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 Measuring Principle
（1）Pitch angle and roll angle measuring principle
According to the model in Lesson 6, by ignoring the
cross term of velocity and angular velocity,
the specific force satisfies

where, is the measurement from the accelerometer. when 
the angular velocity is small so that the system is in static equilibrium, i.e., 

The accelerometer measures
the specific force, namely
the non-gravitational force
per unit mass. Also, it
measures scaled velocity.
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 Measuring Principle
（1） Pitch angle and roll angle measuring principle

Therefore, observation of low-frequency pitch and roll angle can be 
acquired by accelerometer measurement illustrated as

where is the measurement from the accelerometer.

P.S. If the amplitude of the vibration is large, would be polluted by 
noise severely and further affect the estimation of . Thus，the vibration 
damping is very important.
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 Measuring Principle
（2） Yaw angle measuring principle

Figure 9.1. Schematic diagram of Earth‘s
magnetic field. (photo courtesy of Peter
Reid from the University of Edinburgh)

Figure 9.1 illustrates that the Earth‘s field points down
towards the north in the northern hemisphere, points up
towards the north in the southern hemisphere. It is
horizontal and points north at the equator. In all cases,
the direction of the Earth's field is always pointing to the
magnetic north, which is called the Earth's magnetic pole
position. But it differs from true, or geographic, north by
about 11.5 degrees. At different locations around the
globe magnetic north, the true north can differ by 25
degrees. This difference is called the declination angle
and can be determined from a lookup table based on the
geographic location. The key to accurately finding a
compass heading is a two-step process.
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 Measuring Principle
（2）Yaw angle measuring principle

1）First, determine the magnetic field direction in the horizontal plane of 
the vector and then obtain azimuth.

Suppose that the magnetometer measurements are .
Since a magnetometer is possibly not horizontally placed, the angles
measured by a dual-axis tilt sensor are used to project the magnetometer
measurement onto the horizontal plane as[1]

 m m, 

[1] Caruso M J. Applications of magnetoresistive sensors in navigation systems[R]. SAE Technical Paper, 1997.

where            are the horizontal projections of magnetometer readings.
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 Measuring Principle
（2）Yaw angle measuring principle

1） First, determine the magnetic field direction in the horizontal 
plane of the vector and then obtain azimuth.

Let                       . Then: mag 0, 2   mag ,   

If a multicopter turns clockwise, the yaw angle is positive.

Let . Then: 

 
 

 

e e e

e e e e

e e e e

e e

e e

1

1

1
mag

tan if 0

2 tan if 0, 0

tan if 0, 0

2 if 0, 0

3 2 if 0, 0

y x x

y x x y

y x x y

x y

x y

m m m

m m m m

m m m m

m m

m m

















  

   

   


 
  

 e emag arctan 2 ,y xm m 



1. Attitude estimation

2016/12/25 8

 Measuring Principle
（2） Yaw angle measuring principle

2） Secondly, the yaw angle is corrected by adding or subtracting a declination.

The magnetic field
orientation of Beijing is 6
degrees west of north,
then 6 degrees are added
to the magnetic field
orientation to obtain the
north direction.

Figure 9.3. 2015 world magnetic field declination contour map, adapted from
http://www.ngdc.noaa.gov/geomag/WMM/image.shtml.
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 Measuring Principle
（2）Yaw angle measuring principle

2） Secondly, the yaw angle is corrected by adding or subtracting a declination.

When multicopters are under the Semi-
Autonomous Control (SAC) manner, the direction
of the local magnetic field can be chosen as the
axis of the Earth-Fixed Coordinate Frame (EFCF)

During a mission under the Fully-Autonomous
Control (FAC) manner, the axis has to point to
the north in order to be consistent with the latitude
and longitude. Then declination is required to
correct the magnetic direction to the north
direction.

Figure 9.2. Local magnetic direction and 
the north direction
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 Measuring Principle

（2）Yaw angle measuring principle

Besides magnetometers, for a large multicopter, a dual-
antenna GPS receiver system can be used to estimate yaw 
angles measured by the two antennas on the multicopter
head and rear, respectively. However, it is hard for a small 
multicopter to get a precise yaw angle limited by GPS 
measurement precision. Therefore, at present, yaw angles 
are mainly measured by magnetometers.
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 Linear complementary filter
The attitude rates and angular velocity have the 
following relationship:

, ,    

Since multicopters often work under condition that                  , the above equation 
is approximated as

0, 0  

The attitude can be estimated by the accelerometers and magnetometers with large noise
but small drifts. On the other hand, integrating the angular velocity will result in the
attitude angle with small noise but large drifts. The basic idea of complementary filtering
is to use their complementary characteristics to obtain more accurate attitude estimation.
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 Linear complementary filter

The Laplace transform of pitch angle  is expressed as

     1 11
1 1

s s s
s s

  
 

      

 Low-pass filter,            
is a time constant

High-pass filter
11

1 1
s

s s


 
 

 

1） Since the pitch angle obtained by an
accelerometer has a large noise but a
small drift, for simplicity, it is modeled
as

2 ） Considering that the pitch angle
estimated by integrating angular velocity has
a little noise but a large drift, the integration
is modeled as

m n  
where indicates high-frequency noise, 
is the true value of the pitch angle.

n  Laplace transform of the
integration of angular velocity

Laplace transform of 
the constant drift

（1） Pitch angle
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 Linear complementary filter
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（1） Pitch angle

The standard form of a linear complementary filter is expressed as

Pitch angle estimated by 
integrating angular velocity

Pitch angle estimated
by an accelerometer
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 Linear complementary filter
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The Laplace transform of pitch angle      is expressed as

The linear complementary filter is expressed as the transfer function form

Pitch angle estimated
by an accelerometer

Pitch angle estimated by 
integrating angular velocity Attenuated to zero
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 Linear complementary filter

Figure 9.4. Process of complementary filter.

The low-frequency filter keeps the advantage that
has a small drift, while the high-frequency 

filter keeps the advantage that has a little 
noise.
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Through the first-order backward difference [2]，
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Berlin: Springer-Netherlands, 1991.
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 Linear complementary filter

If ,then                           .            

The complementary filter for the pitch angle 

is

 s 0.95T     s s 0.05T T  

Figure 9.5. Estimation of pitch angle by a linear
complementary filter. In this figure, acc, wx and cf
denote the pitch angle estimated by acceleration,
angular velocity integration and complementary filter,
respectively.

A Pixhawk is used for measurement and
the complementary filter is used to estimate
the pitch angle. Results are shown in Figure
9.5. It is observed that the pitch angle
estimated by the complementary filter is
correct and smooth, while that derived by
integrating the angular velocity is divergent.
The conclusion is the same for the roll angle.
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 Linear complementary filter
（2） Yaw angle

Yaw angle can be measured by both GPS and electronic compass, denoted by
and ,respectively. A simple method of obtaining is to sum the weighted
measurement of the two sensors, written as
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mag
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where is the weighting factor. Since the sampling periods of an electronic
compass and a gyroscope are often higher than that of a GPS, the yaw angle can
be obtained by
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 Nonlinear complementary filter
Similar to the linear complementary filter, they both benefit from the advantage of

complementary characteristics of accelerometers and gyroscopes. The difference is that
nonlinear complementary filters are based on a nonlinear relationship between the
angular velocity and the angle of rotation.

The rotation matrix is filtered out by the following equation (detailed in [3])

[3].Mahony R, Hamel T, Pflimlin J M. Nonlinear complementary filters on the special orthogonal group [J]. IEEE 
Transactions on Automatic Control, 2008, 53(5): 1203-1218.
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Denote as a rotation matrix estimated by the complementary filter, is a rotation
matrix measured by accelerometers and magnetometers, and is the error between
and defined as
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where .
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 Kalman filter

[4]. Kang C W, Park C G. Attitude estimation with accelerometers and gyros using fuzzy tuned Kalman filter[C]. 
Control Conference (ECC), 2009 European. IEEE, 2009: 3713-3718.

As shown before, a nonlinear complementary filter needs to use nine or twelve
states and it is also hard to choose optimal parameters. For such a purpose, a Kalman
filter is adopted to estimate the attitude [4]
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GPS-based position estimation often utilizes an IMU, a GPS receiver and a barometer.

The kinematic model of the multicopter and different information obtained by these

sensors are then fused by a Kalman filter. is the absolute position.
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 GPS-based position estimation
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The process model is formulated
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The sensor measurement models are referred to Lesson 7.

The measurement model
is derived as
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SLAM, Simultaneous Localization And Mapping, is a computational problem of

constructing or updating a map of an unknown environment while simultaneously

keeping track of the agent's location with it. Related references could be found in [5][6].

SLAM always uses different types of sensors, including distance sensors like ultrasonic

range finders or laser range finders, direction sensors like cameras. Combination of

distance sensors and direction sensors like 3D cameras is also commonly used. Several

SLAM systems and SLAM datasets are listed in Table 9.1 and Table 9.2, respectively.
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 SLAM-based position estimation

[5].  Whyte H, Baliey T. Simultaneous Localization and Mapping (SLAM) Part 1 The Essential Algorithms[J]. 
IEEE Robotics & Automation Magazine, 2006.
[6]. Bailey T, Durrant-Whyte H. Simultaneous localization and mapping (SLAM): Part II[J]. IEEE Robotics & 
Automation Magazine, 2006, 13(3): 108-117.
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Name Description Websites
CyrillStachniss, 
UdoFrese, Giorgio 
Grisetti

OpenSLAM: A platform for SLAM researchers
to publish their algorithms.

http://openslam.org

Kai Arras A FNU GPL licenced MATLAB toolbox for robot
localization and mapping.

http://www.cas.kth.se/toolbox

Tim Bailey The code is written in MATLAB and performs EFK, 
UKF, FastSLAM 1, and FastSLAM 2.

https://openslam.informatik.uni-
freiburg.de/bailey-slam.html

Mark Paskin Java and MATLAB hybrid programming SLAM
system using thin junction tree filters.

http://ai.stanford.edu/~paskin/slam

Andrew Davison An open source C++ library for SLAM designed
and implemented.

http://www.doc.ic.ac.uk/~ajd/Scene/inde
x.html

José Neira A simple SLAM simulation file. http://webdiis.unizar.es/~neira/software/
slam/slamsim.htm

Dirk Hahnel A grid-based Fast-SLAM system implemented in C. http://dblp.uni-
trier.de/pers/hd/h/H=auml=hnel:Dirk.ht
ml

Durrant Whyte, 
EduardoNebot,et al

MATLAB code of SLAM Summer School 2002 in 
Sweden.

http://www.cas.kth.se/SLAM/schedule.h
tml

Table 9.1 Open source SLAM algorithms
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Table 9.2 Datasets for SLAM

Name Description Websites

Andrew Howard and Nicholas 

Roy

Standard data sets for robotics community,
including laser and sonar data in real 
scenario and different maps and sensor data 
in simulation scenario.

http://radish.sourceforge.net

Jose Guivant，Juan Nieto and 

Eduardo Nebot

A large number of outdoor data sets
including the famous Victoria Park Dataset.

http://www.acfr.usyd.edu.au/index.sht

ml

Radish（The Robotics Data 

Set Repository）

A large number of indoor data sets 
including the Claxton CS building at UTK.

http://radish.sourceforge.net

IJRR（The International 

Journal of Robotics Research）

Websites of research papers in IJRR. http://www.ijrr.org
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 SLAM-based position estimation
（1） 2D Laser-based SLAM

Figure 9.6. Results of laser-based SLAM. Points are landmarks and the line is the 
trajectory of the estimated motion.

By using the Vitoria
Park data, the
MATLAB code of 2D-
laser SLAM algorithm
is tested. Results are
shown in Figure 9.6.
With information of
IMU and the 2D-laser,
landmarks are detected
and updated and then
location is estimated.
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 SLAM-based position estimation
（1） 2D Laser-based SLAM
Most algorithms mentioned in Table 9.1 are designed for robots in

flat, 2D environments, which are applicable to some special
conditions for multicopters. For example, a multicopter flies at a fixed
altitude, especially in an environment like corridors where the
horizontal cross-section of the space at different altitudes can be
regarded as the same. Then 2D-SLAM algorithms are applicable.

In cases that a multicopter flies in a complex 3D environment, 3D
SLAM algorithms are required. A 3D-Laser or a LiDAR can be used
to acquire data. Through extending 2D SLAM algorithms, 3D SLAM
results can be obtained.
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 SLAM-based position estimation
（2）Monocular-vision-based SLAM
Vision-based SLAM (VSLAM) consists of two core steps: tracking and mapping.

During the tracking step, position and attitude are estimated from scene structure
information, while during the mapping step, the 3D map of the scene are built on the
basis of position and attitude of the camera.
• Frame-by-Frame SLAM
Tracking and mapping are alternately performed. Tracking relies on the scene structure 
information from the 3D map and mapping  in turn needs the motion information provided 
by tracking.
• Key-Frame SLAM
Tracking and mapping can be split into two separate tasks, processed in parallel threads on a 
dual-core computer at different rates. Tracking works in a higher rate in order to ensure real-
time performance, while mapping works in a lower rate in order to get a high accuracy scene 
structure.
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 SLAM-based position estimation
（2） Monocular-vision-based SLAM

A well-performed system called Parallel Tracking And Mapping (PTAM) with
monocular system is widely used in micro-UAVs. In addition, a monocular vision system
cannot obtain the absolute scale information. To recover the real motion of the camera,
the information from IMU and altitude sensors are required. In [7], a Kalman filter was
adopted to recover the absolute scale. The process model is

[7] Achtelik M, Achtelik M, Weiss S, et al. Onboard IMU and monocular vision based control for MAVs in unknown in-
and outdoor environments[C]//Robotics and automation (ICRA), 2011 IEEE international conference on. IEEE, 2011: 
3056-3063.

are the altitude, velocity in altitude 
direction, scaling factor and bias of the 
barometer, respectively, are the 
corresponding noises.
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 SLAM-based position estimation
（2） Monocular-vision-based SLAM

[7] Achtelik M, Achtelik M, Weiss S, et al. Onboard IMU and monocular vision based control for MAVs in unknown in-

and outdoor environments[C]//Robotics and automation (ICRA), 2011 IEEE international conference on. IEEE, 2011: 

3056-3063.

The altitude by SLAM

The altitude by barometer

Observability？

A well-performed system called Parallel Tracking And Mapping (PTAM) with 
monocular system is widely used in micro-UAVs. In addition, a monocular vision syste
cannot obtain the absolute scale information. To recover the real motion of the camera, 
the information from IMU and altitude sensors are required. In [7], a Kalman filter was
adopted to recover the absolute scale. The measurement model is
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 Optical-flow-based velocity estimation 

Optical flow is the pattern of apparent motion of objects, surfaces, and
edges in a visual scene caused by the relative motion between a camera and
the scene.

（1）Optical flow

Figure 9.7. Sketch map of optical flow. (photo from the book The Ecological Approach to Visual Perception by
James Jerome Gibson). Figure A shows optical flow when the camera movement is away from mountains, while
Figure B shows optical flow when the camera movement is towards mountains.
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 Optical-flow-based velocity estimation 

Suppose that the intensity             denotes the intensity of image points at time . 
After an interval , the image point moves to                      .The following brightness 
constancy constraint is given as

 ,x y t , ,I x y t
dt  d , dx x y y 

   d , d , d , ,I x x y y t t I x y t   

By assuming the movement to be sufficiently small, the image constraint at  with 
Taylor series is developed to get

   d , d , d , , d d dI I II x x y y t t I x y t x y t
x y t

  
       

  
when , get the optical flow constraint equationd 0t 

d d d 0I I Ix y t
x y t
  

  
   0x x y y tI v I v I  

d d
d dx y
x yv v
t t

 ，Optical flow

x y t
I I II I I
x y t
  

  
  

， ，
the partial 
derivatives 

（1） Optical flow

 , ,x y t
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 Optical-flow-based velocity estimation 

Name Description Websites
Computer Vision
System Toolbox

This toolbox is used in MATLAB R2012a 
or higher version, optical flow is 
encapsulated to vision.Optical Flow class.

http://cn.mathworks.com/help/vision/index.
html

OpenCV Open source libraries of computer vision,
lots of APIs are provided.

http://opencv.org

Machine Vision 
Toolbox

Vision toolbox emphasized on computer 
vision and 3D vision.

http://www.petercorke.com/Machine_Visio
n_Toolbox.html

VLFeat Computer vision / image processing
open source project,written in C and 
MATLAB with a large number of
computer vision algorithms.

http://www.vlfeat.org/download.html

Peter Kovesi ’s 
Toolbox

Consists of lots of computer vision
algorithms written in MATLAB, support 
Octave

http://www.peterkovesi.com/matlabfns

Table 9.3 Some toolboxes of optical flow（1）Optical flow
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 Optical-flow-based velocity estimation 

Coordinate frames are built as shown in

Figure 9.8. The monocular camera is

attached to the multicopter in a downward-

looking direction. For simplicity, the

camera coordinate frame is aligned with

the ABCF, denoted as , and the

ground is a plane, denoted as .

Figure 9.8. A point p in ABCF                     and EFCF                  , where           denotes the distance between 
camera center and the image point , and is on the plane where is.

（2） Optical-flow-based velocity estimation
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 Optical-flow-based velocity estimation 
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 Optical-flow-based velocity estimation 
（2）Optical-flow-based velocity estimation

pFor an image point , its optical flow vector is which can be calculated by algorithms 
shown in Table 9.3. The angular velocity  can be obtained directly from a three-axis 
gyroscope.       can be get by the reading of the sonar.


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 Optical-flow-based velocity estimation 
（2）Optical-flow-based velocity estimation

Suppose that M point pairs are detected, then

The estimation of the velocity can be obtained byb v

where,                is the de-biased angular velocity.

The following problems are still 
left to be solved:（1）Since the 
sampling periods of the camera, 
height sensor and gyroscope are 
normally different, time 
synchronization algorithms are 
required.（2） Lens distortion 
should be handled.（3）Rugged 
ground and moving background 
are required to be considered.
（4）The mismatching of image 
pairs should be handled.b

m
ˆ
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   1b T T b
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 Aerodynamic-model-based velocity estimation
According to model in Lesson 6, consider the drag force caused by

the blade flapping, the aerodynamic model of multicopters is

simplified as

where              are the corresponding noises and are the 

accelerations of the multicopter in the ABCF.
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Process model:

The angular
Velocity 
replaced by:
where

Relationship between the attitude 
rates and the angular velocity

Measurement model: 

The measured specific 
force by accelerometers

Nonlinear model
Extended Kalman filter

[8].  Abeywardena D, Kodagoda S, Dissanayake G, et al. Improved State Estimation in Quadrotor MAVs: A 
Novel Drift-Free Velocity Estimator[J]. Robotics & Automation Magazine, IEEE, 2013, 20(4): 32-39.

 Aerodynamic-model-based velocity estimation
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Suppose small attitude, ,a simplified linear version is 
as follows [9]
• Process model:                                       Measurement model:

Linear  model
Classical Kalman filter

[9]. Leishman R C, Macdonald J C, Beard R W, et al. Quadrotors
and accelerometers: State estimation with an improved dynamic 
model[J]. Control Systems, IEEE, 2014, 34(1): 28-41.
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 Aerodynamic-model-based velocity estimation
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In this section, an obstacle
avoidance method based on
optical flow is introduced. This
method firstly recovers Time to
Contact/Collision (TTC) from
optical flow information and then
guides multicopters to avoid
obstacles. Generally, TTC is
calculated from Focus of
Expansion (FoE).

Figure 9.9. FoE point
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 FOE calculation
Optical flow and the  angular 
velocity satisfies

   b b   p A p v B p ω

Let                            and rearrange
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where                                           . Since optical flow and angular velocity are often 
subject to noise, more point pairs are required to calculate the FoE. Let 
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 TTC calculation
Generally, the absolute depth cannot be recovered from the image

sequence captured by a monocular camera. But the collision time
TTC can be estimated from such an image sequence. The definition
of TTC is b
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 TTC calculation

Figure 9.10. Optical flow and collision time

As shown, an optical flow
vector with a large length
corresponds to a small collision
time. This is consistent with the
observation.
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1. State estimation is the basis of control and decision-making. Actually, it is much
more complicated and therefore deserves further research.

2. At present, the studies on multicopters are focused on the state estimation and
environment sensing, especially based on vision, where SLAM and the optical
flow methods mentioned above are the main research areas.

3. In a practical state estimation system, more problems need to be considered [10]:
（1） Computation performance. Since the computing ability of processors and the
allowable calculation time are both limited, computing resources should be used
efficiently.
（2） Abnormal data. In APM, about 90% of the code aims to detect and deal with
abnormal data. (Corner Case)
（3） Measurement latency. In a real system, the phenomenon naturally exists that
sensors are with different sampling rates and suffer measurement delay.

[10]. Paul Riseborough. Application of Data Fusion to Aerial Robotics. March 24, 2015, available online at 
http://thirty5tech.com/vid/watch/Z3Qpi1Rx6HM.
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Thank you!
All course PPTs and resources can be downloaded at 

http://rfly.buaa.edu.cn/course

For more  detailed content, please refer to the textbook: 
Quan, Quan. Introduction to Multicopter Design and Control. Springer, 

2017.  ISBN: 978-981-10-3382-7.
It is available now, please visit http://

www.springer.com/us/book/9789811033810 


