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Abstract: This study mainly focuses on the stability of a class of linear neutral systems in a critical case, that is, the
spectral radius of the principal neutral term (matrix H) is equal to 1. It is difficult to determine the stability of
such systems by using existing methods. In this study, a sufficient stability criterion for the critical case is
given in terms of the existence of solutions to a linear matrix inequality (LMI). Moreover, it is also shown that
the proposed stability criterion conforms with a fact that the considered linear neutral systems are unstable
when H has a Jordan block corresponding to the eigenvalue of modulus 1. An illustrative example is
presented to determine the stability of a linear neutral system whose principal neutral term H has multiple

eigenvalues of modulus 1 without Jordan chains. This is difficult in existing studies.

1 Introduction

For clarity, we first introduce a class of linear neutral systems
&(¢) — Hx(t — 1) = Fl(«,) (1)

where 7 > 0 is a constant delay, F(-) is a linear functional and
x, £ x(¢ + ), 0 € [, 0]. Based on spectral radius of matrix
H, the neutral system (1) can be classified into three cases:
p(H) <1, p(H) > 1 and p(H) = 1. The case p(H) <1,
namely matrix H is Schur stable, is a necessary condition
for exponential stability of the linear neutral system (1)
[1, 2]. To the best knowledge of the authors, the case
p(H) > 1 means that there are characteristic roots of the
linear neutral system (1) with positive real part, so the system
is unstable. The last case p(H)=1 is the critical case,
which is concerned in this paper.

Neutral systems in the critical case need to be considered in
practice because they are in fact related to a class of repetitive
control systems [3, 4]. However, it is much more complicated
to determine the stability of such systems because their

characteristic equation may have an infinite sequence of
roots with negative real parts approaching zero. In recent
years, stability problem of neutral systems in the critical
case is investigated by frequency-domain methods [5, 6]
(the interested readers could consult [5] and [6], and
references therein, for the development on such a problem).
As we know, the frequency-domain stability criteria will
become more and more difficult to verify as the dimension
of matrix H increases. Moreover, when A has multiple
eigenvalues of modulus 1 without Jordan chain, the analysis
of non-exponential asymptotic stability is still an ‘open
problem’ [5, pp. 426—427]. The difficulty remains when
time-domain methods are used. In most of existing
literature, the candidate Lyapunov functionals usually
include a non-negative term like I D(x,)||?, where D(:) is
called D operator [1, pp. 286—287] and is defined as
D(x,) = x(¢) — Hx(t — 7) for (1). In the case p(H) < 1. it
can be proved that the zero solution of D(x) =0 is
asymptotically stable when 1 D(x,) || approaches zero
asymptotically. However, we cannot obtain the property in
the critical case, thus cannot further analyse stability by
investigating the tendency of ||[D(x,)||. On the other hand,
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the other type of stability criteria usually rely on the condition
p(H) <1 to prove the boundedness of ||x(#)|| [7, pp. 336—
337; 8, pp. 157-158]. Unfortunately, it is difficult to
obtain the boundedness of ||x(#)|| in the critical case as well
(see the beginning of Section 4.1). Therefore the existing
stability criteria cannot cover the critical case easily. In fact,
most of existing stability criteria have implicitly assumed
p(H) <1[9-12].

In this paper, we mainly investigate the critical case of
a class of linear neutral systems. A sufficient delay-
independent stability criterion for the critical case is given
in terms of the existence of solutions to an LMI. This
makes the proposed criterion quite feasible with the aid of
a computer. Then, by the proposed criterion, an existing
criterion is extended to determine the stability of a scalar
linear neutral system in the critical case. Finally, it is shown
that the proposed criterion conforms with a fact that the
considered linear neutral system is unstable when A has a
Jordan block corresponding to the eigenvalue of modulus 1
[5, pp. 394, 415]. An illustrative example shows the
effectiveness of the proposed criterion and gives an
alternative to handle the ‘open problem’ according to [5,
pp. 426-427].

2 Notation

The notation used in this paper is as follows. R” is Euclidean
space of dimension z. ||-|| denotes the Euclidean norm
or a matrix norm induced by the Euclidean norm.
C([—7,0]; R") denotes the space of continuous #-
dimensional vector functions on [—7, 0]. The symbol |||,
stands for the norm defined by ||, £ [||xt(0)||2+
2 11%,0)I*46, where x, € C([—7,0];R"). p(X) and
Amin(X) denote the spectral radius and the minimum
eigenvalue of matrix X, respectively. X 7 and X* are used
for the transpose and conjugate transpose of matrix X.
tr(X) denotes the trace of matrix X. X >0 (X >0, X <0,
X < 0) denotes that matrix X is a positive definite (positive
semidefinite, negative definite, negative semidefinite)
matrix. I, is the identity matrix with dimension z. ‘0’
denotes a scalar or a zero matrix (vector) of appropriate
dimension. # in matrices denotes the term which is not
used in the development. Sometimes, the dimension of a
matrix will not be mentioned when no confusion arises.

3 Problem formulation and
preliminary results

For simplicity, we consider a special case of (1) as follows
%(£) — Hx(t — 7) = Ayx(t) + Ayx(t — 7) 2
with the initial condition
x(¢) = P(¢), ¥Vt € [, 0]

where x(z) € R”, 7> 0 is a constant delay and H, A,
A; € R™" are constant system matrices. () is a
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continuously differentiable smooth vector valued function
representing the initial condition function for the interval
of [-7, 0]. The purpose of this paper is to derive a stability
criterion in terms of LMIs for the linear neutral system (2)
with p(H) < 1, especially for the critical case. In this paper,
we do not consider the case of mixed retarded-neutral type
systems, that is, when H # 0, det(H)=0; and limit
ourselves lo one principal neutral term as in [5].

Before proceeding further, we have the following
preliminary results (the proofs are all shown in the Appendix):

Lemma 1: For any negative semidefinite matrix
P = (I)TE Rnxn, if Ppp = 0, then Pri = 0 and Pir = O,
Jj=1, ..., n, where ¢;; corresponds to the element in the
ith row and jth column of ®.

Lemma 2: For any T, H € R™”, if H is non-singular and
there exist matrices 0 < P=PT € R™", 0< Q=Q7 €
R™*” such that

P [ﬁ gg;%} <0 )

then Q > 0, that is Ayi,(Q) > 0, where E = ET.

Lemma 3: Foranygiven0 < Q = Q7 € R™", if there exists
a matrix A € R™” such that HTQH— 0 < 0(< 0), then
p(H) <1(< 1)

Lemma 4: 1f there exist matrices 0 < Q = Q7 € R”*” and
G € R™" such that GTQG — Q < 0 where GG” = I,,, then
GTQG - Q=0.

Remark 1: Lemma 3 indicates that for any given Q > 0,
if p()=1 and the inequality H TQH — 0 <0 holds,
then A (H TQH — Q)= 0. Lemma 3 also implies that if
p(H) > 1, then H*QH — Q < 0 does not hold for all Q > 0.

4 Main results

In this section, a delay-independent stability criterion
(Theorem 1) in terms of an LMI is proposed for the linear
neutral system (2) with p(H) < 1. Then, an existing
criterion is extended to determine the stability of a scalar
linear neutral system in the critical case (Theorem 2).
Finally, we prove that the proposed delay-independent
stability criterion does not hold when matrix A has a

Jordan block corresponding to the eigenvalue of modulus 1
(Theorem 3).

4.1 Stability criterion

The condition p(H) < 1 usually plays a role to show ||x(#)|
being bounded. This is a very important step to show

asymptotical stability of neutral type systems [1, pp. 296—
297; 7, pp. 330-331, 336-337; 8, pp. 157-158]. If we
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have obtained that ||x(#)| is bounded, then

l4(2) = Ha(z — D)l < (I4pll + 14 11) sup [|x(2)l|

t€[0,0)

by (2). Consequently, [lx(#)| is bounded by applying
p(H) < 1. This is not true in the critical case. Taking this
into account, we need to seek another condition to replace
the boundedness of ||x(#)]|. To begin with, we need

D_eﬁnition 1([13, P 123]): Suppose g(z) : [0, ©) — R.
We say that g(#) is uniformly continuous on [0, o) if for any
€ >0 there exists 6= 6(g) >0 such that |g (#+4) —
&) < e for all #on [0, c0) with |5 < 6.

Barbalat’s Lemma ([13, p, 123]): If the differentiate
function f(#) has a finite limit as #— oo, and if f is
uniformly continuous, then A7) — 0 as # — 0.

Uniform continuity is often awkward to assert from
the definition. A very simple sufficient condition for a
differentiable function to be uniformly continuous is that
its derivative is bounded. By this condition, many
proofs are to show the boundedness of the derivative rather
than its uniform continuity, although the latter in fact
may play the same role as the former. In the following
proof, we will need to show the uniform continuity from
the definition.

Before introducing the following Theorem 1, a stability
definition is given. It should be noticed that the
following definition is slightly different from that proposed
in [1]. In [1], the initial condition is restricted by
suPge(_ro 19(O)| < & rather than @]l < 8. The later
depends on the derivative of the initial condition.

Definition 2 ({8, pp- 128, 157]): The trivial solution of
the system (2) is said to be stable if for any € > 0, there is
a 6= 06(¢) > 0 such that ||$ll;y < & implies ||x(#, P)|| <
g,¢#>0. The trivial solution is said to be globally
asymptotically stable if it is stable and lim, , , [|lx(#, ¢)|| =
0 for any initial condition |||, < co.

Theorem 1: The solution (¢, ¢) of (2) is globally
asymptotically stable, if H is non-singular and there exist
matrices 0< W= W eR™", 0<P=P eR"™,
0< Q= Q7 € R™" such that

Q+ LWL <0 (4)
where

| 4iP+P4y+ 8708, (P+STQH
B HT(P + 0S)) HTQH -0 |

L=[1, 0]"€ R*", S, = dy+ H 4,

Proaf' The proof is composed of four propositions:

Proposition 1 is to show x(z, ¢) € L]0, ); Proposition
2 is to show «x(z, ¢) € L,[0, 00); Proposition 3 is to show
that ||x(z, ¢)||? is uniformly continuous; Proposition 4 is to
show the solution x(#, ¢) is stable. If the four propositions
are satisfied, then the solution x(#, ¢) of (2) is globally
asymptotically stable. The outline of the proof is as
follows. Let £(2) = [; lx(s, )I> ds, then £(2) = ||x(z, $)II*.
Since ||x(4, $)|I* is continuous by Proposition 3, f(7) is
a differentiate function. Moreover, f(#) has a finite
limit as # — O by Proposition 2 and f(#) is uniformly
continuous by  Proposition 3. It follows that
lim, , ox(#, $) =0 by Barbaiat's Lemma. Moreover,
the solution x (#, ¢) is stable by Proposition 4, therefore
the solution x(#, ¢) of (2) is asymptotically stable by
Definition 2. Next, the four propositions above are proven
one by one in detail.

Proposition 1: x(¢, ¢) € L[0, o).

If H is non-singular, then the neutral system (2) can be
rewritten as

&(£) + H ' Ayx(2) = H[x(t — 1) + H ' Ayx(z — 7)]
+ (dy + H ' 4,)x(2)

Define z(#) £ x(z) — Syx(#), then the equation above
becomes

2(#) = Hz(t — 7) + 8;x(2) 5)

where S, = —H '4; and 8, =A4,+ H '4,. Choose a
candidate Lyapunov-Krasovskill functional to be

t

V(£) = ()" Px(t) + J z(s)TQz(s) ds 6)

=T

where 0 < P= P € R™"and 0 < Q = Q7 € R"™". Note
that x(#) can be represented as &(#) = Syx(#) + z(#), then the
lime derivative of V{(#) is calculated as follows

V(£) = x(6) (ST P + PSy)x(2) + 2x(2)" Pa(2)
+ z(t)TQz(t) — 2(r — T)TQz(z‘ -7

Substituting (5) into the above equation yields
V() =Y QY () )

where Y(£) = [x(6)" (¢ — T)T]T. Since O < —LWL" by
(4), (7) becomes

V(e) < —YOTLWLTY(¥)
= —x() T Wx(?) (8)

Since W >0, V(z) < 0. It gives V(#) < V(0). From (6), x(#)
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is bounded as

sup [[x(O| < &, )

t€[0,00)
where 4, = /V(0)/A,,,,(P). Therefore x(¢, ¢) € L]0, o).

Proposition 2: «(¢, ¢) € L,[0, ).

Integrating both sides of (8) from 0 to # we obtain
t
V)= V0 = A1) | 101 &
0

Since 7(£) >0 and Apin(#W) >0, [ llx(s)lI” ds < 7(0)/
Apin(W). Consequently,

lim | 15O ds = YO/, 1) (0)

Therefore Jg ll(s)]| ds has a limit as # — oo by (10), that is
x(¢) € £,]0, )

Proposition 3: ||x(z, $)||? is uniformly continuous.

Since ¢(#) is continuously differentiable, the solution x(,
¢) is continuously differentiable except maybe at the points
ty+ k1, £=0,1,2...[1, p. 25, Theorem 7.1]. Then, by
Newton—Leibniz Formula, we have

t+h

x(t 4+ h) — x(z) = J x(s) ds

t

where 5 > 0 without loss of generality. Utilising (9) and
x(#) = Syx(2) + z(#), we have

a2 + B = x@))2] < 26, 1%z + B) — x(2)|

t+h

<o BN
t
+h

=2 [ 1803 + 2091 s

t
t+h

<24 (51||S0||/?+J

t

1= ds)
1)

Using the Cauchy—Schwarz inequality {a, ) < {(a, ay?
(b, 6)'/* we obtain

145 t+h 12 csth 1/2
J ||z<s>||dss(J 12ds> U ||z<s)||2ds] (12)

t t t

Since Q+ LWLT <0, A (Q) >0 by Lemma 2. Then

min

noticing (6), we obtain
4
sup J I2()II* ds < &,
t€[0,00) Jt—1
where 4, = V(0)/A,,;,(Q). Thus (12) becomes

t+h
[IRECIETES N

t

where N = |h/7] 4+ 1, | 5/ 7| represents the nearest integer of
/1. Therefore inequality (11) becomes

[l + B — 1x(A)I17] < 26(6111So 16+ N /y/)
This implies that |x(Z, ) is uniformly continuous. O
Proposition 4: «(¢, ¢) is stable.

Since ¢(#) is continuously differentiable, the solution
x(¢, ) is continuously differentiable except maybe at the

points 41, £=10,1,2, ... [1, p. 25, Theorem 7.1]. Then,
by Newton-Leibniz Formula, it follows that

#(s) = x(t) — J MO

for s € [# — 7, #]. Based on the equation above, we have

[ ora=]

< 27)x()* + 2J

t—T

t 2
x(2) —J x(0)dZ|| ds

s

4

2
ds

jt HOde

s

¢ 2
| ||x<g)dg) ds

§

< 27)x()* + 2J (

t—T

Using the Cauchy—Schwarz inequality (g, b < (a, aXb, b),

we obtain

¢ 2 + +
(j ||a'c(§>d§) < (z—@[ ()N < rj l()11d¢
Consequently, we have
J ||x(5)||2d5§2T||x(l‘)||2+272J [EOIR:S

By using the inequality above, ¥{#) is bounded as

3

V() = A PO + Am@)J () — Sox(s)12ds

=T
rt

< A PO + 2Am<Q>J

t

lla(s) 1> ds

=T

+2Am(Q)||So||2J ll2c(s) 1 dls

=T
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Substituting  the result [ [lx(s)|*ds < 27)|x(2)|* +
27 f:_T l|#(s)]|*ds into the inequality above results in

V(#) < pyllx@)II” + pzj lla(s) 1 dls

t—7
2
< max (Pp Pz)”x; 17

where p; = A (P) 4+ 47A_ (Q)IS,]I* and p, = 21, (Q) +
47, (O, |I*. Therefore, ¥ (0) < max (py, py)||$ll%. For
any & > 0, there exists a 8(¢) = 8\//\min(P)/ max (py, p;) >0
such that |¢ll) < 6(¢) implies that the inequality (9)
becomes

sup [|x(&)]| < v/ V(0)/Apin(P)

+€[0,0]

< \Jmax(py, )61/ A i (P)

< Jmax(py, )86 /Ay (P)
=&

Therefore, the solution x(#, ¢) is stable by Definition 2.

Remark 2: 1t Q + LWLT < 0, then Q < 0. As a result, we
obtain HTQH — Q < 0. This implies p(/) < 1 by Lemma
3. Therefore if p(H) = 1, then the matrix inequality (4) must
have the form Q + LWL” < 0 rather than Q + LWL” < 0.
When the conditions of Theorem 1 are satisfied, the solution
x(t, ¢) of (2) is exponentially stable in the case with
p(H) <1 [2], whereas the solution x(#, ¢), non-
exponentially stable in the critical case [5, p. 413].

Remark 3: In Theorem 1, the condition Q > 0 can be
changed to Q > 0 by Lemma 2.

Remark 4. 1f p(H) > 1, then Theorem 1 does not hold by

Lemma 3 (or refer to Remark 1).

4.2 Scalar case
Now, let us consider a scalar linear neutral system
x(2) — bt — 1) = agx(t) + a;x(t — 7) (13)

where 4, ag, a1 € R.

Verriest and Niculescu gave the following result:

Lemma 5 ([14]): The scalar neutral system (13) is delay-
independent asymptotically stable if (i) a9 < 0, (ii) |4 <1,
(iii) [ay| < laol-

By Theorem 1 the extension of Lemma 5 for the critical
case is given as follows

Theorem 2: The scalar neutral system (13) is delay-
independent asymptotically stable if (i) a9 < 0, (i) |5 <1,
(iii) faq| < laol

Prooﬁ When |4] = 1, (4) can be written as

<0

|:2410p + (ay + lflal)zq +w [p+(a+ blal)q]/y:|
[p + (ay + /flal)q]b 0
(14)

where p, ¢, w € R all positive numbers. Thus, if the
tollowing condition

2a0p + (ay + /flal)zg <0 (15)
p(ag+4"a)g =0
holds, then (14) holds with a sufficiently small positive
number w. This implies that the scalar linear neutral
system (13) is asymptotically stable with 4> =1 Solving
(15) yields ay < 0 and |a;| < |a].

Combining the above results and Lemma 5, we can
conclude this proof. O

Remark 5: When |5] = 1, the characteristic equation of
system (13) has an infinite sequence of roots with negative
real parts approaching zero. As a result, it is difficult to
determine the stability of system (13) with |4| = 1 by using

frequency-domain methods.

4.3 Special case

For simplicity, let o7 = {A||A| =1, A € MH)}. The linear
neutral system (2) is unstable when A has a Jordan block
corresponding to A € oq[5, pp. 394, 415]. In this section,
we will show that Theorem 1 does not hold in the case.

The Jordan blocks corresponding to A € o7 have two
forms as follows [15, pp. 82—83]

11 0
D, = o ER™" (16)
L
0 1
or
Cla) I, 0
Dr — C<a) T e RerZr’
L
0 Cla)
cos(a) —sin(a)
Cla) & 17
() |:sin(a) cos(a) i| a7

Lemma 6: If D'Q.D, —Q, <0and 0 < Q. = Q7 then
0O, is singular.

Prooﬁ See in Appendix.
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Theorem 3: If matrix H has a Jordan block corresponding to Remark 7: H in the system considered in the example has
A € o1, then Theorem 1 does not hold. multiple eigenvalues of modulus 1 without Jordan chains.
The stability analysis of such a system is still an ‘open

Progf: The key point of this proof is to show that Theorem 1 problem’ according to [5, pp. 426-427]. However, the
holds with Q > 0 rather than Q > 0 when matrix 4 has a stability of the system can be determined by the stability
Jordan block corresponding to A € oy. But this is a criterion (4).

contradiction by Lemma 2.

6 Conclusions
Suppose, to the contrary, that Theorem 1 holds when ) - o
matrix 7 has a Jordan block corresponding to A € 0. Asymptotic stability of neutral type systems, especially in the

Then HT OH — Q<0 is satisfied. If matrix H has a critical case, is studied and a stability criterion in terms of
LMIs is proposed. It is also shown that the proposed

stability ~criterion conforms with the fact that the
considered linear neutral system is unstable when /A has a
SIS, — H 18 Jordan block corresponding to the eigenvalue of modulus
J J J (18) 1. Furthermore, the proposed criterion can help to
determine the stability of the case where A has multiple
where H, = |:]00 DO ] and D, has the form as in (16) or (17). eigenvalues of modulus 1 without Jordan chains. This gives
r an alternative to handle the ‘open problem’ according to [5,
Pre-multiplying and post-multiplying A TQH — Q<0 by pp. 426—427].
S]T and §; respectively, we obtain

Jordan block corresponding to A € o7, then H can be
transformed into the real Jordan canonical form [15, p. 83]
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9 Appendix

9.1 Proof of Lemma 1
Without loss of generality, take

Dy Dy, Dy
b= (I)S o Dy |,

T T
O3 Dy Dy

T

‘Du = [@1& %%71)&] ’

q)23:[¢k(k+1) ¢kn]
for example, where @1y, ®q3, P33 are matrices with
appropriate dimensions. Assume ®1, # 0 to the contrary

that there exists a unitary matrix U with an appropriate
dimension such that

UTd,oL,U=A (20)

where A > 0 and A # 0. So we can choose ¢ # 0 to satisfy
EAE> 0.

Choosing v = [(U&T udLUE O]T, we have
o Oo = UTD U+ 2u" UT D, 05U (21)

where w is a scalar and v # 0. By using (20), the equation
above becomes

o' ®o = UTD UE+ 2uél AE

Since & Aé>0, we can choose m > §TUT(I)11 Ué/
—2¢TA¢ to make v ®ov > 0. This contradicts with the
fact @ < 0. Therefore @1, = 0. Using the similar method,
we can also prove ®,3 = 0. O

9.2 Proof of Lemma 2

Suppose, to the contrary, that A, (Q) = 0. Then there exist
two cases: Q=0 and Q # 0. If Q = 0, then (3) becomes

_[# pH
p=[t <o

Consequently, PH = 0 by Lemma 1. Since 0 < P= P’, we
obtain A = 0. This contradicts with nonsingularity of H.
Therefore the remainder of proof only needs to consider
Q # 0. For Q # 0, there exists a unitary matrix U € R"”
such that

UQU” = A (22)
Ay O . o
where A = 0 0 with A; > 0. Pre-multiplying and
post-multiplying (3) by = and 2" respectively yields
ﬁEﬁT — # UP + TQ)HUT <0
- # UHTQHUT —UQUT | ~
— Uu o -
where B = 0o Ul Furthermore, in light of (22) and

the fact U7U = I,,, we have

I
I

E

r |# U@+ T1UTUQUTUHU"
# UHTUTuQUTUHUT — UQUT

Lome

where H = UHUT, P = UPU” and T = UTU".

By rewriting HasH = |:[3f11 Hyy j|, the term & AF—

A becomes 21 22
FITAFI—A:[# L } (24)
# HypMHy,

Since A" AH — A <0 by (23), Hy,AH;, <0. On the
other hand, hence Hi,A;H;; >0 by A; >0, hence
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H,, = 0. In this case, (P + TA)H can be written as

5 AN # # :|
P+TANH = ~ 25
erini=} 5k 03)
~ p 11 P 12 . )
where P=| _; _° |. Substituting (24) and (25) into

(23) yields p 12 Py

Il

&y

Il

N

|
I3 R 3 |
I3 4 I
I

This inequality implies 1522[:1 5 =0 by Lemma 1. If 1522
is non-singular, then H 2 =0, which implies H=
Hy, 0 . This contradicts with the nonsingularity of H.
H. 0 gularity
171
If P,, is singular, then it contradicts with P > 0. Therefore
0>0. O

9.3 Proof of Lemma 3

Suppose, to the contrary, that for any given Q > 0 there
exists a matrix A such that p(H)>1 and
HTQH— Q< 0. Use Ay to denote an eigenvalue of H
where |Ay| = p(H), then there exists an eigenvector
vz # 0 such that Hvzy = Ayvy. Since HTQH— 0 <0,
we have v}, (H? QH — Q)vy; < 0. Consequently

[p(H)* — 110}, Qv < 0 (26)

If p(H) = 1, then the inequality (26) becomes 0 < 0 which is
a contradiction; On the other hand, if p(F) > 1, then (26)
becomes vj;Quy; <0 which contradicts with Q> 0.
Therefore, if there exists a matrix A such that
H"QH— Q <0, then p(H) < 1. Similarly, we can also
prove that for any given Q > 0. If there exists a matrix /
such that HTQH — Q < 0, then p(H) < 1. 0

9.4 Proof of Lemma 4

Since
tr(GTQG — Q) = (G QG) — tr(Q)
= t(QGG") — tr(Q)
= t(QGGT — Q)

and GGT = I, we obtain that
tr(GTQG — Q) =0 27)

The equation (27) implies that the sum of the elements on
the main diagonal of GTQG — Q is zero. Moreover, since
G'QG—Q <0, every main diagonal element of
G"QG — Q is smaller than or equal to zero. Therefore we
can conclude that every diagonal clement of GTQG - Q
is zero. Furthermore, according to Lemma 1, we have

G'QG - Q=0. O

www.ietdl.org

9.5 Proof of Lemma 6

D, in (16) or (17) has a recursive form as D, = I:Dé_l ﬁ],

k=2,...,r. So D!QD,—Q, has the form as

T
Dy QD — Q= [Dk_le—lD#k_l ~ Qe z:|y where
Q, = [ Q;—l z], k=2, ...,r. Therefore D,TQ,D, —

Q, < 0 implies that D} Q,D, — Q, < 0. If Q, is singular,
then we can conclude Q, is singular. The remainder of the
proof is to show that O, is singular.

. 11

], then D) Q,D, — Q, <0 can be
represented by

T _ |0 911
DD, =0 = |:911 q11 + 2912 =0 28)

12 922
then g1 = 0 by Lemma 1. This implies that Q, singular.

(i) € D, — [Cf)“) Cf(za J, then

4 d
DzTQzDz_Q2=|:d1T #}50
)

where Q2 = |:g11 912:|, 911> 9125 922 eR.If (28) hOldS,

where Q) = |:E]1T1 T2 :|, q11> 9125 922 € R>*2, dy = Cla)”
912 922

711C(@) — gy and dy = C(@) g1; + C(@) g1, Cle) — gy,
The above inequality implies 4; < 0. Since C(a)C ()7 =
I, and ¢11 > 0, d; = 0 by Lemma 4. Consequently, 4, = 0
by Lemma 1, that is

C(a)an + C(a)TEth(a) —q,=0

Pre-multiplying C(a) on both sides of the above equation
and using Cla)C(a) = I, we have

711 = —¢1,C(a) + C(a)gy,

Then

tr(g11) = —trlg1, C(@)] + tr[C(a)gy,]
= —tr[g;, C(a)] + tr[ g, C()]
=0 29)

Since ¢11 > 0, every diagonal element of ¢q; is larger than or
equal to zero. Consequently, similar to the proof of Lemma
4, we obtain ¢;; =0 by (29), This implies that Q, is
singular. O
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