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Adaptive Compensation for

Robust Tracking of Uncertain

Dynamic Delay Systems
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Abstract To overcome the drawbacks of the high-gain feed-
back term, a controller with an adaptive compensation term is
developed for robust tracking of uncertain dynamic delay sys-
tems. It is proved that the introduction of the adaptive com-
pensation term will not affect the stability of the original closed-
loop system. In this way, it will be practically flexible to decide
whether to include the adaptive compensation term depend-
ing on the tracking performance requirements and controller
gain constraints. The effectiveness of the proposed controller
is demonstrated by numerical examples.
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Recently, various methods are proposed for a class of
uncertain dynamic systems to track dynamic outputs of
finite-dimensional systems. In [1−2], linear feedback con-
trollers that guaranteed uniform ultimate boundedness of
the tracking error were proposed. The error bound can
be reduced to an arbitrarily small value by increasing the
controller gain. In [3], a nonlinear switching controller was
developed to guarantee that the tracking error was reduced
to zero asymptotically by increasing the maximum value of
control effort. Following the idea of [3−4] proposed an im-
proved adaptive law with σ-modification for robust tracking
of dynamical signals. However, the resulting controller is
still a high-gain feedback controller. Reference [5] designed
an H∞ filter-based tracking controller for a class of linear
time-delay systems subjected to parametric uncertainties.
By assuming some matching conditions for uncertainties
and the disturbance being an L2 function, this controller
ensures that the closed-loop system is H∞ asymptotically
stable. Whereas, all the controllers above essentially rely
on increasing controller gains to achieve good tracking per-
formance, which is not always feasible in practice. The
drawbacks of the high-gain feedback solutions are related
to the fact that they may saturate the actuators, excite
high-frequency modes, etc.

In order to overcome these drawbacks, this paper pro-
poses a combined controller that introduces an adaptive
compensation term into the original controller. The adap-
tive compensation term plays the role as integrators in PID
controllers. In comparison with integrators, the adaptive
compensation term can compensate for not only the con-
stant component but also the periodic components in un-
known dynamics. Therefore, the combined controller is es-
pecially suitable for scenarios where a few periodic compo-
nents contribute major proportion of unknown dynamics
in amplitude. By introducing the adaptive compensation
term, loads on the feedback controllers can be greatly re-
lieved; hence good tracking performance can be achieved
with moderate controller gains.
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The rest of this paper is organized as follows. In
Section 1, an uncertain time-delay system and two assump-
tions are presented. Moreover, a new method to solve
the equation, which guarantees the existence of a reference
model, is proposed. Based on the assumptions presented
in Section 1, the adaptive compensation term is designed
and analyzed in Section 2. In Section 3, we demonstrate
the feasibility of the proposed controller through numerical
examples.

Notations. Rn is the Euclidean space of dimension
n and R+ denotes the space of positive real numbers in
R. In is an identity matrix with dimension n. “0” denotes
the zero matrix of appropriate dimensions. ‖·‖ is defined
as the Euclidean norm or a matrix norm induced by the
Euclidean norm. ‖xxx‖∞ = supt∈[t0,+∞) ‖xxx(t)‖ . Cn

PT is the
space of continuous and periodic functions with periodicity
T : xxx(t) = xxx(t− T ), xxx(t) ∈ Rn.

1 Problem formulation and controller
structure

1.1 Problem formulation

Consider the uncertain time-delay systems of the follow-
ing form:

ẋxx(t) = [A + ∆A(υ, t)]xxx(t) + Ad(ζ, t)xxx(t− τ)+

[B + ∆B(ν,t)]uuu(t) + ωωω(q, t)

yyy(t) = Cxxx(t)

xxx(t) = φφφ(t), t ∈ [−τ, 0] (1)

where xxx(t) ∈ Rn×1, uuu(t) ∈ Rm×1, and yyy(t) ∈ Rp×1 rep-
resent the state, input, and output vectors, respectively;
τ ∈ R+ is the unknown time delay; A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rp×n are constant matrices; ∆A(υ, t), Ad(ζ, t) ∈
Rn×n represent system uncertainties; ∆B(ν, t) represents
the input matrix uncertainty; and ωωω(q, t) ∈ Rn×1 is an
additive disturbance vector. The uncertain parameters
(υ, ζ, ν, q) ∈ Ψ are Lebesgue measurable and take values in
a known compact set Ω. It is assumed that the right-hand
side of (1) is continuous and satisfies enough smoothness
conditions to ensure the existence and uniqueness of the
solution through every initial condition φφφ(t).

A generalized assumption on system (1) is proposed in
[2, 4]:

Assumption 1. For all (υ,ζ, ν, q) ∈ Ψ, ∆A(·), Ad(·),
∆B(·), and ωωω(·) are continuous bounded matrix functions,
and moreover, ∆B(ν, t) = BE(ν, t) and E(ν, t)T +E(ν, t)+
Im > 0.

Our objective is to make yyy(t) in (1) track a reference
trajectory yyym(t) which is generated by

ẋxxm(t) = Amxxxm(t)

yyym(t) = Cmxxxm(t) (2)

where xxxm(t) ∈ Rnm×1 is bounded for all time, Am ∈
Rnm×nm , and Cm ∈ Rp×nm . The tracking error is defined
as

eee(t) = yyy(t)− yyym(t) (3)

As pointed out in [1−4], not all models in the form of
(2) can be tracked by system (1). The requirement is that
there exist G ∈ Rn×nm and H ∈ Rm×nm that satisfy the
following equation:

{
AG + BH = GAm

CG = Cm
(4)
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By using direct product ⊗ of matrices and the “vec(·)”
operation defined in [6], (4) is equivalent to

Πχχχ = R (5)

where

Π =

[
Inm ⊗A−AT

m ⊗ In Inm ⊗B
Inm ⊗ C 0

]

χχχ =

[
vec(G)
vec(H)

]
, R =

[
0

vec(Cm)

]

The solutions to (4) exist iff rank [Π, R] = rank Π. One
of the solutions is

χχχ = Π†R (6)

where Π† denotes the Moore-Penrose inverse of Π. We
then can obtain the solution G and H from χχχ. If a solution
cannot be found to satisfy (5), then a different reference
model must be chosen.

1.2 Controller structure

The controller uuu(t) is designed with two parts:

uuu(t) = uuuori(t) + uuuf (t) (7)

where uuuori(t) is an original controller proposed in other
literature as [2], which is used to stabilize the closed-loop
system; uuuf (t) is the adaptive compensation term, which
aims to compensate for the periodic unknown dynamics.
We will focus on designing uuuf (t) in this paper. The original
controller uuuori(t) is represented as follows:

uuuori(t) = Hxxxm(t) + uuub(xxx,xxxm, t) (8)

where H ∈ Rm×nm satisfies (4), uuub(xxx,xxxm, t) ∈ Rm×1 is
the feedback controller, and xxxm(t) is the state of reference
model (2).

Applying (7) to (1) yields the auxiliary system described

by[1−2]

żzz(t) = f(zzz, υ,ζ, t)+

[B + ∆B(ν, t)] [uuub(xxx,xxxm, t) + uuuf (t)] + ηηη(t) (9)

where

zzz(t) = xxx(t)−Gxxxm(t)

f(zzz, υ,ζ, t) = [A + ∆A(υ, t)]zzz(t) + Ad(ζ, t)zzz(t− τ)

ηηη(t) = ηηη(υ, ζ, ν,q, t) =

∆A(υ, t)Gxxxm(t) + Ad(ζ, t)Gxxxm(t− τ)+

∆B(ν, t)Hxxxm(t) + ωωω(q, t)

Since CG = Cm by (4), it follows that

Czzz(t) = Cxxx(t)− CGxxxm(t) = eee(t)

consequently,
‖eee(t)‖ ≤ ‖C‖ ‖zzz(t)‖

In this case, zzz(t) can be considered as a new tracking error.
To make the problem tractable, we impose the follow-

ing assumption to describe the stability of system (9) with
ηηη(t) ≡ 0 and uuuf (t) ≡ 0.

Assumption 2. There exists a known continuously dif-
ferentiable functional V1(t) ∈ R+ ∪ {0} such that

µ1 ‖zzz(t)‖2 ≤V1(t) ≤

µ2 ‖zzz(t)‖2 + µ3

∫ t

t−τ

‖zzz(s)‖2 ds (10)

and
‖∂zV1(t)‖ ≤ bV1 ‖zzz(t)‖ (11)

where ∂zV1 = ∂V1
∂z

∈ Rn×1, µ1, µ2, bV1 ∈ R+, and µ3 ∈
R+ ∪ {0} . Moreover, the derivative of V1(t) along the tra-
jectories of (9) with ηηη(t) ≡ 0 and uuuf (t) ≡ 0 satisfies

V̇1(t) ≤ −µ4 ‖zzz(t)‖2 (12)

where µ4 ∈ R+.
Remark 1. Assumption 2 is imposed on the auxiliary

system (9) without uuuf (t) and any external disturbance, and
makes us focus on designing the adaptive compensation.
The control scheme proposed in [2] satisfies Assumption 2.

2 Adaptive compensation term design
and analysis

The proposed adaptive compensation term uuuf (t) is intro-
duced to compensate for periodic components in unknown
dynamics ηηη(t). In Subsection 2.1, we first determine peri-
ods of major periodic components that exist in unknown
dynamics ηηη(t). Then, the adaptive compensation term is
designed, and the stability of system (9) is analyzed in Sub-
sections 2.2 and 2.3, respectively.

2.1 Major periods in unknown dynamics

In practice, systems such as industrial robots, magnetic
disk, and CD drives, etc., operate repetitively over a fixed
time interval and are subject to periodic uncertainties and
disturbances[7−9]. In the above-mentioned systems, peri-
odic components contribute a major proportion of the un-
known dynamics ηηη(t) in amplitude. According to this, the
unknown dynamics ηηη(t) in (9) can be decomposed into two
parts:

ηηη(t) = Bgggp(t) + gggr(t) (13)

where gggp(t) = gggp(υ, ζ, ν,q, t) is the major periodic compo-

nents of ηηη(t), denoted by gggp(t) = −∑Np

i=1gggTi(t), gggTi(t) ∈
Cm

PTi
, and gggr(t) = gggr(υ, ζ, ν,q, t) is the remaining part of

ηηη(t), i.e., gggr(t) = ηηη(t) − Bgggp(t). The periods Ti, i =
1, · · · , Np are the periods of major periodic components,
which exist in unknown dynamics ηηη(t). It should be noted
that the concrete forms of gggp(t), gggr(t) are unknown, and
this decomposition is only used for analysis.

In most cases, the periodicity of the disturbance and
the states are related to the periodicity of the reference
trajectory. Therefore, roughly speaking, Ti, i = 1, · · · , Np

can be determined based on analysis of the major periods
of the reference trajectory yyym(t). Even if Ti, i = 1, · · · , Np

are unknown as a priori, we can also extract the major
periods from the output data. First, we design a controller
uuu(t) = uuuori(t), then, (9) becomes

ż̇żz(t) = [A + ∆A(υ, t)]zzz(t) + Ad(ζ, t)zzz(t− τ)+

[B + ∆B(ν, t)]uuub(xxx,xxxm, t) + ηηη(t) (14)

The above system is a perturbed time-varying system. If
uuub(xxx,xxxm, t) is chosen as in [2] and the conditions of The-
orem 2 in [2] are satisfied, then the trivial solution of sys-
tem (14) with ηηη(t) ≡ 0 is uniformly asymptotically stable.
The solution zzz(t) of (14) with initial condition zzzt0 can be

represented[10] to be

zzz(zzzt0 , t0, t) = Φυ,ζ,ν(t, t0)zzzt0 +

∫ t

t0

Φυ,ζ,ν(t, s)X0ηηη(s)ds =

Φυ,ζ,ν(t, t0)zzzt0 −
Np∑
i=1

zzzgTi
(t) + zzzr(t)
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where X0 is the special matrix function given by
X0(θ) = 0, −τ ≤ θ < 0, X0(0) = In,

zzzgTi
(t) =

∫ t

t0
Φυ,ζ,ν(t, s)X0BgggTi(s)ds, and zzzr(t) =∫ t

t0
Φυ,ζ,ν(t, s)X0gggr(s)ds. Since ∆A(υ, t), ∆B(ν, t), and

Ad(ζ, t) are all bounded, there exist constants K, α ∈ R+

such that[10]

‖Φυ,ζ,ν(t, s)‖ ≤ Ke−α(t−s)

for all s ∈ R+∪{0}, and consequently, the terms zzzgTi
(t) ap-

proach periodic functions with period Ti as t → +∞[11], i =
1, · · · , Np. If the periodic components gggTi(t), i = 1, · · · , Np

contribute a major proportion of ηηη(t) in amplitude, accord-
ingly, the solution zzz(t) in (14) will be consisted of more pe-
riodic components with periods Ti, i = 1, · · · , Np. We can
extract these periods Ti, i = 1, · · · , Np by computation of

the autocorrelation function[12].

2.2 Adaptive compensation term design

According to the above discussion, in order to compen-
sate for gggTi(t), i = 1, · · · , Np, uuuf (t) in (7) is designed as

uuuf (t) =

Np∑
i=1

uuufi(t)

uuufi(t) = satβββ [uuufi(t− Ti)]− k̄i(t)B
T∂zV1(t)

uuufi(t) = 0, t ∈ [t0 − Ti, t0) , i = 1, · · · , Np (15)

where k̄i(t) ∈ R has the form as

k̄i(t) =





0, t ∈ [t0 − Ti, t0)
λi(t), t ∈ [t0, t0 + Ti)
ki, t ∈ [t0 + Ti, +∞)

and is chosen to be a monotone and continuous function on
[−Ti, +∞), V1(t) is the functional defined in Assumption
2, and satβββ(·) ∈ Rm×1 is a vector function whose elements

are defined as follows[13]:

satβi(ξi) =

{
ξi, |ξi| ≤ βi

sgn(ξi)βi, |ξi| > βi

∀ξi ∈ R, i = 1, · · · , m

where βββ =
[

β1 β2 · · · βm

]T
.

For gggTi(t), i = 1, · · · , Np in (13), the following equations
are assumed to be satisfied

satβββ [gggTi(t)] = gggTi(t), i = 1, · · · , Np (16)

If βi is chosen large enough, i = 1, · · · , m, then (16) can
be satisfied. In the worst case, ∃k, satβββ [gggTk (t)] 6= gggTk (t),
i.e., (16) does not hold, gggTk (t) can be written as

gggTk (t) = ḡggTk
(t) +

[
gggTk (t)− ḡggTk

(t)
]

where satβ

[
ḡggTk

(t)
]

= ḡggTk
(t) and ḡggTk

(t) ∈ Cm
PTk

. Thus, ηηη(t)

in (13) can be still decomposed into two parts as follows:

ηηη(t) = Bḡp(t) +
[
gggr(t) + B(gggTk (t)− ḡggTk

(t))
]

where ḡggp(t) =
∑Np

i=1,i6=k
gggTk (t) + ḡggTk

(t). Without loss of

generality, we assume that (16) is always satisfied here.
Remark 2. Similar to [14], the reason of introducing

k̄i(t) is to ensure that uuufi(t) is continuous on [−Ti, +∞) .

2.3 Adaptive compensation term analysis

We will analyze the stability of system (9) with uuuf (t)
designed as (15) in this section. Before proceeding further
with the development of this work, the following prelimi-
nary result is needed.

Lemma 1. Assume that there exists a continuously
differentiable functional V (t) ∈ R+ ∪ {0} such that

γ1 ‖zzz(t)‖2 ≤V (t) ≤

γ2 ‖zzz(t)‖2 + γ3

∫ t

t−τ

‖zzz(s)‖2 ds + c (17)

where γ1, γ2 ∈ R+ and γ3, c ∈ R+ ∪ {0}. If the derivative
of V (t) along the trajectories of (9) satisfies

V̇ (t) ≤ −γ4 ‖zzz(t)‖2 + δ (18)

where γ4 ∈ R+, δ ∈ R+ ∪ {0}, then the solution zzz(t) of (9)
with a bounded initial condition is uniformly ultimately
bounded.

Proof. Please see Appendix. ¤
Theorem 1. Assume that (4) has a solution. Under As-

sumptions 1 and 2, controller (7) with and without adaptive
compensation term uuuf (t) both guarantee uniform ultimate
boundedness of the tracking error.

Proof. From Assumption 1, ηηη(t) = ηηη(υ, ζ, ν,q, t)
in (8) is continuous bounded, denoted by bη =
sup(υ,ζ,ν,q)∈Ψ ‖ηηη(υ, ζ, ν,q, t)‖∞ . By using Assumption 2,

the derivative of V1(t) along the trajectories of (9) with
uuuf (t) ≡ 0 satisfies

V̇1(t) ≤− µ4 ‖zzz(t)‖2 + [∂zV1(t)]
T ηηη(t) ≤

− µ4 ‖zzz(t)‖2 + bV1bη ‖zzz(t)‖
Note that

bV1bη ‖zzz(t)‖ ≤ µ4

2
‖zzz(t)‖2 +

1

2µ4
b2
V1b2

η

Hence, V̇1(t) is further bounded as

V̇1(t) ≤ −µ4

2
‖zzz(t)‖2 +

1

2µ4
b2
V1b2

η

Moreover, V1(t) has the form as (17) with c = 0. Therefore,
controller (7) without adaptive compensation term uuuf (t)
guarantees uniform ultimate boundedness of the tracking
error by Lemma 1.

Next, we will prove that controller (7) with uuuf (t) can also
guarantee uniform ultimate boundedness of the tracking
error.

By using (13), system (9) can be further written as

ż̇żz(t) = f(zzz, υ,ζ, t) + [B + ∆B(ν, t)]uuub(xxx,xxxm, t)+

gggr(t) + B

Np∑
i=1

ũ̃ũufi(t) + ∆B(ν, t)uuuf (t) (19)

where ũ̃ũufi(t) = uuufi(t)− gggTi(t).
Design a candidate Lyapunov-Krasovskii functional as

follows:
V (t) = V1(t) + V2(t) (20)

where V1(t) is defined in Assumption 2. By Assumption 2,
taking the derivative of V1(t) along the solution of (19)
yields
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V̇1(t) ≤− µ4 ‖zzz(t)‖2 + [∂zV1(t)]
T gggr(t)+

[∂zV1(t)]
T B

Np∑
i=1

ũuufi(t)+

[∂zV1(t)]
T ∆B(ν, t)uuuf (t) (21)

In order to eliminate the term [∂zV1(t)]
T B

∑Np

i=1ũuufi(t) in
(21), we define the nonnegative function V2(t) ∈ R+ ∪ {0}
as follows:

V2(t) =

Np∑
i=1

Wi(t) (22)

where Wi(t) = 1/(2ki)
∫ t

t−Ti
ũuui

sat(s)
T
ũuui

sat(s)ds and

ũuui
sat(t) = satβ [gggTi(t)]− satβ [uuufi(t)] , i = 1, · · · , Np.
Recalling (16) and the proof of Theorem 1 in [13], we

have

Ẇi(t) =

1

2ki

[
ũuui

sat(t)
Tũuui

sat(t)− ũuui
sat(t− Ti)

Tũuui
sat(t− Ti)

]
≤

− [∂zV1(t)]
T Bũfi(t)−

1

2
ki [∂zV1(t)]

T BBT∂zV1(t) (23)

when t ∈ [t0 + Ti, +∞) , i = 1, · · · , Np.
Then, combining (21) and (24), we obtain

V̇ (t) ≤− µ4 ‖zzz(t)‖2 + [∂zV1(t)]
T gggr(t)−

1

2
ke [∂zV1(t)]

T BBT∂zV1(t)+

[∂zV1(t)]
T ∆B(ν, t)uuuf (t)

when t ∈ [t0 + TM , +∞) , where TM = maxi=1,··· ,NpTi

and ke =
∑Np

i=1ki.
Substituting ∆B(ν, t) = BE(ν, t) (see Assumption 1)

and (15) into the above inequality yields

V̇ (t) ≤− µ4 ‖zzz(t)‖2 + [∂zV1(t)]
T gggr(t)−

1

2
ke [∂zV1(t)]

T BBT∂zV1(t)+

[∂zV1(t)]
T ∆B(ν, t)

Np∑
i=1

satβββ [uuufi(t− Ti)]−

ke [∂zV1(t)]
T B

E(ν, t)T + E(ν, t)

2
BT∂zV1(t)

Note that E(ν, t)T + E(ν, t) + Im > 0 by Assumption 1.
Hence

V̇ (t) ≤− µ4 ‖zzz(t)‖2 + [∂zV1(t)]
T gggr(t)+

[∂zV1(t)]
T ∆B(ν, t)

Np∑
i=1

satβββ [uuufi(t− Ti)]

Moreover, by (11) in Assumption 2, the above inequality
becomes

V̇ (t) ≤ −µ4 ‖zzz(t)‖2 + ρ ‖zzz(t)‖ (24)

when t ∈ [t0 + TM , +∞), where ρ = bV1bgr +
bV1b∆BNp ‖βββ‖ , b∆B = supν∈Ψ ‖∆B(ν, t)‖∞ , bgr =
sup(υ,ζ,ν,q)∈Ψ ‖gggr(υ,ζ, ν, q, t)‖∞. Since

ρ ‖zzz(t)‖ ≤ µ4

2
‖zzz(t)‖2 +

1

2µ4
ρ2

inequality (24) becomes

V̇ (t) ≤ −µ4

2
‖zzz(t)‖2 +

1

2µ4
ρ2 (25)

when t ∈ [t0 + TM , +∞) .
In light of (10) in Assumption 2, since every Wi(t) in

(22) is bounded (noticing the form of ũuui
sat(t) in (22)), V (t)

has the form

µ1 ‖zzz(t)‖2 ≤ V (t) ≤

µ2 ‖zzz(t)‖2 + µ3

∫ t

t−τ

‖zzz(s)‖2 ds + c1 (26)

where c1 ∈ R+ ∪ {0} is a constant.
Since V (t) on [t0, t0 + TM ] is bounded, which implies zzz(t)

is bounded on [t0, t0 + TM ], the initial condition at time
t = t0 + TM is bounded. Recalling (25) and (26), we can
conclude that controller (7) with adaptive compensation
term uuuf (t) guarantees uniform ultimate boundedness of the
tracking error by Lemma 1. ¤

Remark 3. If the original controllers (8) as in [1−2]
have guaranteed that the tracking error is uniformly ulti-
mately bounded, then these major periods from zzz(t) can
be extracted (see Subsection 2.1). By using the major
periods and combining the original controllers, combined
controllers (7) can be designed. Since the adaptive com-
pensation term in (7) does not affect the stability of the
closed-loop system and merely plays a role in improving
the tracking performance, hence it is flexible in practice to
decide whether to include the adaptive terms depending on
the tracking performance requirements and controller gain
constraints.

3 Numerical examples
3.1 Example 1

Compared with the methods of solving (7) in [1, 3],
the proposed method in this paper is easier to be imple-
mented, and furthermore, it can handle some problems
that cannot be solved by the methods in [1, 3]. When

A =

[ −1 1
0 −1

]
, BBB =

[
0
1

]
, CCC =

[ −1 1
]
, Am =

[
0 1
−1 0

]
, and CCCm =

[
1 0

]
, we can verify that

rank

[
A BBB
CCC 0

]
= 2 < 3. However, the methods of solving

(4) in [1, 3] require

[
A BBB
CCC 0

]
to be full row rank. There-

fore, it implies that G and HHH cannot be solved by using the
methods in [1, 3]. However, by (6), G and HHH can be solved

as G =

[
0 −1
1 −1

]
and HHH =

[
2 0

]
.

3.2 Example 2

Consider a nominal system[2]

ẋxx(t) =




0 1 0
0 1 2
−1 −2 0




︸ ︷︷ ︸
A

xxx(t) +




0
0.1
1




︸ ︷︷ ︸
BBB

u(t)

y(t) =
[

1 0 0
]

︸ ︷︷ ︸
CCC

xxx(t)

xxx(t) = 0, t ∈ [−τ, 0] , t0 = 0 (27)
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subject to uncertainties:

∆A(υ, t) = BBB
[

0.15 sin(0.7t) 0 0.2
]

Ad(ζ, t) = BBB
[

0 0.1 0.15 sin(0.3t)
]

ωωω(q, t) = 0.5 sin(t + 1)BBB

where xxx(t) ∈ R3×1, u(t) ∈ R, and y(t) ∈ R. The rest of
uncertainties are zero. The time delay is τ = 1. Thus, As-
sumption 1 is satisfied. The objective is to find a controller
that can drive the output of the system (27) with uncer-
tainties to follow the output of the reference model given
by

ẋxxm(t) =

[
0 1
−1 0

]
xxxm(t)

ym(t) =
[

1 0
]
xxx(t), xxxm(0) =

[
1 0

]T

The original controller uori(t) is chosen as in [2]

uori(t) = HHHxxxm(t) + (KKK − γBBBTP ) [xxx(t)−Gxxxm(t)] (28)

If γ > 4.1,

KKK =
[ −3.2649 −7.0158 −5.2984

]

G =




1 0
0 1

−0.5786 −0.5711


 , HHH =

[
1.5711 1.4214

]

P =




3.5587 1.5197 0.1416
1.5197 3.2 0.3965
0.1416 0.3965 0.3176




are chosen as in Example 1 of [2]; then, Assumption 2 is
satisfied with ∂zV1(t) = Pzzz(t).

We first determine periods of major periodic components
that exist in unknown dynamics. System (1) is driven by
controller uori(t) in (28) first. The new tracking error zzz(t) is
uniformly ultimate bounded. Take z1(t) for example, where
z1(t) represents the first variable of zzz(t), we use the auto-
correlation function to determine major periods of z1(t).
The curve of z1(t) on time interval [5× 2π, 25× 2π] and
its raw autocorrelation are shown in Fig. 1 (see function
“xcorr” in Signal Processing Toolbox of Matlab Help).

Fig. 1 Detect major periods by the autocorrelation function

As shown in Fig. 1, a major period of zzz(t) is 2π. There-
fore, T1 = 2π is chosen as the major known period in this
example. The combined controller and the adaptive com-

pensation term are then designed as follows:

u(t) = uori(t) + uf1(t)

uf1(t) = satβ [uf1(t− T1)]− k̄1(t)BBB
TPzzz(t), t ∈ [0, +∞)

uf1(t) = 0, t ∈ [−T1, 0) , T1 = 2π, β = 1 (29)

where uori(t) is chosen as (28) and

k̄1(t) =





0, t ∈ [−2π, 0)

k1
t

2π
, t ∈ [0, 2π)

k1, t ∈ [2π, +∞)

The comparison of tracking performance between con-
trollers (28) and (29) is depicted in Fig. 2, where ‖ei‖T =
sups∈[0,T1] ‖e(iT1 + s)‖ .

Fig. 2 Change of maximum Euclidean norm ‖ei‖T
of error

with the i-th period

As shown in Fig. 2, the tracking performance can be im-
proved by increasing the control gain γ of original controller
(28). However, the tracking performance of the combined
controller (29) with k1 = 3 and γ = 5 is best. It should
be noted that the control gain γ of the combined controller
(29) is smaller than that of original controller (28). There-
fore, the combined controller is especially suitable for sce-
narios where a few periodic components contribute the ma-
jor proportion of unknown dynamics in amplitude. By in-
troducing the adaptive compensation term, loads on the
feedback controllers can be greatly relieved; hence, good
tracking performance can be achieved with moderate con-
troller gains.

4 Conclusions
Various high-gain control schemes have been proposed

for a class of uncertain dynamic delay systems to track dy-
namic outputs of a nondelay reference model in this paper.
However, the drawbacks of the high-gain feedback solutions
are related to the fact that they may saturate the actua-
tors, excite high-frequency modes, etc. In order to over-
come these drawbacks and relieve loads on the feedback
controllers, an adaptive compensation term is introduced
into the original controller to compensate for periodic com-
ponents in the unknown dynamics. The main contributions
of this paper are: 1) The introduction of the adaptive com-
pensation term can help to achieve good performance with
a moderate controller gain; 2) It is proven that adding or
removing the adaptive compensation term does not affect
the stability of closed-loop systems; 3) A scheme is given to
determine the periods of major periodic components, which
exist in unknown dynamics; 4) A new method is proposed
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to solve (4), which guarantees the existence of the reference
model; and furthermore it can handle some problems that
cannot be solved by the methods proposed in [1, 3].

Appendix The proof of Lemma 1
By (18), we can obtain

‖zzz(t)‖2 ≤ δ − V̇ (t)

γ4
(A1)

Substituting (A1) into (17) yields

V (t) ≤ γ2
δ − V̇ (t)

γ4
+ γ3

∫ t

t−τ

δ − V̇ (s)

γ4
ds + c

Note that ∫ t

t−τ

V̇ (s)ds = V (t)− V (t− τ)

Thus,

V̇ (t) ≤ −γ3 + γ4

γ2
V (t) +

γ3

γ2
V (t− τ) + δb

where δb = (1 + γ3τ/γ2)δ + cγ4/γ2.
Define a U(t) such as

U̇(t) = −γ4 + γ3

γ2
U(t) +

γ3

γ2
U(t− τ) + δb (A2)

where its initial value satisfies Ut0 = Vt0 = V (t0 + s), s ∈
[−τ, 0] . By the comparison lemma[15], V (t) ≤ U(t) holds. Since
(γ4 + γ3)/γ2 > γ3/γ2, the trivial solution of (A2) with δb = 0 is
exponentially stable[16]. U(t) can be represented by[10]

U(t) = T (t, t0)Ut0 + δb

∫ t

t0

T (t, s)X0ds

where ‖T (t, s)‖ ≤ K′e−α′(t−s), K′, α′ ∈ R+, consequently,

γ1 ‖zzz(t)‖2 ≤V (t) ≤ U(t) ≤

K′e−α′(t−t0)
∥∥Vt0

∥∥ +
K′

α′
δb, t ≥ t0

by (17). Since K′δb/α′ is independent of the initial value, zzz(t)
is uniformly ultimately bounded. ¤
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