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Abstract: This study mainly focuses on the stability of a class of linear neutral systems in a critical case, that is, the
spectral radius of the principal neutral term (matrix H ) is equal to 1. It is difficult to determine the stability of
such systems by using existing methods. In this study, a sufficient stability criterion for the critical case is
given in terms of the existence of solutions to a linear matrix inequality (LMI). Moreover, it is also shown that
the proposed stability criterion conforms with a fact that the considered linear neutral systems are unstable
when H has a Jordan block corresponding to the eigenvalue of modulus 1. An illustrative example is
presented to determine the stability of a linear neutral system whose principal neutral term H has multiple
eigenvalues of modulus 1 without Jordan chains. This is difficult in existing studies.
1 Introduction
For clarity, we first introduce a class of linear neutral systems

_x(t)�H _x(t � t) ¼ F (xt) (1)

where t . 0 is a constant delay, F(.) is a linear functional and
xt W x(t þ u), u [ [�t, 0]. Based on spectral radius of matrix
H, the neutral system (1) can be classified into three cases:
r(H ) , 1, r(H ) . 1 and r(H ) ¼ 1. The case r(H ) , 1,
namely matrix H is Schur stable, is a necessary condition
for exponential stability of the linear neutral system (1)
[1, 2]. To the best knowledge of the authors, the case
r(H ) . 1 means that there are characteristic roots of the
linear neutral system (1) with positive real part, so the system
is unstable. The last case r(H ) ¼ 1 is the critical case,
which is concerned in this paper.

Neutral systems in the critical case need to be considered in
practice because they are in fact related to a class of repetitive
control systems [3, 4]. However, it is much more complicated
to determine the stability of such systems because their
0
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characteristic equation may have an infinite sequence of
roots with negative real parts approaching zero. In recent
years, stability problem of neutral systems in the critical
case is investigated by frequency-domain methods [5, 6]
(the interested readers could consult [5] and [6], and
references therein, for the development on such a problem).
As we know, the frequency-domain stability criteria will
become more and more difficult to verify as the dimension
of matrix H increases. Moreover, when H has multiple
eigenvalues of modulus 1 without Jordan chain, the analysis
of non-exponential asymptotic stability is still an ‘open
problem’ [5, pp. 426–427]. The difficulty remains when
time-domain methods are used. In most of existing
literature, the candidate Lyapunov functionals usually
include a non-negative term like kD(xt)k

2, where D(.) is
called D operator [1, pp. 286–287] and is defined as
D(xt) ¼ x(t) 2 Hx(t 2 t) for (1). In the case r(H ) , 1. it
can be proved that the zero solution of D(xt) ¼ 0 is
asymptotically stable when kD(xt)k

2 approaches zero
asymptotically. However, we cannot obtain the property in
the critical case, thus cannot further analyse stability by
investigating the tendency of kD(xt)k. On the other hand,
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the other type of stability criteria usually rely on the condition
r(H ) , 1 to prove the boundedness of k_x(t)k [7, pp. 336–
337; 8, pp. 157–158]. Unfortunately, it is difficult to
obtain the boundedness of k_x(t)k in the critical case as well
(see the beginning of Section 4.1). Therefore the existing
stability criteria cannot cover the critical case easily. In fact,
most of existing stability criteria have implicitly assumed
r(H ) , 1 [9–12].

In this paper, we mainly investigate the critical case of
a class of linear neutral systems. A sufficient delay-
independent stability criterion for the critical case is given
in terms of the existence of solutions to an LMI. This
makes the proposed criterion quite feasible with the aid of
a computer. Then, by the proposed criterion, an existing
criterion is extended to determine the stability of a scalar
linear neutral system in the critical case. Finally, it is shown
that the proposed criterion conforms with a fact that the
considered linear neutral system is unstable when H has a
Jordan block corresponding to the eigenvalue of modulus 1
[5, pp. 394, 415]. An illustrative example shows the
effectiveness of the proposed criterion and gives an
alternative to handle the ‘open problem’ according to [5,
pp. 426–427].

2 Notation
The notation used in this paper is as follows. Rn is Euclidean
space of dimension n. k.k denotes the Euclidean norm
or a matrix norm induced by the Euclidean norm.
C([�t, 0]; Rn) denotes the space of continuous n-
dimensional vector functions on [2t, 0]. The symbol k�kw

stands for the norm defined by kxtkW W ½kxtð0Þk
2
þÐ 0

�t
k_xtðuÞk

2du�2, where xt [ Cð½�t; 0�; Rn
Þ. r(X ) and

lmin(X ) denote the spectral radius and the minimum
eigenvalue of matrix X, respectively. X T and X� are used
for the transpose and conjugate transpose of matrix X.
tr(X ) denotes the trace of matrix X. X . 0 (X � 0, X , 0,
X � 0) denotes that matrix X is a positive definite (positive
semidefinite, negative definite, negative semidefinite)
matrix. In is the identity matrix with dimension n. ‘0’
denotes a scalar or a zero matrix (vector) of appropriate
dimension. ‘#’ in matrices denotes the term which is not
used in the development. Sometimes, the dimension of a
matrix will not be mentioned when no confusion arises.

3 Problem formulation and
preliminary results
For simplicity, we consider a special case of (1) as follows

_x(t)�H _x(t � t) ¼ A0x(t)þ A1x(t � t) (2)

with the initial condition

x(t) ¼ f(t), 8t [ [�t, 0]

where x(t) [ Rn, t . 0 is a constant delay and H, A0,
A1 [ Rn�n are constant system matrices. f(t) is a
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continuously differentiable smooth vector valued function
representing the initial condition function for the interval
of [2t, 0]. The purpose of this paper is to derive a stability
criterion in terms of LMIs for the linear neutral system (2)
with r(H ) � 1, especially for the critical case. In this paper,
we do not consider the case of mixed retarded-neutral type
systems, that is, when H = 0, det(H ) ¼ 0; and limit
ourselves lo one principal neutral term as in [5].

Before proceeding further, we have the following
preliminary results (the proofs are all shown in the Appendix):

Lemma 1: For any negative semidefinite matrix
F ¼ FT [ Rn�n, if wkk ¼ 0, then wkj ¼ 0 and wjk ¼ 0,
j ¼ 1, . . . , n, where wij corresponds to the element in the
ith row and jth column of F.

Lemma 2: For any T, H [ Rn�n, if H is non-singular and
there exist matrices 0 , P ¼ PT [ Rn�n, 0 , Q ¼ QT [
Rn�n such that

E ¼
# (P þ TQ)H
# H T QH � Q

� �
� 0 (3)

then Q . 0, that is lmin(Q) . 0, where E ¼ ET.

Lemma 3: For any given 0 , Q ¼ QT [ Rn�n, if there exists
a matrix H [ Rn�n such that H TQH 2 Q , 0(� 0), then
r(H ) , 1(� 1).

Lemma 4: If there exist matrices 0 � Q ¼ QT [ Rn�n and
G [ Rn�n such that GTQG 2 Q � 0 where GGT ¼ In, then
GTQG 2 Q ¼ 0.

Remark 1: Lemma 3 indicates that for any given Q . 0,
if r(H ) ¼ 1 and the inequality H TQH 2 Q � 0 holds,
then lmax(H

TQH 2 Q) ¼ 0. Lemma 3 also implies that if
r(H ) . l, then H TQH 2 Q � 0 does not hold for all Q . 0.

4 Main results
In this section, a delay-independent stability criterion
(Theorem 1) in terms of an LMI is proposed for the linear
neutral system (2) with r(H ) � 1. Then, an existing
criterion is extended to determine the stability of a scalar
linear neutral system in the critical case (Theorem 2).
Finally, we prove that the proposed delay-independent
stability criterion does not hold when matrix H has a
Jordan block corresponding to the eigenvalue of modulus 1
(Theorem 3).

4.1 Stability criterion

The condition r(H ) , 1 usually plays a role to show k_x(t)k
being bounded. This is a very important step to show
asymptotical stability of neutral type systems [1, pp. 296–
297; 7, pp. 330–331, 336–337; 8, pp. 157–158]. If we
1291
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have obtained that kx(t)k is bounded, then

k_x(t)�H _x(t � t)k � (kA0k þ kA1k) sup
t[[0,1)

kx(t)k

by (2). Consequently, k_x(t)k is bounded by applying
r(H ) , 1. This is not true in the critical case. Taking this
into account, we need to seek another condition to replace
the boundedness of k_x(t)k. To begin with, we need

Definition 1 ([13, p. 123]): Suppose g(t) : [0, 1)! R.
We say that g(t) is uniformly continuous on [0, 1) if for any
1 . 0 there exists d ¼ d(1) . 0 such that jg (tþ h) 2

g(t)j , 1 for all t on [0, 1) with jhj , d.

Barbalat’s Lemma ([13, p, 123]): If the differentiate
function f (t) has a finite limit as t! 1, and if ḟ is
uniformly continuous, then ḟ(t)! 0 as t! 1.

Uniform continuity is often awkward to assert from
the definition. A very simple sufficient condition for a
differentiable function to be uniformly continuous is that
its derivative is bounded. By this condition, many
proofs are to show the boundedness of the derivative rather
than its uniform continuity, although the latter in fact
may play the same role as the former. In the following
proof, we will need to show the uniform continuity from
the definition.

Before introducing the following Theorem 1, a stability
definition is given. It should be noticed that the
following definition is slightly different from that proposed
in [1]. In [1], the initial condition is restricted by
supu[[�t,0] kf(u)k , d rather than kfkW , d. The later
depends on the derivative of the initial condition.

Definition 2 ([8, pp. 128, 157]): The trivial solution of
the system (2) is said to be stable if for any 1 . 0, there is
a d ¼ d(1) . 0 such that kfkW , d implies kx(t, f)k ,

1, t � 0. The trivial solution is said to be globally
asymptotically stable if it is stable and limt!1 kx(t, f)k ¼
0 for any initial condition kfkW , 1.

Theorem 1: The solution x(t, f) of (2) is globally
asymptotically stable, if H is non-singular and there exist
matrices 0 , W ¼ WT [ Rn�n, 0 , P ¼ PT [ Rn�n,
0 , Q ¼ QT [ Rn�n such that

Vþ LWLT
� 0 (4)

where

V ¼
AT

0 P þ PA0 þ ST
1 QS1 (P þ ST

1 Q)H

H T (P þ QS1) H T QH � Q

" #
,

L ¼ In 0
� �T

[ R2n�n, S1 ¼ A0 þH�1A1

Proof: The proof is composed of four propositions:
92
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Proposition 1 is to show x(t, f) [ L1[0, 1); Proposition
2 is to show x(t, f) [ L2[0, 1); Proposition 3 is to show
that kx(t, f)k2 is uniformly continuous; Proposition 4 is to
show the solution x(t, f) is stable. If the four propositions
are satisfied, then the solution x(t, f) of (2) is globally
asymptotically stable. The outline of the proof is as
follows. Let f (t) ¼

Ð t

0 kx(s, f)k2 ds, then ḟ (t) ¼ kx(t, f)k2.
Since kx(t, f)k2 is continuous by Proposition 3, f (t) is
a differentiate function. Moreover, f (t) has a finite
limit as t ! 0 by Proposition 2 and ḟ (t) is uniformly
continuous by Proposition 3. It follows that
limt!1x(t, f) ¼ 0 by Barbaiat’s Lemma. Moreover,
the solution x (t, f) is stable by Proposition 4, therefore
the solution x(t, f) of (2) is asymptotically stable by
Definition 2. Next, the four propositions above are proven
one by one in detail.

Proposition 1: x(t, f) [ L1[0, 1).

If H is non-singular, then the neutral system (2) can be
rewritten as

_x(t)þH�1A1x(t) ¼ H [_x(t � t)þH�1A1x(t � t)]

þ (A0 þH�1A1)x(t)

Define z(t) W _x(t)� S0x(t), then the equation above
becomes

z(t) ¼ Hz(t � t)þ S1x(t) (5)

where S0 ¼ �H�1A1 and S1 ¼ A0 þH�1A1. Choose a
candidate Lyapunov-Krasovskill functional to be

V (t) ¼ x(t)T Px(t)þ

ðt

t�t

z(s)T Qz(s) ds (6)

where 0 , P ¼ PT [ Rn�n and 0 � Q ¼ QT [ Rn�n. Note
that _x(t) can be represented as _x(t) ¼ S0x(t)þ z(t), then the
lime derivative of V (t) is calculated as follows

_V (t) ¼ x(t)T (ST
0 P þ PS0)x(t)þ 2x(t)T Pz(t)

þ z(t)T Qz(t)� z(t � t)T Qz(t � t)

Substituting (5) into the above equation yields

_V (t) ¼ Y (t)T
VY (t) (7)

where Y (t) ¼ x(t)T z(t � t)T
� �T

. Since V � �LWLT by
(4), (7) becomes

_V (t) � �Y (t)T LWLT Y (t)

¼ �x(t)T Wx(t) (8)

Since W . 0, _V (t) � 0. It gives V (t) � V (0). From (6), x(t)
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is bounded as

sup
t[[0,1)

kx(t)k � b1 (9)

where b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V (0)=lmin(P)

p
. Therefore x(t, f) [ L1[0, 1).

Proposition 2: x(t, f) [ L2[0, 1).

Integrating both sides of (8) from 0 to t, we obtain

V (t) � V (0)� lmin(W )

ðt

0

kx(s)k2 ds

Since V (t) � 0 and lmin(W ) . 0,
Ð t

0 kx(s)k2 ds � V (0)=
lmin(W ). Consequently,

lim
t!1

ðt

0

kx(s)k2 ds � V (0)=lmin(W ) (10)

Therefore
Ð t

0 kx(s)k2 ds has a limit as t ! 1 by (10), that is
x(t) [ L2[0, 1)

Proposition 3: kx(t, f)k2 is uniformly continuous.

Since f(t) is continuously differentiable, the solution x(t,
f) is continuously differentiable except maybe at the points
t0 þ kt, k ¼ 0, 1, 2 . . . [1, p. 25, Theorem 7.1]. Then, by
Newton–Leibniz Formula, we have

x(t þ h)� x(t) ¼

ðtþh

t

_x(s) ds

where h . 0 without loss of generality. Utilising (9) and
_x(t) ¼ S0x(t)þ z(t), we have

jkx(t þ h)k2
� kx(t)k2

j � 2b1kx(t þ h)� x(t)k

� 2b1

ðtþh

t

k_x(s)k ds

¼ 2b1

ðtþh

t

kS0x(s)þ z(s)k ds

� 2b1 b1kS0khþ

ðtþh

t

kz(s)k ds

� �

(11)

Using the Cauchy–Schwarz inequality ka, bl � ka, al1=2

kb, bl1=2 we obtain

ðtþh

t

kz(s)k ds �

ðtþh

t

12 ds

� �1=2 ðtþh

t

kz(s)k2 ds

� �1=2

(12)

Since Vþ LWLT
� 0, lmin(Q) . 0 by Lemma 2. Then
T Control Theory Appl., 2010, Vol. 4, Iss. 7, pp. 1290–1297
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noticing (6), we obtain

sup
t[[0,1)

ðt

t�t

kz(s)k2 ds � b2

where b2 ¼ V (0)=lmin(Q). Thus (12) becomes

ðtþh

t

kz(s)k ds � N
ffiffiffiffiffi
b2

p ffiffiffi
h
p

where N ¼ bh=tc þ 1, bh=tc represents the nearest integer of
h/t. Therefore inequality (11) becomes

jkx(t þ h)k2
� kx(t)k2j � 2b1(b1kS0khþ N

ffiffiffiffiffi
b2

p ffiffiffi
h
p

)

This implies that jx(t, f)j2 is uniformly continuous. A

Proposition 4: x(t, f) is stable.

Since f(t) is continuously differentiable, the solution
x(t, f) is continuously differentiable except maybe at the
points kt, k ¼ 0, 1, 2, . . . [1, p. 25, Theorem 7.1]. Then,
by Newton-Leibniz Formula, it follows that

x(s) ¼ x(t)�

ðt

s

_x(z)dz

for s [ [t � t, t]. Based on the equation above, we have

ðt

t�t

kx(s)k2ds ¼

ðt

t�t

x(t)�

ðt

s

_x(z)dz

				
				

2

ds

� 2tkx(t)k2 þ 2

ðt

t�t

ðt

s

_x(z)dz

				
				

2

ds

� 2tkx(t)k2 þ 2

ðt

t�t

ðt

s

k_x(z)dz

� �2

ds

Using the Cauchy–Schwarz inequality ka, bl2
� ka, alkb, bl,

we obtain

ðt

s

k_x(z)dz

� �2

� (t � s)

ðt

s

k_x(z)k2dz � t

ðt

t�t

k_x(z)k2dz

Consequently, we have

ðt

t�t

kx(s)k2ds � 2tkx(t)k2
þ 2t2

ðt

t�t

k_x(s)k2ds:

By using the inequality above, V(t) is bounded as

V (t) ¼ lmax(P)kx(t)k2 þ lmax(Q)

ðt

t�t

k_x(s)� S0x(s)k2ds

� lmax(P)kx(t)k2
þ 2lmax(Q)

ðt

t�t

k_x(s)k2ds

þ 2lmax(Q)kS0k
2

ðt

t�t

kx(s)k2ds
1293
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Substituting the result
Ð t

t�t kx(s)k2ds � 2tkx(t)k2
þ

2t2
Ð t

t�t k_x(s)k2ds into the inequality above results in

V (t) � r1kx(t)k2
þ r2

ðt

t�t

k_x(s)k2ds

� max (r1, r2)kxtk
2
W

where r1 ¼ lmax(P)þ 4tlmax(Q)kS0k
2 and r2 ¼ 2lmax(Q)þ

4t2lmax(Q)kS0k
2. Therefore, V (0) � max (r1, r2)kfk2

W . For

any 1 . 0, there exists a d(1)¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmin(P)=max(r1, r2)

p
. 0

such that kfkW , d(1) implies that the inequality (9)
becomes

sup
t[[0,1]

kx(t)k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V (0)=lmin(P)

p

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max(r1, r2)kfk2W =lmin(P)

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max(r1, r2)d(1)2=lmin(P)

q
¼ 1

Therefore, the solution x(t, f) is stable by Definition 2.

Remark 2: If Vþ LWLT , 0, then V , 0. As a result, we
obtain H TQH 2 Q , 0. This implies r(H ) , 1 by Lemma
3. Therefore if r(H ) ¼ 1, then the matrix inequality (4) must
have the form Vþ LWLT

� 0 rather than Vþ LWLT , 0.
When the conditions of Theorem 1 are satisfied, the solution
x(t, f) of (2) is exponentially stable in the case with
r(H ) , 1 [2], whereas the solution x(t, f), non-
exponentially stable in the critical case [5, p. 413].

Remark 3: In Theorem 1, the condition Q � 0 can be
changed to Q . 0 by Lemma 2.

Remark 4: If r(H ) . 1, then Theorem 1 does not hold by
Lemma 3 (or refer to Remark 1).

4.2 Scalar case

Now, let us consider a scalar linear neutral system

_x(t)� h_x(t � t) ¼ a0x(t)þ a1x(t � t) (13)

where h, a0, a1 [ R.

Verriest and Niculescu gave the following result:

Lemma 5 ([14]): The scalar neutral system (13) is delay-
independent asymptotically stable if (i) a0 , 0, (ii) jhj ,1,
(iii) ja1j , ja0j.

By Theorem 1 the extension of Lemma 5 for the critical
case is given as follows

Theorem 2: The scalar neutral system (13) is delay-
independent asymptotically stable if (i) a0 , 0, (ii) jhj � 1,
(iii) ja1j , ja0j
94
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Proof: When jhj ¼ 1, (4) can be written as

2a0pþ (a0 þ h�1a1)2q þ w [pþ (a0 þ h�1a1)q]h

[pþ (a0 þ h�1a1)q]h 0

" #
� 0

(14)

where p, q, w [ R all positive numbers. Thus, if the
following condition

2a0pþ (a0 þ h�1a1)2q , 0

pþ (a0 þ h�1a1)q ¼ 0

(
(15)

holds, then (14) holds with a sufficiently small positive
number w. This implies that the scalar linear neutral
system (13) is asymptotically stable with h2 ¼ 1 Solving
(15) yields a0 , 0 and ja1j , ja0j.

Combining the above results and Lemma 5, we can
conclude this proof. A

Remark 5: When jhj ¼ 1, the characteristic equation of
system (13) has an infinite sequence of roots with negative
real parts approaching zero. As a result, it is difficult to
determine the stability of system (13) with jhj ¼ 1 by using
frequency-domain methods.

4.3 Special case

For simplicity, let s1 ¼ {ljjlj ¼ 1, l [ l(H )}. The linear
neutral system (2) is unstable when H has a Jordan block
corresponding to l [ s1[5, pp. 394, 415]. In this section,
we will show that Theorem 1 does not hold in the case.

The Jordan blocks corresponding to l [ s1 have two
forms as follows [15, pp. 82–83]

Dr ¼

1 1 0

1 . .
.

. .
.

1
0 1

2
66664

3
77775 [ Rr�r (16)

or

Dr ¼

C(a) I2 0

C(a) . .
.

. .
.

I2

0 C(a)

2
666664

3
777775 [ R2r�2r ,

C(a) W
cos(a) �sin(a)

sin(a) cos(a)

� �
(17)

Lemma 6: If DT
r QrDr � Qr � 0 and 0 � Qr ¼ QT

r , then
Qr is singular.

Proof: See in Appendix.
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Theorem 3: If matrix H has a Jordan block corresponding to
l [ s1, then Theorem 1 does not hold.

Proof: The key point of this proof is to show that Theorem 1
holds with Q � 0 rather than Q . 0 when matrix H has a
Jordan block corresponding to l [ s1. But this is a
contradiction by Lemma 2.

Suppose, to the contrary, that Theorem 1 holds when
matrix H has a Jordan block corresponding to l [ s1.
Then H T QH � Q � 0 is satisfied. If matrix H has a
Jordan block corresponding to l [ s1, then H can be
transformed into the real Jordan canonical form [15, p. 83]

S�1
J HSJ ¼ HJ (18)

where HJ ¼
Jo 0
0 Dr

� �
and Dr has the form as in (16) or (17).

Pre-multiplying and post-multiplying H T QH � Q � 0 by
ST

J and SJ respectively, we obtain

H T
J QJ HJ � QJ

¼
J T

o QJ ,11 Jo � QJ ,11 J T
o QJ ,12Dr � QJ ,12

DT
r QT

J ,12 Jo � QT
J ,12 DT

r QJ ,22Dr � QJ ,22

" #
� 0 (19)

where QJ ¼ ST
J QSJ and QJ ¼

QJ ,11 QJ ,12

QT
J ,12 QJ ,22

" #
. Since

DT
r QJ ,22Dr � QJ ,22 � 0 by (19), QJ ,22 is singular by

Lemma 5, consequently, QJ is singular. This implies that Q
is singular, that is, Theorem 1 holds with Q � 0 rather than
Q . 0. A

Remark 6: By Theorem 3, Theorem 1 conforms with the
fact that the system (2) is unstable when H has a Jordan
block corresponding to l [ s1 [5, pp. 394, 415].

5 Illustrative example
Consider the linear neutral system (2) in the critical case with

H ¼
1 0

0 1

� �
, A0

�2 1

0 �1

� �
, A1 ¼

0:4 0:1

0:4 0:1

� �

In this example, all eigenvalues of H are 1. By the stability
criterion (4), we obtain the following solution

P ¼
3:5025 �2:1255

�2:1255 5:9123

� �
, Q ¼

2:3021 0:4519

0:4519 7:1216

� �
,

W ¼ 0:1I2

The eigenvalues ofVþ LWLT are (212.0220, 23.7504, 0, 0).
Therefore the system considered in this example is
asymptotically stable independent of delay.
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Remark 7: H in the system considered in the example has
multiple eigenvalues of modulus 1 without Jordan chains.
The stability analysis of such a system is still an ‘open
problem’ according to [5, pp. 426–427]. However, the
stability of the system can be determined by the stability
criterion (4).

6 Conclusions
Asymptotic stability of neutral type systems, especially in the
critical case, is studied and a stability criterion in terms of
LMIs is proposed. It is also shown that the proposed
stability criterion conforms with the fact that the
considered linear neutral system is unstable when H has a
Jordan block corresponding to the eigenvalue of modulus
1. Furthermore, the proposed criterion can help to
determine the stability of the case where H has multiple
eigenvalues of modulus 1 without Jordan chains. This gives
an alternative to handle the ‘open problem’ according to [5,
pp. 426–427].
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9 Appendix
9.1 Proof of Lemma 1

Without loss of generality, take

F ¼

F11 F12 F13

F
T
12 wkk F23

FT
13 FT

23 F33

2
64

3
75, wkk ¼ 0,

F12 ¼ w1k � � � w(k�1)k

� �T
,

F23 ¼ wk(kþ1) � � � wkn

� �

for example, where F11, F13, F33 are matrices with
appropriate dimensions. Assume F12 = 0 to the contrary
that there exists a unitary matrix U with an appropriate
dimension such that

U TF12F
T
12U ¼ L (20)

where L � 0 and L = 0. So we can choose j = 0 to satisfy
jTLj . 0.
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The Institution of Engineering and Technology 2010

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded 
Choosing v ¼ (Uj)T
mFT

12Uj 0
� �T

, we have

vT
Fv ¼ jT U T

F11Ujþ 2mjT U T
F12F

T
12Uj (21)

where m is a scalar and v = 0. By using (20), the equation
above becomes

vTFv ¼ jT U TF11Ujþ 2mjTLj

Since jT
Lj . 0, we can choose m . jT U T

F11Uj=
�2jTLj to make vTFv . 0. This contradicts with the
fact F � 0. Therefore F12 ¼ 0. Using the similar method,
we can also prove F23 ¼ 0. A

9.2 Proof of Lemma 2

Suppose, to the contrary, that lmin(Q) ¼ 0. Then there exist
two cases: Q ¼ 0 and Q = 0. If Q ¼ 0, then (3) becomes

E ¼
# PH
# 0

� �
� 0:

Consequently, PH ¼ 0 by Lemma 1. Since 0 , P ¼ PT, we
obtain H ¼ 0. This contradicts with nonsingularity of H.
Therefore the remainder of proof only needs to consider
Q = 0. For Q = 0, there exists a unitary matrix U [ Rn�n

such that

UQU T
¼ L (22)

where L ¼
L1 0
0 0

� �
with L1 . 0. Pre-multiplying and

post-multiplying (3) by J and J
T

respectively yields

JEJ
T
¼

# U (P þ TQ)HU T

# UH T QHU T
� UQU T

� �
� 0

where J ¼
U 0
0 U

� �
. Furthermore, in light of (22) and

the fact U TU ¼ In, we have

JEJ
T
¼

# U (P þ TU T UQ)U T UHU T

# UH T U T UQU T UHU T
� UQU T

" #

¼
# ( ~P þ ~TL) ~H

# ~H
T
L ~H � L

" #
� 0 (23)

where ~H ¼ UHU T , ~P ¼ UPU T and ~T ¼ UTU T .

By rewriting ~H as ~H ¼
~H 11

~H 12
~H 21

~H 22

� �
, the term ~H

T
L ~H�

L becomes

~H
T
L ~H � L ¼

# #

# ~H
T

12L1
~H 12

� �
(24)

Since ~H
T
L ~H � L � 0 by (23), ~H

T

12L1
~H 12 � 0. On the

other hand, hence ~H
T

12L1
~H 12 � 0 by L1 . 0, hence
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~H 12 ¼ 0. In this case, ( ~P þ ~TL) ~H can be written as

( ~P þ ~TL) ~H ¼
# #
# ~P22

~H 22

� �
(25)

where ~P ¼
~P11

~P12

~P
T

12
~P22

" #
. Substituting (24) and (25) into

(23) yields

JEJ
T
¼

# # # #
# # # ~P22

~H 22

# # # #
# # # 0

2
664

3
775 � 0

This inequality implies ~P22
~H 22 ¼ 0 by Lemma 1. If ~P22

is non-singular, then ~H 22 ¼ 0, which implies ~H ¼
~H 11 0
~H 21 0

� �
. This contradicts with the nonsingularity of H.

If ~P22 is singular, then it contradicts with P . 0. Therefore
Q . 0. A

9.3 Proof of Lemma 3

Suppose, to the contrary, that for any given Q . 0 there
exists a matrix H such that r(H ) � 1 and
H TQH 2 Q , 0. Use lH to denote an eigenvalue of H
where jlHj ¼ r(H ), then there exists an eigenvector
vH = 0 such that HvH ¼ lHvH. Since H TQH 2 Q , 0,
we have v�H (H T QH � Q)vH , 0. Consequently

[r(H )2
� 1]v�H QvH , 0 (26)

If r(H ) ¼ 1, then the inequality (26) becomes 0 , 0 which is
a contradiction; On the other hand, if r(H ) . 1, then (26)
becomes v�H QvH , 0 which contradicts with Q . 0.
Therefore, if there exists a matrix H such that
H TQH 2 Q , 0, then r(H ) , 1. Similarly, we can also
prove that for any given Q . 0. If there exists a matrix H
such that H T QH � Q � 0, then r(H ) � 1. A

9.4 Proof of Lemma 4

Since

tr(GT QG � Q) ¼ tr(GT QG)� tr(Q)

¼ tr(QGGT )� tr(Q)

¼ tr(QGGT
� Q)

and GGT ¼ In, we obtain that

tr(GT QG � Q) ¼ 0 (27)

The equation (27) implies that the sum of the elements on
the main diagonal of GTQG 2 Q is zero. Moreover, since
GTQG 2 Q � 0, every main diagonal element of
GTQG 2 Q is smaller than or equal to zero. Therefore we
can conclude that every diagonal clement of GTQG 2 Q
is zero. Furthermore, according to Lemma 1, we have
GTQG 2 Q ¼ 0. A
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9.5 Proof of Lemma 6

Dr in (16) or (17) has a recursive form as Dk ¼
Dk�1 #

0 #

� �
,

k ¼ 2, . . . , r. So DT
k QkDk � Qk has the form as

DT
k QkDk � Qk ¼

DT
k�1Qk�1Dk�1 � Qk�1 #

# #

� �
, where

Qk ¼
Qk�1 #

# #

� �
, k ¼ 2, . . . , r. Therefore DT

r QrDr �

Qr � 0 implies that DT
2 Q2D2 � Q2 � 0. If Q2 is singular,

then we can conclude Qr is singular. The remainder of the
proof is to show that Q2 is singular.

(i) If D2 ¼
1 1
0 1

� �
, then DT

2 Q2D2 � Q2 � 0 can be

represented by

DT
2 Q2D2 � Q2 ¼

0 q11

q11 q11 þ 2q12

� �
� 0 (28)

where Q2 ¼
q11 q12

q12 q22

� �
, q11, q12, q22 [ R. If (28) holds,

then q11 ¼ 0 by Lemma 1. This implies that Q2 singular.

(ii) If D2 ¼
C(a) I2

0 C(a)

� �
, then

DT
2 Q2D2 � Q2 ¼

d1 d2

d T
2 #

� �
� 0

where Q2 ¼
q11 q12

qT
12 q22

� �
, q11, q12, q22 [ R2�2, d1 ¼ C(a)T

q11C(a)� q11 and d2 ¼ C(a)T q11 þ C(a)T q12 C(a)� q12.

The above inequality implies d1 � 0. Since C(a)C (a)T
¼

I2 and q11 � 0, d1 ¼ 0 by Lemma 4. Consequently, d2 ¼ 0
by Lemma 1, that is

C(a)T q11 þ C(a)T q12C(a)� q12 ¼ 0

Pre-multiplying C(a) on both sides of the above equation
and using C(a)C(a)T

¼ I2, we have

q11 ¼ �q12C(a)þ C(a)q12

Then

tr(q11) ¼ �tr[q12C(a)]þ tr[C(a)q12]

¼ �tr[q12C(a)]þ tr[q12C(a)]

¼ 0 (29)

Since q11 � 0, every diagonal element of q11 is larger than or
equal to zero. Consequently, similar to the proof of Lemma
4, we obtain q11 ¼ 0 by (29), This implies that Q2 is
singular. A
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