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Abstract: The problem of designing output error controllers to track periodic reference signals for a class of
uncertain linear time-delay systems subject to periodic disturbances is addressed. A repetitive controller,
which is a type of output error controller, is developed for these systems and a sufficient condition for
stability of the closed-loop system is derived by applying the Lyapunov–Krasovskii functional and linear matrix
inequalities (LMIs). In order to relax the stability condition, the theory of the modified repetitive control (RC)
system is extended to the systems represented by irrational transfer functions. Based on the extended theory
of the modified RC system, a modified repetitive controller, another type of output error controller, is
developed for these systems and sufficient conditions for stability of the closed-loop system are derived in
terms of a frequency-domain criterion and LMI. Numerical simulations are presented to demonstrate the
effectiveness of the proposed controllers.
1 Introduction
It is widely known that time-delay systems exist pervasively
in engineering. The evolution of these systems with time
depends not only on the current state but also on past
states. Time delay usually degrades system performance
and more importantly, it may destroy the stability of a
control system. Therefore many approaches that
ensure the stabilisation of time-delay systems have been
presented [1].

Recently, various methods for tracking dynamic signals of
linear time-delay systems subject to unknown disturbances
have been proposed. In [2], the proposed controller
guaranteed uniform ultimate boundedness of the tracking
error. Furthermore, the error bound could be made
arbitrarily small by increasing the controller gain. In [3, 4],
non-linear controllers were developed to guarantee that the
outputs of the controlled uncertain time-delay system
tracked the outputs of the non-delay reference model. The
tracking error is made to converge to zero by increasing the
maximum value of control effort. In order to achieve the
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same tracking performance, it is required that the controller
gain or the control effort of the non-linear controller need
to be increased as the disturbance amplitude increases.

The drawbacks of the high-gain feedback solutions are
related to the fact that these may saturate the joint
actuators or excite high-frequency modes. Moreover, the
controllers mentioned above are model-following control
schemes. This implies that the reference output is from a
known reference model. In practice, such reference models
are often difficult to obtain. However, for a class of
uncertain time-delay systems subject to periodic
disturbances, we can overcome these drawbacks by developing
repetitive controllers, in which a learning-based feedforward
term plays a similar role as integrators play in PID controllers.

In this paper, a repetitive controller and a modified
repetitive controller are proposed to track periodic reference
signals for a class of uncertain linear state-delayed systems
subject to periodic disturbances. To start with, an
assumption that the desired trajectory is given by a periodic
and bounded input is introduced. Based on this
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assumption, we convert the tracking problem to a stabilisation
problem for an error-driven dynamic system. Specifically,
the problem is the stability of a critical case of a neutral
delay equation which is difficult to solve. Under certain
conditions, a sufficient condition for the stability of the
repetitive control (RC) system is derived by applying the
Lyapunov–Krasovskii functional and linear matrix
inequality (LMI). In order to relax the condition, a
modified repetitive controller is proposed to take the place
of the repetitive controller. Since the transfer function of
the time-delay system is not a rational transfer function, the
theory of the modified RC system proposed by Hara et al.
[5] cannot be applied directly. Therefore, we extend the
theory in order to make it applicable to irrational transfer
functions. Based on the extended theory, a filter is
introduced into the closed-loop system to achieve a trade-
off between good tracking performance and stability
margin. Sufficient criteria for the stability of modified RC
systems are derived in terms of a frequency-domain criterion
and an LMI.

The notation used in this paper is as follows. The period
T is known a priori. Rn is the Euclidean space of dimension
n. I n is the identity matrix with dimension n.
X . 0 (X , 0) denotes matrix X is a positive (negative)-
definite matrix. If X . 0, then X 1=2 denotes the positive-
definite square root matrix of X such that

X (1=2)TX 1=2
¼ X : lmax(X ) denotes the maximum

eigenvalue of the matrix X . k�k denotes the Euclidean
norm or a matrix norm induced by the Euclidean norm.
j � j denotes modulus of a complex number. L and L�1

denote the Laplace transform, and the inverse Laplace
transform, respectively. � denotes convolution.

2 Problem formulation
A class of linear state-delayed systems is given as follows

_x(t) ¼ A0x(t)þ A1x(t � t)þ Bu(t)þ v(t)

y(t) ¼ Cx(t)
(1)

whose initial condition is

x(u) ¼ f(u), u [ [�t, 0]

where A0, A1 [ Rn�n, B [ Rn�m, C [ Rm�n, xðtÞ,

vðtÞ [ Rn�1, yðtÞ, uðtÞ [ Rm�1, t, t [ R with t � 0,
t . 0. x(t) is the state of the system, t is the time delay,
y(t) is the output of the system. v(t) denotes the unknown
periodic disturbance, that is, v(t) ¼ v(t þ T ). f(t) is a
bounded vector valued function representing the initial
condition function. The control objective is to track a
desired trajectory yd(t) with period T. In this paper, we
assume that the state of the system on [�1, �t] is zero.
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On system (1), we impose the following assumption:

Assumption 1: A1 and t are unknown, but A1AT
1 , gI n

and g . 0 is known. Matrices A0, B and C are known,
and the pair {A0, B} is controllable.

The controller u(t) in (1) is designed as

u(t) ¼ uf (t)þ ub(t)

where uf and ub denote the learning-based feedforward [6]
control signal and the feedback control signal, respectively.
Suppose that A0 is a stable matrix. Otherwise, a controller
ub(t) can be designed to stabilise it since the pair {A0, B}
is controllable by Assumption 1. Without loss of generality,
we assume A0 is a stable matrix and let ub(t) ; 0 here
for simplicity. In the following Section, we will restrict our
attention to the design of uf .

3 Repetitive control problem
In Section 3.1, a repetitive controller is proposed to track
periodic reference signals for a class of linear state-delayed
systems subject to uncertainties and periodic disturbances.
In order to relax the stability condition on the closed-loop
system, a modified repetitive controller is developed in
Section 3.2.

3.1 Repetitive controller

In this section, we first make

Assumption 2: There exists a bounded and continuous
control ud(t) ¼ ud(t þ T ) which, when substituted for u(t)
in (1), causes y(t) to track yd(t) perfectly. Namely, we have
the reference system

_xd(t) ¼ A0xd(t)þ A1xd(t � t)þ Bud(t)þ v(t)

yd(t) ¼ Cxd(t)
(2)

Here xd(t) [ Rn�1 plays the role of ‘desired state’.

Remark 1: Taking the Laplace transform of (2), we obtain

yd(s) ¼ G(s)ud(s)þ C(sI � A0 � A1e�ts)�1v(s)

where G(s) ¼ C(sI � A0 � A1e�ts)�1B [ Rm�m. If G(s) is
invertible, then ud(s) can be written as

ud(s) ¼ G(s)�1yd(s)� G(s)�1C(sI � A0 � A1e�ts)�1v(s)

(3)

There exist desired trajectories, such as triangular and square
waves, which cannot be tracked perfectly by the system (2) no
matter what A0, A1, B, C are. Therefore we need to impose
an appropriate differentiability condition on the desired
trajectory yd(t) and the disturbance v(t). For example
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suppose G(s) ¼ 1=(1� e�ts
þ s) and v(s) ; 0; thus ud(s) ¼

(1� e�ts
þ s)yd(s), which implies ud(t) ¼ yd(t)� yd(t � t)þ

_yd(t) ; the appropriate differentiability condition means that
yd(t) is first-order differentiable. For any periodic, bounded
and continuous trajectory and disturbance which satisfy the
appropriate differentiability condition, if G(s) is invertible
and G(s)�1, G(s)�1C(sI� A0 � A1e�ts)�1 are stable transfer
matrices, then ud(t) ¼ L�1[ud(s)] in (3) is periodic,
bounded, continuous and unique [7] (since we restrict our
attention to functions that are continuous on [0, þ1)). In
fact, Assumption 2 may also hold in other cases.

By subtracting (1) from (2), the error dynamic system is
described by

d_x(t) ¼ A0dx(t)þ A1dx(t � t)þ Bdu(t)

dy(t) ¼ Cdx(t)
(4)

where dx W xd � x, dy W yd � y and du W ud � uf :

Suppose the repetitive controller is designed as follows

uf (t) ¼ uf (t � T )þ Kdy(t) (5)

where K [ Rm�m:

By utilising the property of ud(t) by Assumption 2, that is,
ud(t) ¼ ud(t þ T ), (5) can be written as

du(t) ¼ du(t � T )� KCdx(t) (6)

Combining (4) and (6), we can obtain a neutral delay
equation as follows

d_x(t)�Hd_x(t � T ) ¼ (A0 � BKC)dx(t)� A0dx(t � T )

þ A1dx(t � t)� A1dx(t � t� T )

(7)

where H ¼ I n.

For neutral delay equations as (7), the assumption that all
the eigenvalues of H are inside the unit circle is required in
much existing literature, such as [8, 9]. However, the
assumption is not satisfied by the system (7), where
H ¼ I n. In fact, (7) is a critical case of the neutral delay
equation [10] and its characteristic equation has an infinite
sequence of roots whose real parts approach zero [11]. The
stability of such a system is difficult to analyse.

In this paper, for some special systems, a sufficient stability
condition of (7) can be derived in terms of LMIs.
T Control Theory Appl., 2009, Vol. 3, Iss. 9, pp. 1283–1292
i: 10.1049/iet-cta.2008.0203

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 12
Lemma 1: Consider system (1) with Assumptions 1–2
under the following control law

uf (t) ¼ uf (t � T )þ K 0(t)BTPdx(t)

uf (t) ¼ 0, t [ [�T , 0),

K 0(t) ¼

0 t [ [�T , 0)

K 1(t) t [ [0, T )

K t [ [T , þ1)

8><
>:

(8)

where every element of the matrix K 0(t) [ Rm�m is
continuous on [�T , þ1) and K . 0. If there exist
0 , P ¼ PT [ Rn�n and 0 , a [ R such that

PA0 þ AT
0 P þ aI n P
P �g�1aI n

� �
, 0 (9)

then

lim
t!þ1

ðt

t�T

kdyðuÞk2du ¼ 0

Proof: Choose the Lyapunov–Krasovskii functional to be

V1(t, dx) ¼ dxT(t)Pdx(t)þ a

ðt

t�t

dxT(s)dx(s) ds

Taking the derivative of V1(t, dx) along the solution of (4)
yields

_V 1(t, dx) ¼ dxT(t)(PA0 þ AT
0 P þ aI n)dx(t)

þ 2dxT(t)PA1dx(t � t)

� adxT(t � t)dx(t � t)þ 2dxT(t)PBdu(t)

� dxT(t)R1dx(t)þ 2dxT(t)PBdu(t)

where R1 ¼ PA0 þ AT
0 P þ aI n þ a�1PA1AT

1 P.

Using Assumption 1, we can obtain, PA1AT
1 P � gPP,

thus

_V 1(t, dx) � dxT(t)R2dx(t)þ 2dxT(t)PBdu(t) (10)

where R2 ¼ PA0 þ AT
0 P þ aI n þ a�1gPP.

Since ud(t) ¼ ud(t � T ) by Assumption 2, (8) becomes

du(t) ¼ du(t � T )� K 0(t)BTPdx(t) (11)

Using (11), we have the following equation

duT(t)K�1du(t)� duT(t � T )K�1du(t � T )

¼ � K 0(t)BTPdx(t)
h iT

K�1 K 0(t)BTPdx(t)
h i

� 2dxT(t)PBK 0(t)K�1du(t) (12)
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Define a non-negative function W (t, dx, du) [ R as follows

W (t, dx, du) ¼ V1(t, dx)þ

ðt

t�T

duT(t)K�1du(t) dt (13)

Taking the derivative of (7), we obtain the following
expression

_W (t, dx, du) ¼ _V 1(t, dx)þ [duT(t)K�1du(t)

� duT(t � T )K�1du(t � T )] (14)

Applying (10) and (12) to (14) yields

_W (t, dx, du) � dxT(t)R2dx(t)þ [I m � K 0(t)K�1]

� dxT(t)PBdu(t)

Since uf (t) ¼ K 1(t)BTPdx(t), t [ [0, T ), dx(t) is bounded
when t [ [0, T ). For t [ [T , þ1), we have
_W (t, dx, du) � dxT(t)R2dx(t).

Suppose there exist 0 , P ¼ PT [ Rn�n and 0 , a [ R

such as R2 , 0. Then, kdx(t)k is bounded; moreover, by
utilising Barbalat’s Lemma as in [13], the equation below
holds

lim
t!þ1

ðt

t�T

kdx(u)k2du¼ 0 and lim
t!þ1

ðt

t�T

kdy(u)k2du¼ 0

Using Schur Complement [12], the following inequalities are
equivalent to each other.

R2 , 0, (9)

Therefore this concludes the proof. A

The knowledge of xd(t) usually means that the reference
model is known a priori. However, one may sometimes not
have access to xd(t) and/or x(t). In this case, a controller
that requires only the output error is given.

Theorem 1: Consider system (1) with Assumptions 1–2
under the following control law

uf (t) ¼ uf (t � T )þ K 0(t)dy(t)

uf (t) ¼ 0, t [ [�T , 0)
(15)

If there exist 0 , P ¼ PT [ Rn�n and 0 , a [ R which
satisfy (9) and BTP ¼ C, then

lim
t!þ1

ðt

t�T

kdy(u)k2du ¼ 0

Proof: By using Lemma 1, the proof is trivial. A

Remark 2: The controller (15) differs from (5) only on the
interval [0, T ). As [13], the reason for introducing K 0(t) is to
86
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ensure that uf (t) is continuous when t [ [�T , þ1). We
have the fact that uf (0�) ¼ 0 and uf (0þ) ¼ BTPdx(0).
dx(0), the initial state error, is usually unequal to zero.
Therefore, uf (t) is discontinuous at t ¼ 0 with K 0(t) ; K
and will make the actuator switch and excite high-
frequency modes of the system. Whereas uf (0þ) ¼ 0
holds when K 0(t) is defined as in (8). It implies that
uf (t) is continuous when t [ [�T , T ). This is easy to
prove that u f (t) is continuous when t [ [�T , þ1) by
induction.

Remark 3: A necessary condition for Theorem 1 to hold is
CB = 0. Otherwise, BTPB ¼ CB ¼ 0, which contradicts
the fact that P is a positive-definite matrix. In [14], when
only the output error signal is available for feedback, a
repetitive controller is proposed for the positive real system
as _x(t) ¼ Ax(t)þ Bu(t), y(t) ¼ Cx(t), where CB = 0 is
also the necessary condition.

3.2 Modified repetitive controller

As shown in Section 3.1, asymptomatic tracking can be
achieved by the proposed repetitive controller. However,
the condition of Theorem 1 is difficult to satisfy with the
restriction BTP ¼ C. Therefore a modified repetitive
controller is developed to track periodic reference signals
subject to periodic disturbances for a class of linear state-
delayed systems. Since the transfer function of a time-delay
system is not rational, the theory on the modified RC
systems proposed by Hara et al. [5] cannot be applied
directly. Therefore the first task is to extend the theory on
the modified RC system so that it can apply to systems
represented by irrational transfer functions.

In Fig. 1, Gv(s) ¼ C(sI n � A0 � A1e�st)�1 [ Rm�n.

The minimal realisation of the low-pass filter q(s) is assumed
as follows

_xp(t) ¼ Apxp(t)þ Bpup(t)

yp(t) ¼ Cpxp(t)

where Ap [ Rnp�np , Bp [ Rnp�1, Cp [ R1�np , yp(t), up(t)

[ R and xpðtÞ [ Rnp�1 is the state variable.

Figure 1 Modified repetitive control system
IET Control Theory Appl., 2009, Vol. 3, Iss. 9, pp. 1283–1292
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The structure of the modified repetitive controller in Fig. 1
can be expressed as follows

_xp(t) ¼ Apxp(t)þ BpCpxp(t � T )

� BpKCx(t)þ BpKyd(t)

u f (t) ¼ Cpxp(t � T )� KCx(t)þ Kyd(t)

(16)

Combining (1) and (16), we have

Ż(t) ¼ D1Z(t)þD2Z(t � t)þD3Z(t � T )þ BDj(t)

dy(t) ¼ CDZ(t)þDDj(t) (17)

where

Z ¼
x

xp

" #
, D1 ¼

A0 � BKC 0

�BpKC Ap

" #
,

D2 ¼
A1 0

0 0

� �
, D3 ¼

0 BCp

0 BpCp

" #

BD ¼
BK I n

BpK 0

" #
, CD ¼ �C 0

� �
,

DD ¼ I m 0
� �

, j ¼
yd

v

� �

Remark 4: Ger(s) [ Rm�(mþn) denotes the transfer function
matrix from j(t) to dy(t) and can be written as

Ger(s) ¼ CD(sI nþnp
�D1 �D2e�st

�D3e�sT )�1BD þDD

If the zero solutions of (18), namely of

Ż(t) ¼ D1Z(t)þD2Z(t � t)þD3Z(t � T ) (18)

are exponentially stable, then Ger(s) is exponentially stable. In
fact, the uniform asymptotic stability property is equivalent to
the exponential stability property for the system [11, 15].
This implies that if the system in Fig. 1 is internally stable
[16], then Ger(s) is exponentially stable.

Before proceeding further with the development of this
work, the following theorem is needed. For simplicity, Rs

denotes the class of transfer functions of stable linear time-
delay systems. We introduce a sequence {qi(s)ji ¼ 1, 2, . . . }
which will represent a family of filters and �q(s) ¼
limi!þ1 qi(s). Fi(t) represents the fundamental solution of

(18) with different low-pass filters q(s) ¼ qi(s). Theorem 2
in this section is an extension of Theorem 2 in [5].

Theorem 2: Suppose (i) for an arbitrary but fixed bounded
interval [�vf , vf ], �q(s) ¼ 1 holds on [�vf , vf ] and reference
signal j(t) with period T contains only frequencies lower than
vf ; (ii) kFi(t)k � Ke�at independently of i, where K, a are
positive real numbers; (iii) Gv(s) [ Rs. Then tracking error
Control Theory Appl., 2009, Vol. 3, Iss. 9, pp. 1283–1292
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dyi(t) in the modified RC system (17) with q ¼ qi satisfies

lim
i!þ1

lim sup
k!þ1

kdyi(t)k[kT ,(kþ1)T ] ¼ 0 (19)

where k � k[kT ,(kþ1)T ] denotes the L1-norm on [kT ,
(kþ 1)T ].

Proof: In Fig. 1, Gi
er(s) denotes the transfer function matrix

from j(s) to dyi(s), where j(s) and dyi(s) are the Laplace
transforms of j(t) and dyi(t), respectively. dyi(s) can be
written as follows

dyi(s) ¼ dyi,1(s)þ dyi,2(s)

where dyi,1(s)¼Gi
er,1(s)yd(s), dyi,2(s) ¼ Gi

er,2(s)v(s), Gi
er,1(s) [

Rm�m and Gi
er,2(s) [ Rm�n.

Since Gv(s) [ Rs and kFi(t)k � Ke�at holds independently
of i, Gi

er,1(s) is exponentially stable independently of i,
consequently, Gi

er,2(s) ¼ �Gi
er,1(s)Gv(s) is also exponentially

stable independently of i.

For simplicity, we only consider Gi
er,1(s), which is written

as follows

Gi
er,1(s) ¼ [I m þ (I m � qi(s)e

�TsI m)�1G(s)]�1

¼ [1� qi(s)e
�Ts][I m � qi(s)e

�TsI m þ G(s)]�1

As seen above, every element of Gi
er,1(s) possesses zeros at

{sj1� qi(s)e
�Ts
¼ 0}. Denote Gi

p1,p2
(s) is the element in the

p1th row and p2th column of Gi
er,1(s), 1 � p1, p2 � m.

Then Gi
p1,p2

(s) is also exponentially stable independently of
i and possesses zeros at {sj1� qi(s)e

�Ts
¼ 0}.

For r(t) [ R with period T contains only frequencies
lower than vf , suppose the following equation holds

lim
i!þ1

lim
k!þ1

kdyi
p1,p2

(t)k[kT ,(kþ1)T ] ¼ 0 (20)

where dyi
p1,p2

(t) ¼ L�1[Gi
p1,p2

(s)] � r(t) with q ¼ qi. Then
(19) is satisfied because every element of dyi(t) is a linear
combination of dyi

p1,p2
(t), 1 � p1, p2 � m. Therefore, in the

remainder of the proof, we only need to consider whether
(20) holds.

Let N be the largest integer such that jvN j , vf , where
vk ¼ 2pkj=T . Given any 0 , e , 1, there exist zeros
ai

k + jbi
k, k ¼ 0, 1, . . . , N (b0 ¼ 0, bi

�k ¼ �b
i
k) of Gi

p1,p2
(s)

such that

jai
k þ jbi

k � jvkj , e, k ¼ 0, +1, . . . , +N (21)

for all sufficiently large i.
1287

& The Institution of Engineering and Technology 2009

 2009 at 23:08 from IEEE Xplore.  Restrictions apply. 



128

&

www.ietdl.org
Since Gi
p1,p2

(ai
0) ¼ 0 and Gi

p1,p2
(ai

k þ jbi
k) ¼ 0, Gi

p1,p2
(s)

can be written as

Gi
p1,p2

(s) ¼ ~G
i

p1,p2,0
(s)(s � ai

0)

Gi
p1,p2

(s) ¼ ~G
i

p1,p2,k
(s)[(s � ai

k)
2
þ (bi

k)
2], k ¼ 1, . . . , N

Since r(t) contains only frequencies lower than vf , it can be
written as

r(t) ¼
XN

k¼0

[ak sin(vkt)þ bk cos(vkt)]

Then dyi
p1,p2

(t) in (20) can be written as follows

dyi
p1,p2

(t) ¼
XN

k¼0

akL
�1[Gi

p1,p2
(s) � vk=(s

2
þ v2

k )]

þ
XN

k¼0

bkL
�1[Gi

p1,p2
(s) � s=(s2

þ v2
k )]

¼
XN

k¼0

akL
�1{ ~G

i

p1,p2,k
(s) � vk[(s � ai

k)
2

þ (bi
k)

2]=(s2
þ v2

k )}

þ
XN

k¼0

bkL
�1{s ~G

i

p1,p2,k
(s) � [(s � ai

k)
2

þ (bi
k)

2]=(s2
þ v2

k )} (22)

Without loss of generality, we consider r(t) ¼ sin(vkt). In
this case, dyi

p1,p2
(t) can be represented as follows

dyi
p1,p2

(t) ¼ vkL
�1[ ~G

i

p1,p2,k(s)] � d(t)

þ L
�1[ ~G

i

p1,p2,k(s)] � ~u(t) (23)

where d(t) denotes the Dirac delta function, ~u(t) ¼
[(ai

k)
2
þ (bi

k)
2
� v2

k] sin(vkt)� 2ai
kvk cos(vkt).

Since Gi
p1,p2

(s) is exponentially stable independently of i,
~G

i

p1,p2,k
(s) is also exponentially stable independently of i.

Then (23) is further written as follows [5]

jdyi
p1,p2

(t)j � C0e� �at
þ C1 sup

t[[0,þ1)

j~u(t)j

� C0e� �at
þ C2e (24)

where e is defined in (21) and �a, C0, C1, C2 are positive

numbers independent of i. It is easy to verify that dyi
p1,p2

(t)

in (22) also has the form as in (24).

By (21), e can be made arbitrarily small when i is
sufficiently large. It follows that (20) holds. This concludes
the proof. A
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Remark 5: The low-pass filter q(s), known as the ‘q-filter ’
[5], should be appropriately selected for a trade-off between
good tracking performance and stability margin. When the
bandwidth of q(s) increases, the tracking performance also
improves but the stability margin decreases, and vice versa
[17]. In particular, if Ger(s) is stable with q(s) ¼ 1 and
Gv(s) [ Rs, then asymptomatic tracking performance can
be achieved. This in fact has been discussed in Theorem 1.

Based on the conclusion of Theorem 2, we only need to
consider the internal stability of the system shown in
Fig. 1, that is, the stability of (18) and (25). (The stability
of (25) gives Gv(s) [ Rs)

_x(t) ¼ A0x(t)þ A1x(t � t) (25)

The stability of (25) can be determined by (9). For (18) and
(25), note that the uniform asymptotic stability is equivalent
to the exponential stability. Then, up to now, the tracking
problem has been converted from the uniform asymptotic
stability of a neutral delay system (7) to the uniform
asymptotic stability of the more familiar time-delay systems
(18) and (25). Generally speaking, the latter is easier to
handle. The following theorem gives a sufficient condition
for the uniform asymptotic stability of system (18) using
the frequency-domain approach.

Theorem 3: Consider the system (18) with Assumption 1.
If (i) D1 has no eigenvalues in the closed left half-plane,
(ii) lmax[M1(jv)] , 0:5, v [ R, then Z(t) ¼ 0 is
uniformly asymptotically stable in (18), where

M1(jv) ¼ (jvI nþnp
�D1)�1(D3DT

3 þ gI nþnp
)

� (�jvI nþnp
�DT

1 )�1

Proof: Let Z1(t), Z2(t), Z3(t) in (18) be redefined as Z1(t) ¼
Z(t � T ), Z2(t) ¼ Z(t � t), Z3(t) ¼ Z(t), respectively.
Then (18) can be rewritten as

Z1(t þ T )
Z2(t þ t)

_Z3(t)

0
@

1
A ¼

0 0 I nþnp

0 0 I nþnp

D3 D2 D1

0
B@

1
CA Z1(t)

Z2(t)
Z3(t)

0
@

1
A

By using Lemma 4 in [18], we conclude that if and only if D1

has no eigenvalues in the closed left half-plane, that is,
condition (i); and dett[I 2(nþnp) � zM2( jv)] = 0 in

{z [ C
1
jjzj � 1} for v [ R hold, then Z(t) ¼ 0 is

uniformly asymptotically stable in (18), where

M2(s) ¼
(sI nþnp

�D1)�1D3 (sI nþnp
�D1)�1D2

(sI nþnp
�D1)�1D3 (sI nþnp

�D1)�1D2

0
@

1
A

The condition lmax[M2(jv)MT
2 (�jv)] , 1 implies that
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det [I 2(nþnp) � zM2(jv)] = 0 in {z [ C
1
jjzj � 1} forv [ R.

Therefore the remainder of the proof focuses on proving

lmax[M2(jv)MT
2 (�jv)] , 1

M2(jv)MT
2 (�jv) can be written as

M2(jv)MT
2 (�jv) ¼

M3(jv) M3(jv)
M3(jv) M3(jv)

� �

where M3( jv) ¼ ( jvInþnp
2 D1)21 (D3D3

T
þ D2D2

T)
(2jvInþnp

2 D1
T)21.

Using Assumption 1, we obtain

D2DT
2 ¼

A1AT
1 0

0 0

� �
� gI nþnp

thus

M2(jv)MT
2 (�jv) �

M1(jv) M1(jv)
M1(jv) M1(jv)

� �
(26)

Since

M1(jv) M1(jv)

M1(jv) M1(jv)

� �
¼ N�1 2M1(jv) M1(jv)

0 0

� �
N

N ¼
I nþnp

0

�I nþnp
I nþnp

 !

hence lmax[M2(jv)MT
2 (�jv)] � 2lmax[M1(jv)] by (26).

Therefore if condition (ii) holds, then lmax [M2( jv)MT
2

(�jv)] , 1 which concludes the proof. A

The stability of (25) can also be determined by Theorem 3
as it is only a special case of system (18). Although the
stability of (18) can be determined by its characteristic
function and the criterion may be less conservative, the
stability criterion will become more and more difficult to
verify as the system dimension increases. In the following
section, the delay-independent criterion of system (18) is
derived in terms of LMIs. This makes the criterion quite
feasible with the aid of a computer.

Theorem 4: Consider the system (18) with Assumption 1
under the control law (16). If there exist 0 , Qi ¼ QT

i [
R(nþnp)�(nþnp), i ¼ 1, 2, 0 , a [ R and a matrix
Control Theory Appl., 2009, Vol. 3, Iss. 9, pp. 1283–1292
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K [ Rm�msuch that

Q1D1 þDT
1 Q1 þ aI nþnp

þQ2 Q1 Q1D3

Q1 �g�1aI nþnp
0

DT
3 Q1 0 �Q2

2
664

3
775

, 0 (27)

then Z(t) ¼ 0 is uniformly asymptotically stable in (18).

Proof: Choose the Lyapunov–Krasovskii functional to be

V2 t, Zð Þ ¼ ZT(t)Q1Z(t)þ a

ðt

t�t

ZT(s)Z(s) ds

þ

ðt

t�T

ZT(s)Q2Z(s) ds

Taking the derivative of V2(t, Z) along the solution of (18)
yields

_V 2 t, Zð Þ ¼ ZT tð ÞR3Z(t)�H T
1 H 1 �H T

2 H 2

� ZT(t)R3Z(t) (28)

where

R3 ¼ DT
1 Q1 þQ1D1 þ aI þQ2 þ a�1Q1D2DT

2 Q1

þQ1D3Q�1
2 DT

3 Q1

H 1 ¼
ffiffiffi
a
p	 
�1

DT
2 Q1Z(t)�

ffiffiffi
a
p

Z t � tð Þ

H 2 ¼ Q
1
2
2

� ��1

DT
3 Q1Z(t)�Q

1
2
2Z t � Tð Þ

Using Assumption 1, we can obtain D2DT
2 � gI nþnp

: Thus
(28) becomes

_V 2 Z, tð Þ � ZT tð ÞR4Z(t)

where R4 ¼ D1
TQ1 þ Q1 D1 þ aI þ Q2 þ g a21 Q1Q1 þ

Q1 D3 Q2
21 D3

TQ1.

Using Schur Complement [12], the following inequalities
are equivalent to each other

R4 , 0, (27)

If condition (27) holds, then Z(t) ¼ 0 is uniformly
asymptotically stable in (18). A

Remark 6: The stability criteria in Theorems 3–4 are delay
independent and less conservative stability criteria for (18)
may be found in other literature. Furthermore, delay-
dependent stability criteria [19–20] can be also developed
for (18) when a bound on the time delay t is known.
However, we focus on the tracking problem rather than the
stabilisation problem of time-delay systems in this paper.
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So readers may refer to other literature for less conservative
stability criteria on (18).

4 Numerical simulations
Consider system (1) with parameter matrices as follows

Case 1:

A0 ¼
1 1

�3 �3

� �
, B ¼

1

1

� �
, C ¼

1

1

� �T

A1 ¼
0:1 0:2

0:15 0:1

� �

Case 2:

A0 ¼
1 1

�3 �3

� �
, B ¼

0

1

� �
, C ¼

1

1

� �T

A1 ¼
0:1 0:2

0:15 0:1

� �

where A0, B, C are known a priori. A1 is assumed unknown
except A1AT

1 , 0:3I 2. t ¼ 5 is the unknown time delay and
T ¼ 2p is the period. The unknown periodic disturbance is
v(t) ¼ sin(t) sin2(t)

� �T
. The control objective is to track

given desired trajectories yd,1(t) ¼ sin(t) and yd,2(t), where
yd,2 tð Þ is a triangular waveform and the first period has the
form as

yd,2(t) ¼

2

T
t, 0 � t ,

T

2

2�
2

T
t,

T

2
� t , T

8><
>:

4.1 Repetitive controller

In Case 1, by LMI control toolbox in MATLAB 6.5, the
positive-definite solution of (9) subject to restriction

BTP ¼ C is solved as P ¼
1 0
0 1

� �
, a ¼ 0:62. This

implies that the stability of (25) is ensured and the
controller (5) is designed as follows

uf (t) ¼ uf t � Tð Þ þ K 0(t)dy tð Þ

K 1(t) ¼ 3
t

T
, K ¼ 3

(29)

This design choice makes
Ð t

t�T kdy(u)k2du tend to zero as
t !þ1:

In Case 1, the tracking performance of system (1) driven
by the controller (29) is shown in Fig. 2, where
kdyikT W supt[[0,T ] kdy iT þ tð Þk:

The error is very small at the tenth period consistently with
the result of Theorem 1. However, the conditions of
90
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Theorem 1 do not hold for Case 2 or for the case when
the desired trajectory yd,2(t) does not satisfy the appropriate
differentiability condition (see Remark 1). These will be
taken into consideration in Section 4.2.

4.2 Modified repetitive controller

In this simulation, the first-order filter q(s) is chosen to be

q(s) ¼
vc

s þ vc

(30)

where vc [ R is the cutoff frequency of q(s): Therefore the
controller (16) is written as follows

_xp(t) ¼ �vcxp(t)þ vcxp t � Tð Þ þ Kdy(t)

uf (t) ¼ vcxp t � Tð Þ þ Kdy(t)
(31)

Since the stability of (25) has been ensured in Section 4.1, we
only need to consider the stability of (18) in this section.

In Case 2, when vc ¼ 60, the positive-definite solution of
(27) is solved by the LMI control toolbox as follows

Q1 ¼

0:0413 0:0033 0:0012

0:0033 0:0043 �0:0024

0:0012 �0:0024 0:0864

2
64

3
75, K ¼ 3

Q2 ¼

0:0464 �0:0038 0:0175

�0:0038 0:0064 �0:0152

0:0175 �0:0152 4:7121

2
64

3
75

a ¼ 0:0192

In Case 2, when we choose vc ¼ 60, the tracking
performance of the controller (31) with different desired
trajectories yd,1(t), yd,2(t) is depicted in Fig. 3.

Figure 2 Change of maximum absolute value of error at the
ith period
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Since the amplitude of desired trajectories yd,1(t) and
yd,2(t) is the same and C2 in inequality (24) is independent
of yd,1(t) and yd,2(t), the tracking performance is
determined by e in inequality (24). In this case since the
triangular waveform yd,2(t) has more high-frequency
components than sinusoid yd,1(t), e is smaller when using
sinusoid yd,1(t) as the desired trajectory. Therefore the
tracking performance under desired trajectory yd,1(t) is
better than that under desired trajectory yd,2(t) as observed
in Fig. 3.

Fig. 4 depicts the tracking performance of the controller
(31) with different cutoff frequencies vc ¼ 10, 50, 90 in
Case 2, when using the desired trajectory yd,1(t).

Remark 7: As observed in Fig. 4, the best tracking
performance is achieved when vc ¼ 90: It is noteworthy
that there is little difference between the tracking

Figure 3 Change of maximum absolute value of error at the
ith period

Figure 4 Change of maximum absolute value of error at the
ith period
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performance under vc ¼ 50 and vc ¼ 90: In this
simulation, the stability margin decreases as vc in (30)
increases, which leads to the decrease of e and increase of
C2 in (24). Therefore C2e in (24) may change slightly
when vc is large enough. In practice, it is difficult to
determine the variation of the value C2e and the tracking
performance with different vc. Nevertheless, we can adjust
vc through observing the tracking performance in practice.

Remark 8: With respect to tracking performance, the
controller presented in Theorem 1 outperforms that in
Theorems 3–4. However, the controller presented in
Theorems 3–4, which has fewer restrictions, can be applied
to more general systems.

5 Conclusions
This paper aims to design output error controllers to track
periodic reference signals for a class of uncertain linear
state-delayed systems subject to periodic disturbances. The
novel contributions of this paper are as follows: (i)
controllers are designed and analysed for a class of
uncertain linear state-delayed systems to track periodic
reference signals; (ii) only the output error signal is
available for feedback and the proposed controllers do not
require the time derivatives of the output error; (iii) the
theory on the modified RC system is extended to apply to
the systems represented by irrational transfer functions; (iv)
most of the criteria in this paper are given in terms of
LMIs that make them quite feasible in the controller/filter
design with the aid of a computer.
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