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Abstract 

This paper investigates the boost phase’s longitudinal autopilot of a ballistic missile equipped with thrust vector control. The 
existing longitudinal autopilot employs time-invariant passive resistor-inductor-capacitor (RLC) network compensator as a con-
trol strategy, which does not take into account the time-varying missile dynamics. This may cause the closed-loop system insta-
bility in the presence of large disturbance and dynamics uncertainty. Therefore, the existing controller should be redesigned to 
achieve more stable vehicle response. In this paper, based on gain-scheduling adaptive control strategy, two different types of 
optimal controllers are proposed. The first controller is gain-scheduled optimal tuning-proportional-integral-derivative (PID) 
with actuator constraints, which supplies better response but requires a priori knowledge of the system dynamics. Moreover, the 
controller has oscillatory response in the presence of dynamic uncertainty. Taking this into account, gain-scheduled optimal lin-
ear quadratic (LQ) in conjunction with optimal tuning-compensator offers the greatest scope for controller improvement in the 
presence of dynamic uncertainty and large disturbance. The latter controller is tested through various scenarios for the validated 
nonlinear dynamic flight model of the real ballistic missile system with autopilot exposed to external disturbances. 

Keywords: ballistic missiles; attitude control; gain-scheduling; optimal tuning-control; LQ optimal regulators 

1. Introduction1 

This paper investigates the boost phase’s longitudi-
nal autopilot of a ballistic missile equipped with thrust 
vector control. The performance quality of the ballistic 
missile in the powered flight (boost phase) is generally 
studied in two distinct, but related phases: 

(1) Dynamics of motion around center of gravity 
(short period dynamics/angular motion control). 

(2) The center of gravity dynamics (long period dy-
namics/flight path control). 
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Generally, the fundamental aim of the autopilot is to 
achieve adequate stability and reasonable, rapid and 
well-damped response to input control demand, with 
moderate insensitivity to external disturbances. More-
over, there are two basic requirements that must be 
satisfied by the steering control system of a ballistic 
missile [1]:  

(1) Control the missile satisfactorily during the 
highly critical period of high aerodynamic pressure 
that occurs as the missile climbs out of the atmosphere 
at high velocity.  

(2) Steer the missile to the proper cutoff condition.  
The automatic flight control system of ballistic mis-

siles generally encounters the following constraints: 
(1) Influence of missile elasticity.  
(2) Dynamic properties of actuators and instrumen-

tation.  
(3) The aerodynamic instability of the airframe.  
(4) Sloshing of liquid propellants for missiles with Open access under CC BY-NC-ND license.
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liquid engine.  
(5) Interaction with guidance.  
The problems in missile attitude control design arise 

because the missile is aerodynamically unstable. 
Moreover, the inertia effects of instrumentation and 
actuator introduce further complications. The existing 
longitudinal autopilot employs time-invariant passive  
resistor-inductor-capacitor (RLC) network compensa-
tor as a control strategy, which does not take into ac-
count the time-varying missile dynamics. Therefore, 
the current controller should be redesigned to achieve 
more stable vehicle response over a larger disturbance 
and dynamics uncertainty. A controller that improves 
damping ratio for large pitch demands in the presence 
of dynamics uncertainty and large disturbance is de-
sirable. 

The basic ideas of research and development of im-
proved longitudinal attitude controller is that, for a 
non-perturbed ascent trajectory of ballistic missile 
(“boost trajectory”), there is a trajectory that results 
from standard predicted values of missile thrust, 
weight, lift, drag, and that experiences no wind veloc-
ity. Consequently, the standard pitch program produces 
standard time histories of missile position, angle of 
attack, and velocity, which lead to standard time histo-
ries of missile longitudinal dynamics. 

For time-varying and/or nonlinear systems, one of 
the most popular methods is gain-scheduling [2-3]. The 
strategy includes obtaining linearized dynamic models 
for the plant at usually finitely operating points, de-
signing a linear time-invariant (LTI) control law 
(“point design”) to satisfy local performance objec-
tives for each point, and then adjusting (“scheduling”) 
the controller gains real time as the operating condi-
tions vary. This approach has been applied success-
fully [4-8], especially for aircraft and process control 
problems in many years.  

In this paper, two different types of optimal control-
lers are proposed based on gain-scheduling adaptive 
control strategy: 

(1) Gain-scheduled optimal tuning-proportional-in- 
tegral-derivative (PID) with actuator constraints. 

(2) Gain-scheduled optimal linear quadratic (LQ) in 
conjunction with optimal tuning-compensator. 

By simulations, gain-scheduled optimal tuning-PID 
with actuator constraints has better response but re-
quires a priori knowledge of the system dynamics. 
However, the controller has oscillatory response in the 
presence of dynamic uncertainty.  

Moreover, it is found that gain-scheduled reduced 
order linear-quadratic-Gaussian (LQG) is more diver-
gently unstable than the existing controller. The LQG 
problem combines the linear quadratic regulator 
(LQR) with an estimation filter. However, the LQG 
controller often has lower stability margins, lower gain 
crossover frequency, and slower response when com-
pared to LQR. The main problem of the LQG solution 
is its lack of robustness which has resulted in a failure 
in real experiments [9]. As more realism is added to the 

plant of the system, the LQG becomes unstable in the 
presence of model uncertainties.  

The robust hybrid control is obtained by designing 
reduced order LQR in conjunction with optimal tuning- 
compensator. The reduced order LQR problem is 
solved without taking into account the actuator dy-
namics. Moreover, the gain-schedule is considered for 
two-state feedback by ignoring angle of attack state 
feedback which has less dynamic effect. The proposed 
longitudinal controller offers the greatest scope for 
controller improvement, and guarantees damping ratio 
ζ > 0.7 with overshoot <10% in the presence of dy-
namic uncertainty and large disturbance. This ap-
proach is tested through various scenarios for the vali-
dated nonlinear dynamic flight model of the real bal-
listic missile system with autopilot exposed to external 
disturbances.  

2. Longitudinal Dynamics of Boost Trajectory  

2.1. Longitudinal dynamics 

This section demonstrates the longitudinal dynamics 
of the existing ballistic missile system during the boost 
trajectory. Fig. 1 shows the missile pitch plane dynam-
ics. Where α is the angle of attack, (°); m the total mis-
sile mass, kg; VM the missile total velocity, m/s; θ and 
ϑ are the flight path angle and missile pitch angle 
respectively, (°). For the system under investigation, 
the missile has four air rudders arranged, as shown in 
Fig. 2, where δi (i=1,2,3,4) is rudder deflection angle. 

 
Note: subscript “e”denotes Earth axis, “b” missile body axis, “v” velocity 

axis. 

Fig. 1  Missile pitch plane dynamics. 

 
Fig. 2  Air rudder. 

For a non-perturbed ascent trajectory (“boost tra-
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jectory”), there is a trajectory that results from stan-
dard predicted values of missile thrust, weight, lift, 
drag, and that experiences no wind velocity. Conse-
quently, the standard pitch program produces standard 
time histories of missile position, angle of attack, and 
velocity, which lead to standard time histories of mis-
sile longitudinal dynamics. 

Now we define the control distribution, in which 
there is air rudder with four control organs as shown in 
Fig. 2. The control organs 2, 4 are used for pitch con-
trol when deflected in identical direction and for roll 
control when deflected in opposite direction; control 
organs 1, 3 are used for yaw control when deflected in 
identical direction and for roll control when deflected 
in opposite direction. This is the case for maneuverable 
ballistic missile. Then the control distributions on roll, 
yaw, and pitch can be presented as follows: 

r 3 1 4 2

y 1 3

p 2 4

[( ) ( )] / 4
( ) / 2

( ) / 2

δ δ δ δ δ
δ δ δ

δ δ δ

⎧ = − + −
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       (1) 

with the following additional restriction: 

3 1 4 2δ δ δ δ− = −              (2) 

By ignoring the higher order terms, the three differ-
ential equations which describe the missile pitch plane 
dynamics (longitudinal perturbations) can be obtained 
as follows [10-11]: 
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where “Δ” describe the perturbations in the dynamics 
equations. 

Replace Δθ and θΔ &  in Eq. (3) using following rela-
tions: 

θ ϑ α

θ ϑ α
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⎨
Δ = Δ − Δ⎪⎩ & & &

 

Then taking Laplace transform for the yielded equa-
tion, we get 
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The solution of this matrix equation is given by 
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where Λ is matrix determinant, and 
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where qru is the rudder dynamic pressure, N/m2; DM 
the missile diameter, m; IZ the pitch moment of inertia, 
kg·m2; ρ the air density, kg/m3; ryuxc  the rudder drag 

coefficient in χe axis. ycα  the induced lift force coeffi-

cient due to angle of attack; 
ruycδ  the lift- drag ratio 

coefficient and 
ru ru

/ 0y yc cδ δ= ∂ ∂ >  for one rud-

der; 
thryP  the thrust force in ye axis; ,wz

ZA  ,wz
ZB  

and wz
ZC  are coefficients of missile angular velocity ω 

around ze axis as a function in xcg; SM and Sru the mis-
sile and rudder cross sectional area, m2; the lengths xcg, 
xcp, and xrud can be defined as shown in Fig. 2.  

Then, the transfer function of the missile dynamics 
in pitch plane is obtained: 
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The standard missile flight conditions for dynamic 
analysis are shown in Table 1. The missile pitch plane 
dynamic parameters at selected flight time instants are 
shown in Table 2. Fig. 3 demonstrates the frequency  
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response of the missile pitch plane dynamic at different 
flight time instants. It can be seen that the missile is 
aerodynamically unstable. 

Table 1  Flight conditions for dynamic analysis at se-
lected flight time instants 

Flight time 
instant/s 

Mach 
number Ma 

Veloc-
ity/(m·s−1) 

Altitude/ 
km 

Angle of 
attack/(°) 

 1 0.013    4.560 0.001 0 0 

10 0.350  118.488 0.536 5 −5.100 

20 0.830  273.400 2.336 0 −0.045 

30 1.400  444.150 5.425 0  0.355 

40 2.200  654.790 9.795 0 −0.284 

50 3.180  945.350 15.647 0 −0.136 

60 4.530 1 345.700 10.749 0  1.770 

Table 2  Missile pith dynamic parameters 

Flight time 
instant/s kϑδ  T0 T2 τ ξ 

 1   64.711 1.884 0 2.520   −7.745 0.873

10    3.730 6.386 0 0.812  −14.423 0.163

30    2.960 4.819 0 0.321  −58.570 0.092

50 1 203.770 8.143 5 3.886 −200.607 0.499

60   77.507 15.892 1.181 −237.852 0.069

 

 
Fig. 3 Frequency response of missile pitch dynamic at 

different flight time instants. 

2.2. Actuation system dynamics 

The type of actuation system in this model is elec-
tric-hydraulic actuator which is represented by four 
rudders including DC-motor, amplifier, piston and 
feedback based on the system requirements which are 
chosen as maximum deflection angle 5°, maximum 
hinge moment 40 kg·m, and the band-width 20 Hz [1,11-13]. 
The transfer function of actuation system design can 
be written as 

di c g
Ac

c d di c g
( )

( 1)( 1)
K K K

w s
s T s T s K K K

=
+ + +

     (9) 

where Kdi is the angle to current ratio, mA/(°); Kc the 
gain of amplifier unit; Kg the power gain of servo 
mechanism, kg/mA; Tc the time constant of amplifier 

unit, s; Td the delay time of servo mechanism, s. 
Table 3 shows the main characteristics of the actua-

tion system. Fig. 4 shows closed-loop step response 
and maximum hinge moment of the actuation system. 

Table 3  Actuator characteristics 

Parameter Value 

Natural frequency/(rad·s−1) 29.580 

Overshoot/% 0.706 

Settling time/s 0.160 

Time constant/s 0.058 

Damping ratio 0.844 

Damping frequency/(rad·s−1) 15.860 

Delay time/s 0.020 

 

 

Fig. 4 Actuator step response and maximum hinge 
moment. 

2.3. Modeling of current longitudinal autopilot 

Longitudinal autopilot (“pitch channel”) of the bal-
listic missile can be examined separately from the 
other channels of yaw and roll because the deflection 
of the practical angle coordinates ϑ, ψ and ϕ is so 
small that interference between channels is eliminable 
when the autopilot system works correctly. 

Pitch channel autopilot consists of a pitch compen-
sator, an east gyro which can measure pitch angle and 
produce program command signals of the pitch angle, 
and a servomechanism system. Fig. 5 shows autopilot 
pitch channel model. The control system is designed to 
perform a specific task such that the performance 
specifications are satisfied. These specifications are 
generally related to accuracy, stability and speed of 
response [14]. The existing longitudinal autopilot em-
ploys time-invariant passive-RLC network compensa-



No.6 WAEL Mohsen Ahmed et al. / Chinese Journal of Aeronautics 24(2011) 777-788 · 781 · 

 

tor as a control strategy, which does not take into ac-
count the time-varying missile dynamics. Fig. 6 shows 
passive-RLC compensator network, where ϑprog is 
programmed pitch angle, δ and δc are actual and com-
manded rudder deflection angles respectively, (°).  

 

Fig. 5  Autopilot pitch channel model. 

 
Fig. 6  Passive-RLC compensator network. 

The compensation network’s Laplace-domain trans-
fer function is given by 

cp
pc 2

1 2

1
( )

1

T s
w s K

a s a s
δ
ϑ

+
=

+ +
        (10) 

where pc a b 1 b a b1/( ), mA/V; /( )K R R a CLR R R= + = + , 
s2; 2 a b a b( ) /( )a L CR R R R= + + , s; and cp bT R C= , s. 

The pitch channel autopilot response in presence of 
different dynamic uncertainty percentages can be 
shown in Fig. 7. The previous analysis of the current 
longitudinal autopilot demonstrates that, there is scope 
for improvement of the current attitude control system. 
The current system suffers from long settling time, 
high overshoot, and oscillatory response in presence of 
dynamic uncertainty. 

 
Fig. 7  Pitch autopilot response in presence of dynamic 

uncertainty with flight conditions: flight time in-
stant=5 s, α=2.000°, and Ma=0.15. 

Stability of linear longitudinal autopilot is analyzed 
by logarithmic frequency characteristic of the open- 
loop system and step time response of closed-loop 
system. Table 4 shows the pitch channel characteristics 
of the current autopilot at different flight time instants. 

Table 4  Pitch channel characteristics 

Flight time 
instant/s 

Gain  
margin/dB 

Phase  
margin/(°) 

Corner frequency/
(rad·s−1) 

 1 12.70 25.1 5.22 
10 12.70 27.2 5.43 
30 12.10 29.9 6.55 
60  9.75 25.4 6.37 

Flight time 
instant/s 

Settling  
time/s 

Over  
shoot/% Rise time/s 

1  2.69 60.7 0.161 
10 12.60 43.8 0.171 
30 27.80 12.9 0.310 
60  3.00 60.8 0.119 

3. Research and Development of Improved Atti-
tude Controller 

Gain-scheduling is one of the most popular methods 
for applying LTI control law to time-varying and/or 
nonlinear systems. In this section two kinds of gain- 
scheduling controllers are designed for the longitudi-
nal autopilot: 

(1) Gain-scheduled optimal tuning-PID with actua-
tor constraints. 

(2) Gain-scheduled optimal LQ in conjunction with 
optimal tuning-compensator. 

The proposed controller design methods are pointed 
out, through their comparison to the current controller 
of the existence system, which are provided in the 
MATLAB demo for the autopilot exposed to external 
disturbances and dynamic uncertainty. 

3.1. Design of optimal tuning-PID controller with 
actuator constraints 

The optimal tuning-PID controller with actuator 
constrains is designed in MATLAB environment using 
Simulink response optimization software which is 
called the nonlinear control design (NCD) blockset. 
This software has features include the ability to opti-
mize design criteria in any Simulink model by tuning 
selected model parameters that include physical actua-
tion limits. Using Simulink response optimization, one 
can easily factor in design requirements expressed in 
terms of rise time, settling time, overshoot, and satura-
tion limits. The steepest descent optimization method 
is chosen to find the optimal tuning-PID gains. The 
method of the steepest descent, also known as the gra-
dient descent, is the simplest one of the gradient 
methods [15]. 

A PID regulator is designed with actuator con-
straints so that deflection response of actuator and 
closed-loop system can meet the following constraints 
for tracking:  

(1) Rudder maximum deflection angle: ±5°.  
(2) Maximum oscillation: 20%.  
(3) Maximum rise-time: 0.5 s.  
(4) Maximum overshoot: 10%.  
(5) Maximum time-response: 1 s. 
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The designed Simulink model containing optimal 
tuning application and control structure is shown in 
Fig. 8. An input step drives the system. NCD blocks 
are attached to blocks of actuator and missile dynamics 
in order to connect the signals, which will be re-
stricted. Tunable and uncertain variables are initial-

ized. The uncertain variables of missile dynamics are 
initialized at nominal values. Tunable parameters Kp 
(proportional gain), Ki (integral gain) and Kd (deriva-
tive gain) are initialized at 0.632 3, 0.049 3, and 
2.027 2 respectively. These values result from the use 
of Ziegler-Nichols method for PID regulators [16]. 

 
Fig. 8  Pitch channel with optimal tuning-PID controller design structure. 

The Ziegler-Nichols tuning method is a heuristic 
method of tuning a PID controller. It is performed by 
setting the Ki and Kd to zero. Kp is then increased (from 
zero) until it reaches the ultimate gain Ku, at which the 
output of the control loop oscillates with a constant 
amplitude. Ku and the oscillation period Tu are used to 
set the PID controller gains depending on the type of 
controller used. Table 5 demonstrates Ziegler-Nichols 
method. 

Table 5  Ziegler-Nichols method 

Control type Kp Ki Kd 

P Ku/2 — — 

PI Ku/2.2 1.2Kp/Tu — 

Classic PID 0.6Ku 2Kp/Tu KpTu/8 

Pessen integral 
rule 0.7Ku 2.5Kp/Tu 0.15KpTu 

 
Then, the limitations of time are defined. Upper and 

lower restriction limits define oscillation, rise time, 
response time, and actuator constraints. After running 
optimization, the time, the cost function evolution and 
the final values for tunable parameters vary depending 
on computer’s performance [17-18]. Fig. 9 shows the 
iterative steps of the optimization process for actuator 
response and closed-loop system. In Fig. 9, it can be 
seen there are two background colors, where the white 
color indicate the selected design constraints. More-
over, the black line is used to plot the optimized re-
sponse of the final iterative step. 

The entire design optimization process is repeated 
for other flight conditions of boost phase flight in-
stants. The set of control gains is then formed into the 
data set for the gain schedule. 

In Ref. [1], a second order polynomial function was 

fit to the data points for each state every step in real- 
time flight. Fig. 10 shows the scheduled gains of the 
optimal tuning-PID controller. 

 
Fig. 9 Iterative steps of optimization process for actuator 

response and closed-loop system with flight condi-
tions: flight time instant is 5 s, and Ma=0.15. 

 
Fig. 10  Scheduled PID gains Kp, Ki, and Kd. 
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3.2. Design of optimal LQ controller with optimum 
tuning-compensator 

The LQR requires full state feedback, including 
body pitch angle rate and angle of attack, which are 
currently not transduced. There are known perform-
ance and robustness advantages in using full state 
feedback, however estimation of system states is nec-
essary in this case. The introduction of a three-axis 
body rate sensor solves the body rate estimation prob-
lem discussed later. The advantages of full state feed-
back include two aspects: 

(1) Weighted quadratic cost function can be mini-
mized.  

(2) It could be gain-scheduled. 
The pure optimal control method LQR/LQG with 

full state feedback including actuator dynamics fails to 
improve the attitude stability. The LQG regulator with 
full state feedback is modified without taking into ac-
count the actuator dynamics. The linear quadratic op-
timal control techniques are considered including LQR 
optimal regulator and reduced order state estimator in 
conjunction with optimal tuning-compensator. The 
designed controller structure is shown in Fig. 11,  
where KLQR is the optimal LQR gain matrix, δdmd ac-
tuator command input, Lr Kalman gain, x̂  estimated 
states matrix, ϑFB ouput feedback. 

 
Fig. 11  Designed structure of reduced order LQG in con-

junction with optimal tuning-compensator. 

A given missile pitch dynamics system is repre-
sented as follows: 
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Then determine the optimal feedback gains matrix K 
of the LQR such that u(t)=−Kx(t) to minimize the fol-
lowing performance index: 
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2

t
J t t t t t= +∫u x Qx u Ru   (12) 

where Q and R are the positive-definite Hermitian or 
real symmetric matrix. A reasonable simple choice for 
matrices Q and R is given by Bryson’s rule by select-
ing Q and R to be diagonal with Qii= 2

,max1/ ,ix  

Rjj= 2
,max1/ ,ju  where 2

,maxix  is the maximum acceptable 

value of 2
ix  and 2

,maxiu  the maximum acceptable value 

of 2
iu . The LQR weightings are chosen in an attempt 

to recover properties of the existing system, while 
maintaining stability over an increased angular range. 
By selecting a high state weighting Q, the system is 
forced to minimize tracking error, which is desirable. 
The body rates being driven to zero should not be 
penalized, because that slows the vehicle response. 
The control weightings are minimized to improve ve-
hicle response, while avoiding actuator saturation. The 
state weighting on pitch error is higher than that in 
other states. It is desirable to keep the pointing loop 
tightly controlled. Matrices Q and R are chosen as fol-
lows: 
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The state feedback gain K is also found by mini-
mizing the linear quadratic cost function, by solving 
the continuous algebraic Ricatti equation. It can be 
derived from P by the following equation:  

1 T−=K R B P               (14) 

where P ≥ 0 is the maximal stabilizing solution to the 
following continuous algebraic Ricatti equation: 

T 1 T−+ + − = 0A P PA Q PBR B P       (15) 

The Ricatti equation is solved by using MATLAB 
lqr(A, B, C, D) for each flight conditions of boost 
phase flight instants in order to form the gain-schedu- 
ling of optimal state feedback gains, as in Fig. 12, 
where Kx1, Kx2, and Kx3 are scheduled LQR gains. 

 
Fig. 12  Scheduled LQR gains Kx1, Kx2, and Kx3. 
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The dynamics of optimal LQ regulator with state es-
timator is given: 

r r rˆ ˆ[ ( ) ]
ˆ

x A L C B L D K x L y
u Kx

⎧ = − − − +⎪
⎨

= −⎪⎩

&
    (16) 

The state estimator is designed using MATLAB fa-
cility with state noise weight QN=1 and control noise 
weight RN=1. The control input part of the filter gain is 
neglected as the estimator is implemented in reduced 
order. Fig. 13 shows the design of the reduced order 
estimators with Kalman gain Lr. 

 
Fig. 13  Reduced order estimators with Kalman gain Lr. 

Although the noise weights have a physical signifi-
cance, they are used to tune the controller response. 
High weights are placed on the state and control error, 
to simulate high plant uncertainty. The Kalman gain 
found above is implemented in a reduced order esti-
mator, to obtain more accurate feedback measure-
ments. The system is partitioned between measured 
and estimated states. The optimal reduced order esti-
mator gain Lr is selected from the Kalman gain. Low 
gains are desirable due to gyroscope sensor error, 
which will lead to poor estimates if the plant output is 
amplified. The lower limit on the gains as the noise 

weights are increased is unity I. 
The controller is constructed in Simulink, and mod-

eled with the linearized vehicle, actuator and gyro-
scope sensor. It is found that the response is inade-
quate, and compensators are required for neglected 
actuator dynamics. The existing compensators are in-
troduced after retuning by gradient descent optimiza-
tion method applying Simulink response optimization 
software NCD, which is introduced before. After tun-
ing of the compensator, the vehicle response is deemed 
acceptable. The response is presented and compared 
with the existing control system. Small but insignifi-
cant improvements to the attitude envelope are 
achieved with the optimal LQ gain and reduced order 
estimator. The reduced order LQG is more divergently 
unstable than the existing controller, when dynamic 
uncertainty is induced.  

Finally the design is modified to achieve the LQR 
robustness. The robust hybrid control is obtained by 
designing reduced order LQR in conjunction with op-
timal tuning-compensator. The reduced order LQR 
problem is solved without taking into account the ac-
tuator dynamics. Moreover, the gain-scheduled is con-
sidered for two-state feedback by ignoring angle of 
attack state feedback which has less dynamic effect. 
The proposed longitudinal controller offers the greatest 
scope for controller improvement, and guarantees ζ > 
0.7 with overshoot <10% in the presence of dynamic 
uncertainty and large disturbance. This approach is 
tested through various scenarios for the validated 
nonlinear dynamic flight model of the real ballistic 
missile system with autopilot exposed to external dis-
turbances. The modified control design of reduced 
order LQR in conjunction with optimal tun-
ing-compensator is shown in Fig. 14. 

Fig. 14  Modified designed structure of reduced order LQR in conjunction with optimal tuning-compensator. 

4. Simulation and Comparisons 

4.1. Longitudinal autopilot closed-loop characteris-
tics in nominal case 

Figs. 15-17 demonstrate that the gain-scheduled op-
timal LQR with tuning-compensator has the optimum 

performance: fast response, the smallest overshoot and 
the shortest settling time. 

4.2. Longitudinal autopilot closed-loop characteris-
tics in presence of dynamic uncertainty 

The proposed gain-scheduled controllers are tested  
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Fig. 15 Response of designed controllers with flight condi-

tions: flight time instant is 5 s, α=2.000°, and 
Ma=0.15. 

 
Fig. 16  Response of designed controllers with flight condi-

tions: flight time instant is 30 s, α=0.355°, and 
Ma=1.4. 

 
Fig. 17  Response of designed controllers with flight condi-

tions: flight time instant is 60 s, α=−0.200°, and 
Ma=2.2. 

under severe dynamic uncertainty. The parametric un-
certainties are changed due to a change in aerodynamic 
coefficients given as follows: 

21 21

22 22

23 23

31 31

34 34

( , ) 1.2 ( , )
( , ) 1.5 ( , )
( , ) 1.7 ( , )
( , ) 0.7 ( , )
( , ) 0.8 ( , )

a Ma a Ma
a Ma a Ma
a Ma a Ma
a Ma a Ma
a Ma a Ma

α α
α α
α α
α α
α α

′ =⎧
⎪ ′ =⎪⎪ ′ =⎨
⎪ ′ =⎪
′⎪ =⎩

 

The system output is shown in Figs. 18-20 with dif-
ferent flight conditions. We can see that, the gain- 
scheduled LQR with tuning-compensator still has uni-

form performance and is more robust than gain-sched-
uled optimal tuning-PID controller. On the other hand 
the reduced order LQG and current controllers fail to 
make the system stable in the presence of system uncer- 
tainties and external disturbances. Finally, through the 
analytical results of previously proposed controllers, the 
gain-scheduled LQR in conjunction with optimal 
tuning-compensator is proposed to achieve the fully 
boost phase flight control for the ballistic missile. 

 
Fig. 18 Response of gain-scheduled controllers in the pres-

ence of dynamic uncertainty with flight conditions: 
flight time instant is 5 s, α=2.000°, and Ma=0.15. 

 
Fig. 19 Response of gain-scheduled controllers in the pres-

ence of dynamic uncertainty with flight conditions: 
flight time instant is 10 s, α=−5.000°, and Ma=0.35. 

 
Fig. 20 Response of gain-scheduled controllers in the pres-

ence of dynamic uncertainty with flight conditions: 
flight time instant is 30 s, α=0.355°, and Ma=1.4. 
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4.3. Longitudinal autopilot performance with dynamic 
flight simulation  

For investigating the performance of the developed 
longitudinal autopilot with the proposed controller and 
keeping with the requirements for a continued devel-
opment, the full dynamic simulation is established for 
ballistic missile equipped by thrust vector control sys-
tem. The mathematical model is structured as a series 
of modules. These modules can be individually devel-
oped, for instance, airframe structure module, range 
control module, pitch program module, thrust variation 
module, weight data module, variation of missile mass 
center module, variation of mass center of oxidizer and 
fuel tanks for liquid rocket motor, gravity module, 
earth module, variation of inertial moment module, 
and atmospheric data module [11,20-23]. The simulation 
of the underlying system is carried out on MATLAB 
environment using the numerical integration method 
“Runge-Kutta”. Sampling time of the trajectory is cho-
sen as 0.01 s. The results are validated against real data 
and thus can be used for subsequent analysis. The 
flight scenarios are done for limited range 250 km due 
to the limitation of the available dynamic data. The 
simulation studies are performed to validate the de-
signed gain-scheduled LQR in conjunction with tun-
ing-compensator controller using a priori known im-
plicit guidance scheme for typical ballistic missile tra-
jectory. The plant model used in the simulations in-
cludes the actuator dynamics. The output rudder de-
flection is limited, but this limit has never been ap-
proached during simulation. The parametric variations 
of the system’s transfer function are caused by changes 
in aerodynamic coefficients. 

Different flight simulation scenarios are run to in-
vestigate the developed longitudinal autopilot. 

Scenario 1: Nominal trajectory condition without 
dynamic uncertainty. Figs. 21-23 demonstrate trajec-
tory, total velocity, angle of attack α, missile pitch re-
sponse ϑ, and rudder deflection in pitch plane δp. The 
results demonstrate the succession of both the current 

 

 
Fig. 21  Nominal trajectory and missile velocity with the 

developed autopilot (Scenario 1). 

 
Fig. 22  Angle of attack of nominal trajectory (Scenario 1). 

 

Fig. 23 Missile pitch angle ϑ response and rudder deflec-
tion δp for nominal flight conditions (Scenario 1). 

and developed autopilots to steer the missile to a shut-
off point at the same flight time instance and hit the 
target with the same trajectories. It can be seen from 
Fig. 23 that the developed autopilot has much better 
rudder angle time response (lower overshoot with no 
backward peak) compared with the current autopilot. 

Scenario 2: Launch with initial pitch angle error as 
1° without adding dynamic uncertainty. Fig. 24 dem-
onstrates the missile behavior and rudder deflection 
response against the initial pitch angle error. 

Scenario 3: Induced wind disturbances in pitch 
plane during flight period time [10, 15] s with wind 
speed 10 m/s without adding dynamic uncertainty. 
Fig. 25 shows the robustness of the developed autopi-
lot compared with the current autopilot in the presence 
of wind disturbance. 
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Scenario 4: Induced wind disturbances in pitch plane 
during period time [15, 18] s with wind speed 20 m/s in 
the presence of 30% dynamic uncertainty. Fig. 26 dem-
onstrates the results. It can be seen that the missile 
equipped by the developed longitudinal autopilot damps 
the wind disturbance and reruns to the reference pitch 
profile. On the other hand, the missile equipped with 
current autopilot gets a large flight path deviation, af-
fected by dynamic uncertainty and wind disturbance. 

 
Fig. 24 Missile behavior and rudder deflection response 

against intial pitch error (Scenario 2). 

 
Fig. 25 Induced wind disturbances in pitch plane during 

period time [10, 15] s with wind speed 10 m/s 
without dynamic uncertainty (Scenario 3). 

 
Fig. 26  Missile response against induced wind disturbances 

in pitch plane during period time [15, 18] s with 
wind speed 20 m/s including 30% dynamic uncer-
tainty (Scenario 4). 

It can therefore be concluded that developed gain- 
scheduled LQR in conjunction with tuning-compen- 
sator exhibits excellent robustness characteristics to 
modeling uncertainty and presence of wind distur-
bances. 

5. Conclusions 

(1) The employing of time-invariant passive-RLC 
network compensator as a control strategy may cause 
the closed-loop system instability in the presence of 
large disturbance and dynamics uncertainty.  

(2) Gain-scheduled optimal tuning-PID with actua-
tor constraints, supplies better response but requires a 
priori knowledge of the system dynamics. Moreover, 
the controller has oscillatory response in the presence 
of dynamic uncertainty.  

(3) From the point of view of reliable flight control 
systems design, the purely optimal control design 
methodologies based on the LQR has good stability 
properties, but may be sensitive to off-nominal condi-
tions. Moreover, the implementation requires all state 
variables as feedback, some of which however cannot 
be easily measured. If an observer is used to recon-
struct the state vector from available measurements, 
then the optimal control system often has much less 
satisfactory stability property, and the system per-
formance is very much affected by parameter varia-
tions as will as satisfactory disturbances. 

(4) The robust hybrid control is obtained by design-
ing reduced order LQR in conjunction with optimal 
tuning-compensator.  

(5) The use of rate gyro is recommended to solve 
the optimal LQR regulator requirements. 

(6) The proposed longitudinal controller is tested 
through various scenarios for the validated nonlinear 
dynamic flight model of the real ballistic missile sys-
tem with autopilot exposed to external disturbances. 
The controller is currently under review.  
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