy

e e e e
b 1 2 3   R b b b

Rotation matrix from the ABCF to 
the EFCF

Superscript b represents 
the expression in ABCF 
of a vector.

Superscript e represents 
the expression in EFCF 
of a vector.

e eT eT e
b b b b 3 R R R R I

 e
bdet 1R

Note: det() represents the determinant

2. Attitude Representation

e e b e e e b e e e b e
1 b 1 b 1 2 b 2 b 2 3 b 3 b 3, ,           b R b R e b R b R e b R b R e
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The rotation from the EFCF to the ABCF is composed of three elemental 
steps

where

 Rotation Matrix
(1) Definition

2. Attitude Representation
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 
1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

x

y

z







        
               
              

R

R

R

e k n b n
e k n k b
e k e n b

     
cos sin 0 cos 0 sin 1 0 0
sin cos 0 , 0 1 0 , 0 cos sin .
0 0 1 sin 0 cos 0 sin cos

z y x

   
      

   

     
          
          

R R R  

o o o

3n

3k

2 2( )k n



1k

1n

2n

2b

3n

1 1( )n b

3b




1e

1k

3 3( )e k

2e

2k 

(a) Yaw angle (b) Pitch angle (c) Roll angle



2016/12/25 16

2. Attitude Representation

(1) Definition

 Rotation Matrix

 
     
     
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11 12 13
e
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Calculate Euler
angles from the
rotation matrix

It is assumed 
that            in
this case.
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2. Attitude Representation

(1) Definition

 Rotation Matrix

When ,
2
  

   
   e
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   
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 
 
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The cross product of two vectors and                   
is defined as

where

(2) Relationship between the derivative of the rotation 
matrix and the aircraft body’s angular velocity

2. Attitude Representation

 Rotation Matrix

 
0

0
0

z y

z x

y x

a a
a a
a a



 
  
  

a  sin a b a b n

  a b a b

T

x y za a a  a 
T

x y zb b b  b 



(2) Relationship between the derivative of the rotation 
matrix and the aircraft body’s angular velocity
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If the rigid body’s rotation (without translation) is only considered,
then the derivative of a vector satisfies (Similar to the circular
motion)

e 3r 
e

e ed
dt

 
r ω r

where the symbol × represents the vector cross 
product. One has

2. Attitude Representation

 Rotation Matrix

e e e
1 2 3 e e e e e e

1 2 3

d
dt

        
b b b

ω b ω b ω b
Fig 5.7 The derivative of a vector 
presented by the circular motion

ed
dt

r

er

eω
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According to                      and the property of the cross product 
Following property of
the cross product is
used : for a rotation
matrix
and any two vectors

, one has

  3 3 det 1 R R

3, a b 
       Ra Rb R a b

The use of the rotation matrix can avoid the singularity problem. However, since
has nine unknown variables, the computational burden of solving equation is heavy.

(2) Relationship between the derivative of the rotation 
matrix and the aircraft body’s angular velocity

 Rotation Matrix

2. Attitude Representation

e e b
b ω R ω

           
     

e
e b e e b e e b eb
b b 1 b b 2 b b 3

e b e b e b
b 1 b 2 b 3

e b b b
b 1 2 3

e b
b

d
dt



     

     
     
   

R R ω R e R ω R e R ω R e

R ω e R ω e R ω e

R ω e ω e ω e

R ω
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 Quaternion
(1) Definition

Fig 5.8 Quaternion plaque on Brougham
(Broom) Bridge, Dublin, and the image is from
https://en.wikipedia.org/wiki/Quaternion

It reads “Here as he walked by on the 16th
of October 1843 Sir William Rowan
Hamilton in a flash of genius discovered
the fundamental formula for quaternion
multiplication & cut
it on a stone of this bridge.”

Quaternions are normally written as

0

v

q 
  
 

q
q

where is the scalar part of and
is the vector part.

For a real number , the corresponding
quaternion is defined as . For a
vector , the corresponding quaternion is

.

0 q 4q
 T 3

v 1 2 3q  q q q

s
 T1 3q 0  s

3v
TT0q v   

i2 = j2 = k2 = ijk = −1

2. Attitude Representation
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(2) Quaternions’ basic operation rules
0 0 0 0

v v v v

p q p q     
             

p q
p q p q

T
0 0 0 0 v v

v v v v 0 v 0 v

p q p q
p q

    
                

q p
p q

p q p q q p

• Addition and subtraction

• Multiplication

Multiplication properties (Note: q, r, m are quaternions, s is a scalar, 
u, v are column vectors) 

 
   

     

       

q r m q r q m

q r m q r m q r m
0

v

sq
s s

s
 

   
 

q q
q

T0 0     
              

u v
u v

q q
u v u v

 Quaternion

2. Attitude Representation
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• Conjugate

0

v

q 
  
 

q
q

0

v

q  
   

q
q

 
 
 



  

  



  

  

q q

p q q p

p q p q

Some properties:

• Norm
2

2 T
0 v v

2 2 2 2
0 1 2 3

q

q q q q

    

 

   

q q q q q

q q 

 



p q p q

q q

Some properties:

(2) Quaternions’ basic operation rules
 Quaternion

2. Attitude Representation



2016/12/25 24

• Inverse
1

3 1

1



 
   

 
q q

0

According to the definition of     , one has q 1


 
qq
q

• Unit quaternion
For a unit quaternion    , it satisfies           . Let . Thenq 1q

(2) Quaternions’ basic operation rules

1p q 

1

1p q

q q 

 



 Quaternion

2. Attitude Representation
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(3) Quaternions as rotations
Assume that represents a rotation process and 
represents a vector. Then under the action of , the 
vector is turned into            . This process is 
expressed as

q 3
1 v 

q
1v

1

1 1

0 0    
        

q q
v v

The first row
always stands

cos
2

sin
2





 
 

  
 
  

q
v

A unit quaternion can always be written in the form

Fig 5.9 Physical meaning of unit quaternions
Readers can further refer to:
[1] Shoemake K. Quaternions. Department of Computer and Information Science,
University of Pennsylvania, USA, 1994

3
1v 

 Quaternion

2. Attitude Representation

v



x

y

z

1v

1v

o
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T
0 1 cos

2


v v

0 1 0 1 0 1

0 1
0 1 sin sin

2 2
 

  
  


v v v v v vv
v v v v 0 1 sin

2


 v v v

Define two unit vectors                          with        being the angle between 
them. Therefore, one has

 0 1 1 0,  v v v v 2

Define a unit quaternion, one has

T
0 1

010 1

cos 002

sin
2






 
      

                
  

v v
q

vvv vv
Fig 5.10 Rotation represented by quaternions

(3) Quaternions as rotations
 Quaternion

2. Attitude Representation

0 1

0 1





v v

v
v v

2
2v

2

1v
0v



0 1

0 1





v v

v
v v

2
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2

1v
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Fig 5.10 Rotation represented by quaternions

1

02

00   
    

   
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vv
* *

1

02 1 1
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0 0 1 1
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3 1 3 1
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00 0 0

0 0 0 0

0 0 0 0

1 1

0


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lies in the same plane as and , as shown
in the figure below, and also forms an angle
with    .

2v 1v
2

Why can quaternions
represent the rotation?

0v

1v

(3) Quaternions as rotations
 Quaternion

2. Attitude Representation
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• Coordinate frame rotation• Vector rotation

Pay attention to the difference !

(3) Quaternions as rotations
 Quaternion

2. Attitude Representation
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It is assumed that the rotation from the EFCF to the ABCF is represented by 

the quaternion , one has (Coordinate frame rotation) Tb
e 0 1 2 3q q q qq

 

 

1e e
b be b

1b b
e eb

0 0

0





   
     

   
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r
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     
                      
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       
      

C q

(4) Quaternions and rotation matrix
 Quaternion

2. Attitude Representation

e b b
e( )r C q r
e b
b e( )R C q
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     b
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 

 

T

T

T

cos sin 0 0
2 2

cos 0 sin 0
2 2

cos 0 0 sin
2 2

x

y

z

 
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q

According to the rotation order 
of Euler angles, one has

b
e
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(5) Quaternions and Euler angles
 Quaternion

2. Attitude Representation
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When                , the singularity problem occurs. 
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(5) Quaternions and Euler angles
 Quaternion

2. Attitude Representation
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According to the composite rotation
quaternion in the case of rotating
coordinate frames, one has

where
   b b

e et t t   q q q
Aircraft body’s 
angular velocity

The derivative of           is obtained as b
e tq

Perturbation

(6) Relationship between the derivative of the quaternions 
and the aircraft body’s angular velocity

 Quaternion

2. Attitude Representation
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In practice, can be measured
approximately by a three-axis
gyroscope, then the equation
above is linear!

bω

Tb T
e 0 vq   q q

Transformation

e b
b e( )R C q

 Quaternion

2. Attitude Representation

(6) Relationship between the derivative of the quaternions 
and the aircraft body’s angular velocity
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e
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d
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R R ω

• Relationship between the Euler angles and
the aircraft body’s angular velocity

• Relationship between the rotation matrix
and the aircraft body’s angular velocity

• Relationship between the quaternions and
the aircraft body’s angular velocity

Fig 5.11 Mutual transformations 
among three rotation expressions
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Thank you!
All course PPTs and resources can be downloaded at 

http://rfly.buaa.edu.cn/course

For more  detailed content, please refer to the textbook: 
Quan, Quan. Introduction to Multicopter Design and Control. Springer, 

2017.  ISBN: 978-981-10-3382-7.
It is available now, please visit http://

www.springer.com/us/book/9789811033810 


