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Abstract— The proposed Additive Decomposition is a general
way to decompose an original system into two simpler systems,
helping designers to analyze the original problem more explic-
itly. To demonstrate the effectiveness of Additive Decomposition,
we apply it to the internal-model-based tracking problem. By
this means, the tracking problem for the original system is
decomposed into two subproblems: the tracking problem for
a linear time-invariant ‘primary’ system and the stabilization
problem for a ‘secondary’ system. Moreover, the former system
is independent of the latter. Therefore, various special tools for
analyzing linear systems can be applied to the first subproblem
which is helpful to the designers. Two application examples are
given to illustrate the effectiveness of the proposed Additive
Decomposition.

I. INTRODUCTION

When facing a complex problem, one often decomposes
it into easier subproblems and then solves them one by
one, the so called “divide and conquer” strategy. To analyze
systems, the original system is usually decomposed into two
or more subsystems. For example, in [1], a descriptor system
is decomposed into forward and backward subsystems; the
quadrotor model in [2] is divided into two subsystems: a
fully-actuated subsystem and an under-actuated subsystem;
in the analysis of induction machine dynamics [3], the state
variables are split into two sets, one having “fast” dynamics,
the other “slow” dynamics; the readers may also refer to the
literature on large systems where decomposition methods are
often used [4],[5].

Taking system ẋ (t) = F (t, x) , x ∈ Rn for example,
the original system ẋ (t) = F (t, x) can be decomposed
into two subsystems: ẋ1 (t) = f1 (t, x1, x2) and ẋ2 (t) =
f2 (t, x1, x2), where x1 ∈ Rn1 and x2 ∈ Rn2 , respectively.
In the literature mentioned above, the two subsystems satisfy
Rn = Rn1⊕Rn2 and x = x1⊕x2. In this paper, we propose a
new decomposition method, namely Additive Decomposition
which satisfies n = n1 = n2, x = x1 + x2. It is proved that
the combination of subsystems represents the original system
under consideration. Compared with the former methods,
Additive Decomposition has the following salient features.
• It is easy to follow. The proof of Additive Decomposi-

tion is basic and simple and the conclusion can be used
easily. Additive Decomposition will play an important
role in analyzing the tracking performance later.

• It is widely applicable. Additive Decomposition gives a
general way of decomposing a general original system
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into two subsystems. The assumptions on Additive
Decomposition are not at all stringent in practice.

• It is flexible as a design tool. Additive Decomposition
is a constructive method and one of the subsystems can
be selected freely by the designer.

To demonstrate the effectiveness of the proposed Ad-
ditive Decomposition, we apply it to the internal-model-
based tracking problem. By using Additive Decomposition,
the original system is decomposed into two subsystems: a
linear time-invariant ‘primary’ system including all external
signals, leaving the derived ‘secondary’ system free of any
external signal, such as disturbances and reference signals,
where the sum of the outputs yielded by the two subsystems
is equal to the tracking error of the original system and the
primary system is independent of the secondary system. On
this account, various special tools for linear time-invariant
systems, such as Laplace transformation, transfer function,
and the LMI (linear matrix inequality) approach, can be
applied to the primary system. This is very helpful in the
analysis of the original system. Guided by this idea, we
first answer a question left open in [6], namely whether
theories on modified repetitive control [7] can be applied
to a class of linear systems with time-varying norm-bounded
uncertainties. Secondly, we provide an alternative solution
to the attitude control problem in [8, pp. 74-79]. More
importantly, the proposed method can be also applied to
infinite-dimensional nonlinear systems and the case where
the external signals are generated by infinite-dimensional
linear systems. This is problematic for methods proposed
in [8].

II. ADDITIVE DECOMPOSITION

A. Additive Decomposition

Consider the following system:

G
(
t, Ẋ, X, d

)
= 0, X (0) = X0 (1)

where X ∈ D and d is the external input. For simplicity,
we set the initial time t0 = 0. In (1), G

(
t, Ẋ, X, d

)
= 0

can include, for instance, ordinary differential equations,
functional differential equations, difference equations and
static functions.

For the system (1), we make
Assumption 1: For a given external input d, the system (1)

with initial value X0 has a unique solution X∗ on [0,∞) .
Under Assumption 1, the following lemma on Additive

Decomposition will serve as our starting point in applica-
tions. We first bring in a ‘primary’ system having the same
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dimension as (1), according to:

Gp

(
t, Ẋp, Xp, dp

)
= 0, Xp (0) = Xp,0. (2)

From the original system (1) and the primary system (2) we
derive the following ‘secondary’ system:

G
(
t, Ẋp + Ẋs, Xp + Xs, d

)
−Gp

(
t, Ẋp, Xp, dp

)
= 0 (3)

with initial condition Xs (0) = Xs,0, where Xp is given by
the primary system (2). Now we can state

Lemma 1 (Additive Decomposition): Under Assumption 1,
suppose X∗

p and X∗
s are the solutions of the system (2) and

(3) respectively, and the initial conditions of (1), (2) and (3)
satisfy

X0 = Xp,0 + Xs,0. (4)

Then
X∗ = X∗

p + X∗
s . (5)

Proof: Since X∗
p and X∗

s are the solutions of system (2)
and (3), it holds that

Gp

(
t, Ẋ∗

p , X∗
p , dp

)
= 0 (6)

G
(
t, Ẋ∗

p + Ẋ∗
s , X∗

p + X∗
s , d

)

−Gp

(
t, Ẋ∗

p , X∗
p , dp

)
= 0. (7)

Adding (6) to (7) yields

G
(
t, Ẋ∗

p + Ẋ∗
s , X∗

p + X∗
s , d

)
= 0.

If the initial conditions of (1), (2) and (3) satisfy (4), then
X∗

p + X∗
s is also the solution of the system (1) with initial

value X0. By the uniqueness of solutions (see Assumption
1), the lemma follows. ¥

Remark 1: In the proof above, neither system (2) nor
system (3) need have a unique solution on [0,∞).

Consider the following system

Ẋ (t) = F (t,X, d) , X (0) = X0. (8)

For the system (8), we make
Assumption 2: For a given d, the system (8) with initial

value X0 has a unique solution X∗ on [0,∞) .
Two systems, denoted by the primary system and (derived)

secondary system respectively, are defined as follows:

Ẋp (t) = Fp (t,Xp, dp) , Xp (0) = Xp,0 (9)

and

Ẋs (t) = F (t,Xp + Xs, d)− Fp (t,Xp, dp) ,

Xs (0) = Xs,0. (10)

The secondary system (10) is determined by the original
system (8) and the primary system (9).

Under Assumption 2, Additive Decomposition Lemma ac-
cordingly reduces to:

Corollary 1: Under Assumption 2, suppose X∗
p and X∗

s

are the solutions of the system (9) and (10) respectively;

moreover, the initial conditions of (8), (9) and (10) satisfy
X0 = Xp,0 + Xs,0. Then X∗ = X∗

p + X∗
s .

Remark 2: By Additive Decomposition, system (1) or (8)
is decomposed into two subsystems with the same dimension
as the original system.

Remark 3: Neither Assumption 1 nor Assumption 2 are
especially stringent; readers may refer to the literature on
differential equations and functional differential equations for
the uniqueness of solutions.

B. Examples

As seen above, Additive Decomposition is in fact a
constructive method and how to choose the primary system
depends on the concrete problem. In order to demonstrate
Additive Decomposition explicitly, we provide the following
two examples.

Example 1 (Linear Time-varying System):
Consider the linear time-varying system:





ẋ (t) = [A + ∆A (t)]x (t)
+ Adx (t− T ) + Br (t)

e (t) = − [C + ∆C (t)]x (t) + r (t)
x (θ) = ϕ (θ) , θ ∈ [−T, 0]

(11)

where e (t) is a tracking error, r (t) is a reference signal
and ϕ (t) is a bounded vector valued function representing
the initial condition function, ∆A (t) and ∆C (t) are time-
varying norm-bounded uncertainties. The vectors and matri-
ces in (11) are compatibly dimensioned. The system (11)
satisfies Assumptions 1-2.

To apply Additive Decomposition to (11), choose the
primary system to be a linear time-invariant system as
follows:




ẋp (t) = Axp (t) + Adxp (t− T ) + Br (t)
ep (t) = −Cxp (t) + r (t)
xp (θ) = ϕ (θ) , θ ∈ [−T, 0]

. (12)

Then the secondary system is determined by the rule (3):




ẋs (t) = [A + ∆A (t)] [xp (t) + xs (t)]
+ Ad [xp (t− T ) + xs (t− T )] + Br (t)
− [Axp (t) + Adxp (t− T ) + Br (t)]

es (t) = − [C + ∆C (t)] [xp (t) + xs (t)] + r (t)
− [−Cxp (t) + r (t)]

xs (θ) = 0, θ ∈ [−T, 0]

.

(13)
Re-arranging terms in (13), we get





ẋs (t) = [A + ∆A (t)]xs (t) + Adxs (t− T )
+ ∆A (t)xp (t)

es (t) = − [C + ∆C (t)]xs (t)−∆C (t)xp (t)
xs (θ) = 0, θ ∈ [−T, 0]

.

(14)
By Additive Decomposition Lemma, e (t) = ep (t) +

es (t) . Note that (12) is a linear time-invariant system and is
independent of the secondary system (14), for the analysis of
which we have many tools such as the transfer function. By
contrast, the transfer function tool cannot be directly applied
to the original system (11) as it is time-varying.
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Remark 4: In practice, neither ep (t) nor es (t) have clear
physical meanings. However, ep (t) + es (t) represents the
tracking error. Since ‖e (t)‖ ≤ ‖ep (t)‖ + ‖es (t)‖ , we can
analyze the tracking error e (t) by analyzing ep (t) and es (t)
separately. If ep (t) and es (t) are bounded and small, then
so is e (t).

Example 2 (Nonlinear System):
Consider the following nonlinear system:





E1ζ̇1 (t) = S1 (ζ1,t) + K1 (xt)
E2ζ̇2 (t) = S2 (ζ2,t) + K2 (xt)

µ̇ (t) = A2 (µt) + C2ζ2 (t) + K3 (xt)
ż (t) = h (xt, zt) + C2w2 (t)
ẋ (t) = f (xt, zt) + C1w1 (t)

− [A1 (µt) + C1ζ1 (t)]

(15)

with initial conditions

ζi (θ) = 0, θ ∈ [−ri, 0] , i = 1, 2,

µ (θ) = 0, θ ∈ [−max (r1, r2) , 0] ,
x (θ) = ϕ1 (θ) , θ ∈ [−τ1, 0] , z (θ) = ϕ2 (θ) , θ ∈ [−τ2, 0]

where gt , g (t + θ) , θ ∈ [−τ, 0] , and A1 (·) , A2 (·) are
linear functionals. Assumption 2 is supposed to be satisfied
for (15).

The disturbances w1 (t) and w2 (t) affecting this system
are generated by the following linear systems

Eiẇi (t) = S1 (wi,t)
wi (θ) = φi (θ) , θ ∈ [−ri, 0] , i = 1, 2, (16)

where S1 (·) , S2 (·) are known linear functionals, and
w1 (t) , w2 (t) are bounded.

To apply Additive Decomposition, we choose the primary
system to be a linear system as follows:





E1ζ̇1p (t) = S1 (ζ1p,t)
E2ζ̇2p (t) = S2 (ζ2p,t)

µ̇p (t) = A2 (µp,t) + C2ζ2p (t)
żp (t) = A2 (zp,t) + C2w2 (t)
ẋp (t) = A1 (zp,t) + C1w1 (t)

− [A1 (µp,t) + C1ζ1p (t)]

(17)

with initial conditions

ζip (θ) = φi (θ) , θ ∈ [−ri, 0] , i = 1, 2,

µp (θ) = 0, θ ∈ [−max (r1, r2) , 0] ,
xp (θ) = 0, θ ∈ [−τ1, 0] , zp (θ) = 0, θ ∈ [−τ2, 0] .

Then the secondary system is determined by the rule (10):




E1ζ̇1s (t) = S1 (ζ1s,t) + K1 (xp,t + xs,t)
E2ζ̇2s (t) = S2 (ζ2s,t) + K2 (xp,t + xs,t)

µ̇s (t) = A2 (µs,t) + C2ζ2s + K3 (xp,t + xs,t)
żs (t) = h (xp,t + xs,t, zp,t + zs,t)−A2 (zp,t)
ẋs (t) = f (xp,t + xs,t, zp,t + zs,t)

−A1 (zp,t)− [A1 (µs,t) + C1ζ1s (t)]
(18)

with initial conditions

ζis (θ) = 0, θ ∈ [−ri, 0] , i = 1, 2,

µs (θ) = 0, θ ∈ [−max (r1, r2) , 0] ,
xs (θ) = ϕ1 (θ) , θ ∈ [−τ1, 0] , zs (θ) = ϕ2 (θ) , θ ∈ [−τ2, 0] .

Note that the initial conditions on ζ1p (t) and ζ2p (t) are the
same as those on w1 (t) and w2 (t) ; then ζ1p (t) ≡ w1 (t) and
ζ2p (t) ≡ w2 (t) . Similarly, we can obtain zp (t) ≡ µp (t) .
Consequently, xp (0) = 0 implies xp (t) ≡ 0. Then the
primary system (17) reduces to





żp (t) = A2 (zp,t) + C2w2 (t)
xp (t) ≡ 0, ζ1p (t) ≡ w1 (t)

ζ2p (t) ≡ w2 (t) , µp (t) ≡ zp (t)
(19)

with initial condition zp (θ) = 0, θ ∈ [−τ2, 0] . On the other
hand, substituting xp (t) ≡ 0 into (18) results in





E1ζ̇1s (t) = S1 (ζ1s,t) + K1 (xst)
E2ζ̇2s (t) = S2 (ζ2s,t) + K2 (xst)

µ̇s (t) = A2 (µs,t) + C2ζ2s (t) + K3 (xst)
żs (t) = h (xs,t, zp,t + zs,t)−A2 (zp,t)
ẋs (t) = f (xs,t, zp,t + zs,t)

−A1 (zp,t)− [A1 (µs,t) + C1ζ1s (t)]

.

(20)
By Additive Decomposition Lemma, we have x (t) =
xs (t) and z (t) = zp (t) + zs (t) .

III. ADDITIVE DECOMPOSITION IN THE
INTERNAL-MODEL-BASED TRACKING PROBLEM

There are essentially three different approaches to the
asymptotic tracking of prescribed trajectories and/or rejection
of disturbances [8, pp. 1-2]: tracking by dynamic inversion,
adaptive tracking, and tracking via internal models. In this
paper, we show how Additive Decomposition is used in the
internal-model-based tracking problem [8],[9],[10].

A. Decomposition Principle

Linear time-invariant systems are very familiar. In addi-
tion, there exist many tools to analyze them, such as Laplace
transformation and transfer function, the LMI approach.
Based on the above consideration, the original system is
usually decomposed into two subsystems by Additive De-
composition: a linear time-invariant system including all
external signals as the primary system, leaving the secondary
system free of any external signal, such as disturbances and
reference signals. Take (11) in Example 1 for example. The
primary system (12) is chosen to be a linear time-invariant
system including all external signals, while the secondary
system (14) does not include any external signal. Since all
external signals are introduced into the linear time-invariant
system, we have several methods to deal with this problem,
i.e., the tracking problem for linear time-invariant systems.
Since e (t) = ep (t) + es (t) by Additive Decomposition
Lemma, the remaining problem is to arrange es (t). Since the
secondary system (14) does not include any external signal,
this is in fact a stabilization problem. Therefore, the tracking
problem of the original system can be decomposed into two
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subproblems by Additive Decomposition as shown in Fig.1: a
tracking problem for a linear time-invariant ‘primary’ system
and a stabilization problem for a ‘secondary’ system. This
will be further confirmed in the following section.

Tracking Problem of an Original System

Stabilization Problem of the Other 

System (Secondary System)

Tool:

Laplace Transformation,Transfer Function

LMI Appoach,Lyapunov approach, etc.

Tool:

Lyapunov approach, etc.

      Tracking Problem of a Linear Time-

invariant System   (Primary System)

Fig. 1. Decomposition Principle

B. Application I: Modified Repetitive Controller Used in a
Linear Time-varying System

Any periodic signal r (t) ∈ Rm with a period T can be
generated by the free time-delay system 1

1−e−sT Im with an
appropriate initial function. It is therefore expected from the
internal model principle [9],[10] that the asymptotic tracking
property for exogenous periodic signals may be achieved
by incorporating the model 1

1−e−sT Im into the closed-loop
system. Since low frequency band is dominant in any refer-
ence signal, this will virtually satisfy any practical demands.
Thus, the modified repetitive controller 1

1−q(s)e−sT Im is
incorporated into the closed-loop system in which the low-
pass filter q(s) is needed to ensure system stability. Readers
may refer to [7] for information on modified repetitive
control.

In [6], a modified repetitive controller is designed through
an optimization problem with an LMI constraint of the
free parameter. It is verified from a simulation that the
designed controller improves tracking accuracy in spite of
time-varying uncertainties. However, theories on modified
repetitive control cannot be applied to linear time-varying
systems directly, for Laplace transformation and the transfer
function play an essential role in these theories. Therefore
there exists a gap between linear time-invariant systems
and linear time-varying systems when using the theories on
modified repetitive control. In this section, we will fill this
gap with the help of Additive Decomposition.

The closed-loop system considered in [6] can be repre-
sented by a state differential equation as (11) in Example 1.
Readers may refer to [6] for the details. The reference signal
r (t) is a periodic signal with a period T. By Additive De-
composition, the original closed-loop system is decomposed
into the primary system (12) and the secondary system (14).
Because the primary system (12) is the original closed-loop
system without time-varying norm-bounded uncertainties,
the theories on modified repetitive control can be applied
to it. Assume sup

t∈[0,∞)

‖ep (t)‖ ≤ εep
and sup

t∈[0,∞)

‖xp (t)‖ ≤

εxp
. On the other hand, it has been proven that the zero

solution of the following system

ẋ (t) = [A + ∆A (t)]x (t) + Adx (t− T ) (21)

is asymptotically stable. Since ∆A (t) is bounded, it fol-
lows that the system above is globally exponentially stable.
The fundamental solution of (21) satisfies ‖U (t, ξ)‖ ≤
Ke−α(t−ξ), α > 0,K > 0, then es (t) in (14) can be written
as [11, pp. 21,145,147]:

es (t) = − [C + ∆C (t)]
∫ t

0

U (t, ξ)∆A (ξ)xp (ξ) dξ

−∆C (t)xp (t) .

Taking the norm ‖·‖ on both sides of the above equation
yields

‖es (t)‖ ≤ K

α
(‖C‖+ b∆C) εxp

b∆A + εxp
b∆C

where b∆C = sup
t∈[0,∞)

‖∆C (t)‖ , b∆A = sup
t∈[0,∞)

‖∆A (t)‖ .

Therefore

‖e (t)‖ ≤ ‖ep (t)‖+ ‖es (t)‖
≤ εep

+
K

α
(‖C‖+ b∆C) εxpb∆A + εxpb∆C .

From the derivation above, the low-pass filter in the
internal model still plays the role of balancing tracking
performance with stability. Therefore, the modified repeti-
tive controller can be also applied to linear time-invariant
systems subject to time-varying norm-bounded uncertainties
and achieves a tradeoff. The tracking error approaches ep (t) ,
if the bound on the uncertainties is small enough, i.e., the
linear time-varying system approaches a linear time-invariant
system.

C. Application II: Dynamic Feedback Controller Used in a
Nonlinear System

Consider the following nonlinear system

ż (t) = h (xt, zt) + C2w2 (t)
ẋ (t) = f (xt, zt) + uim (t) + C1w1 (t) (22)

with initial condition

x (θ) = ϕ1 (θ) , θ ∈ [−τ1, 0] , z (θ) = ϕ2 (θ) , θ ∈ [−τ2, 0] .

Here x (t) , z (t) are the state vectors, x (t) is also the
regulated output, w1 (t) , w2 (t) are the disturbances defined
in (16), uim (t) is the controller input used to compensate
for w1 (t) , w2 (t); f (·) and h (·) are nonlinear functionals
defined in (15). Design the controller uim (t) as

E1ζ̇1 (t) = S1 (ζ1,t) + K1 (xt)
E2ζ̇2 (t) = S2 (ζ2,t) + K2 (xt)

µ̇ (t) = A2 (µt) + C2ζ2 (t) + K3 (xt)
uim (t) = − [A1 (µt) + C1ζ1 (t)]

(23)

with initial condition

ζi (θ) = 0, θ ∈ [−ri, 0] , i = 1, 2,

µ (θ) = 0, θ ∈ [−max (r1, r2) , 0] .
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The closed-loop system forming by (22) and (23) is shown
in (15). Based on (15), we have

Theorem 1: Suppose (i) f (xt, zt) and h (xt, zt) have the
following forms

f (xt, zt) = f0 (xt) + L1 (zt)
h (xt, zt) = h0 (xt) + L2 (zt)

where f0 (xt) , h0 (xt) are nonlinear functionals, and
L1 (zt) , L2 (zt) are linear functionals, (ii) ż (t) = L2 (zt)
is globally exponentially stable, (iii) let A1 (·) = L1 (·) and
A2 (·) = L2 (·) , (iv) the solution x (t) = 0 of the system (15)
with w1 (t) ≡ 0, w2 (t) ≡ 0 is globally asymptotically stable
and the other variables are bounded. Then lim

t→∞
x (t) = 0 and

z (t) is bounded in the system (15).
Proof: The closed-loop system (15) can be decomposed

into the primary system (19) and the secondary system (20).
Since conditions (ii)-(iii) hold, zp (t) is bounded. We now
consider the secondary system (20). Applying condition (i)
and (iii) to (20) results in




E1ζ̇1s (t) = S1 (ζ1s,t) + K1 (xs,t)
E2ζ̇2s (t) = S2 (ζ2s,t) + K2 (xs,t)

µ̇s (t) = A2 (µs,t) + C2ζ2s (t) + K3 (xs,t)
żs (t) = h0 (xs,t) + L2 (zs,t)
ẋs (t) = f0 (xs,t) + L1 (zs,t)

− [L1 (µs,t) + C1ζ1s (t)]

.

The system above is in fact the closed-loop system (15) with
w1 (t) ≡ 0, w2 (t) ≡ 0. Using the condition (iv), we obtain
that lim

t→∞
xs (t) = 0 and zs (t) is bounded. Since x (t) =

xs (t) and z (t) = zp (t)+ zs (t) by Additive Decomposition
Lemma (see Example 2), we can conclude this proof. ¥

Theorem 2: Suppose (i) w2 (t) ≡ 0 (ii) the solution
x (t) = 0 of the system (15) with w1 (t) ≡ 0 is globally
asymptotically stable and the other variables are bounded.
Then lim

t→∞
x (t) = 0 and z (t) is bounded in the system (15).

Proof: The closed-loop system (15) can be decomposed
into the primary system (19) and the secondary system (20).
Since w2 (t) ≡ 0, we obtain zp (t) ≡ 0 in the primary system
(19). Thus, the secondary system (20) reduces to




E1ζ̇1s (t) = S1 (ζ1s,t) + K1 (xs,t)
E2ζ̇2s (t) = S2 (ζ2s,t) + K2 (xs,t)

µ̇s (t) = A2 (µs,t) + C2ζ2s (t) + K3 (xs,t)
żs (t) = h (xs,t, zs,t)
ẋs (t) = f (xs,t, zs,t)

− [A1 (µs,t) + C1ζ1s (t)]

.

(24)
Using the condition (ii), we obtain that lim

t→∞
xs (t) = 0 and

zs (t) is bounded. Since x (t) = xs (t) and z (t) = zp (t) +
zs (t) by Additive Decomposition Lemma (see Example 2),
we can conclude this proof. ¥

With Theorem 2 in hand, we have
Corollary 2: Suppose (i) w2 (t) ≡ 0, (ii) the solution

x (t) = 0 in the following system



E1ζ̇1 (t) = S1 (ζ1,t) + K1 (xt)
ż (t) = h (xt, zt)
ẋ (t) = f (xt, zt)− C1ζ1 (t)

(25)

is globally asymptotically stable and the other variables are
bounded. Then lim

t→∞
x (t) = 0 and z (t) is bounded in the

system (15).
Proof: Let K2 (·) = K3 (·) = 0, then ζ2 (t) ≡ 0 and

µ (t) ≡ 0 in the controller (23). Consequently, the controller
reduces to

E1ζ̇1 (t) = S1 (ζ1,t) + K1 (xt) , uim (t) = −C1ζ1 (t) (26)

and the resulting closed-loop system (15) reduces to




E1ζ̇1 (t) = S1 (ζ1,t) + K1 (xt)
ż (t) = h (xt, zt)
ẋ (t) = f (xt, zt) + C1w1 (t)− C1ζ1 (t)

.

The following proof is similar to that of Theorem 2. ¥
Next, we apply the obtained results to the attitude control

problem for a spacecraft operating in a low-Earth orbit.
Example 3 (Attitude Control Problem):
The attitude control problem is simplified as follows [8,

pp. 74-75]:

˙̃q (t) = −k1
2 E (q̃ (t)) q̃ (t) + 1

2E (q̃ (t))x (t)
ẋ (t) = χ (q̃ (t) ,x (t)) + u (t) + Γd (t)

. (27)

Here x (t) ∈ R3, k1 ∈ R+, q̃ =
[

q̃0 q̃T
]T ∈ R4 in which

q̃0 (t) ∈ R and q̃ (t) ∈ R3 denote the scalar part and vector
part respectively, E (q̃ (t)) ∈ R4×3 is defined in [8, p. 201],
χ (q̃ (t) ,x (t)) denotes the nonlinear uncertainty. The control
objective is to design u (t) to make that lim

t→∞
x (t) = 0 and

q̃ (t) is bounded.
Design u (t) to be u (t) = uim (t) + ust (t) , where

uim (t) is an “internal model” controller which is used to
compensate for the periodic disturbance d (t), and ust (t)
is a “stabilizing” controller which deals with the nonlinear
uncertainty χ (q̃ (t) ,x (t)). Then (27) can be written in the
form of (22) with

f (xt, zt) = χ (q̃ (t) ,x (t)) + ust (t) , z = q̃

h (xt, zt) = −k1

2
E (q̃ (t)) q̃ (t) +

1
2
E (q̃ (t))x (t)

C1 = Γ, w1 (t) = d (t) , C2 = 0, w2 (t) ≡ 0.

Case 1: The external torque d (t) is periodic with a period
T and generated by

ḋ (t) = Φd (t) , d (0) = d0

where the matrix Φ has all simple eigenvalues on the
imaginary axis. In this case, according to (26), uim (t) is
designed as

ζ̇1 (t) = Φζ1 (t) + K1 (xt) , uim (t) = −Γζ1 (t) .

Through the Lyapunov approach as in [8, p. 201], if K1 (xt)
and ust (t) are designed as

K1 (xt) =
1
γ

P−1ΓT x (t) , ust (t) = −k2 (1 + ‖x (t)‖)x (t)

where γ, k2 ∈ R+ are chosen appropriately, and P is a
positive definite solution of the Lyapunov matrix inequality
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PΦ+ΦT P ≤ 0, then the solution x (t) = 0 of the following
system





ζ̇1 (t) = Φζ1 (t) + K1 (xt)
˙̃q (t) = −k1

2 E (q̃ (t)) q̃ (t) + 1
2E (q̃ (t))x (t)

ẋ (t) = χ (q̃ (t) ,x (t)) + ust (t)− Γζ1 (t)

is globally asymptotically stable, and q̃ (t) , ζ1 (t) are
bounded. According to Corollary 1, we obtain that
lim

t→∞
x (t) = 0 and q̃ (t) is bounded when the system (27) is

driven by the controller designed above.
Case 2: The external torque d (t) is periodic with a period

T and generated by

d (t) = d (t− T ) , d (θ) = φ (θ) , θ ∈ [−r1, 0] . (28)

In this case, according to (26), uim (t) is designed as

ζ1 (t) = ζ1 (t− T ) + K1 (xt) , uim (t) = −Γζ1 (t) .

According to Corollary 1, if the solution x (t) = 0 of the
following system





ζ1 (t) = ζ1 (t− T ) + K1 (xt)
˙̃q (t) = −k1

2 E (q̃ (t)) q̃ (t) + 1
2E (q̃ (t))x (t)

ẋ (t) = χ (q̃ (t) ,x (t)) + ust (t)− C1ζ1 (t)
(29)

is globally asymptotically stable, and q̃ (t) , ζ1 (t) are
bounded, then lim

t→∞
x (t) = 0 and q̃ (t) is bounded when

the system (27) is driven by the controller designed above.
For (29), design a Lyapunov functional

V (ζ1, q̃,x, t) =
γ

2

∫ t

t−T

ζT
1 (ξ) ζ1 (ξ) dξ + (1− q̃0)

2

+ q̃T (t) q̃ (t) +
1
2
xT (t)x (t) .

Through the Lyapunov approach as in [8, p. 201], if K1 (xt)
and ust (t) are designed as

K1 (xt) =
1
γ

ΓT x (t) , ust (t) = −k2 (1 + ‖z (t)‖) z (t)

with appropriate γ, k2 ∈ R+, then the solution x (t) = 0 of
(29) is globally asymptotically stable and q̃ (t) are bounded.

Remark 5: Guided by the geometric approach, Isidori
et al. in [8] have proposed internal-model-based tracking
methods for both linear systems and nonlinear systems. The
attitude control problem in Case 1 is solved as an application.
However, the geometric approach is only applicable to the
case where the closed-loop system is finite-dimensional.
When the external signals are generated by (28), the closed-
loop system (29) is infinite-dimensional. This is a difficulty
for the application of methods proposed in [8, pp. 74-79].
In this paper, we give an alternative solution of the attitude
control problem as in [8, pp. 74-79]. More importantly, the
proposed method can be also applied to infinite-dimensional
nonlinear systems and the case where the external signals
are generated by infinite-dimensional systems (See Case 2).

IV. CONCLUSIONS

In general, tracking problems are more difficult than stabi-
lization problems, especially for nonlinear systems. By using
Additive Decomposition, the internal-model-based tracking
problem of the original system is decomposed into two
subproblems: the tracking problem for a linear time-invariant
primary system and the stabilization problem for the sec-
ondary system. On this account, frequency-domain methods
and time-domain methods can be both applied no matter
whether the original system is time-varying or nonlinear.
This helps to make the analysis of tracking problems easier.
Guided by this idea, we first obtain a conclusion that theories
on modified repetitive control can be applied to a class of lin-
ear systems with time-varying norm-bounded uncertainties.
Then, we propose methods of internal-model-based tracking
that can be applied to infinite-dimensional nonlinear systems
and the case where the external signals are generated by
infinite-dimensional systems.
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