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Abstract: Here, the attitude control of a quadrotor aircraft subject to a class of disturbances is studied. Unlike disturbances
mentioned in most of the existing literature, the disturbance considered here is time varying and non-vanished. An extended
observer is designed to estimate the disturbance by treating it as a new unknown state. Based on the estimation, a feedback
controller with a sliding mode term is designed to stabilise the attitude of the quadrotor. Furthermore, to avoid the
discontinuity of the control law caused by the sliding mode term, a modified sliding mode term is designed. The resulting
continuous feedback controller makes the attitude error uniformly ultimate bounded. Theoretical results are confirmed by
numerical simulations.
Nomenclature

(q0 q) q0 [ R, q [ R3 are the scalar part and vector part
of the unit quaternion, respectively

w angular velocity of the airframe in the body fixed
frame

J inertial matrix of a quadrotor aircraft

t control torque

CT lift coefficient of a rotor

CM moment coefficient of a rotor

T thrust force of a rotor

r air density

r rotor radius

A rotor-disc area

l distance from the epicentre of a quadrotor to the
rotor axes

Fi ith rotor thrust

F total rotor thrust

d sliding mode surface

1 Introduction

A quadrotor aircraft can take off and land in limited spaces
and hover over a target easily [1]. In comparison with
traditional helicopters, the mechanical construction is
simpler, and it is notably more manoeuverable because of
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the torque provided by asymmetric lifts. Also, it is easier to
manufacture because of the brief rotor system. For these
reasons, the quadrotor aircraft and its control scheme have
received extensive attention in recent years.

1.1 Motivation

Usually there exist various uncertainties in quadrotor aircraft
control, such as inaccurate measurements, ground effects and
the bias between the geometric centre and its centre of gravity
etc. These factors will cause disturbance torques that may
further lead to a remarkable undesired movement of the
aircraft. For this reason, more attention should be paid to
the attitude control of a quadrotor aircraft in order to
achieve desirable position control in the presence of
disturbance torques. Generally, these disturbance torques
consist of constant components and vanishing components
[2–6]. To attenuate this kind of disturbance torques,
various control laws with integrators are employed. In fact,
disturbances generated by gust, ground effect and alteration
of the engine torques depend on the state of quadrotor
aircraft and time. These time-varying disturbances should
be considered in order to achieve better performance in
position control, such as deck landing and missions in a
hostile environment. In [7], an approach was proposed to
handle a time-varying disturbance torque which is a
combination of constant and sinusoidal functions. Unlike
disturbance torques mentioned in [2–7], the disturbance
torque considered here is time varying with bounded
amplitude and bounded derivative, and can take
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disturbances mentioned in [2–7] as a special case. This is the
first motivation of the study. In [8], a control law including a
proportional derivative (PD) term and a sliding mode term
was proposed to stabilise the attitude in quadrotor hovering
experiments. In these experiments, the time-varying
disturbance was not considered directly. This leads to
undesired movements. Although the undesired movements
caused by the time-varying disturbance were reduced by the
position feedback, the effect of this kind would be
amplified in outdoor experiments because the position and
velocity cannot be measured accurately and rapidly. As a
result, new controllers are needed to improve attitude
control of the quadrotor and in turn, improve the position
control as well. This is the second motivation.

1.2 Methodology

In this paper, two attitude controllers are developed for a
quadrotor aircraft subject to a class of time-varying
disturbances. An extended observer is designed to estimate
the disturbance which is taken as a new unknown state in
the observer. Based on the observer, a feedback controller
with a sliding mode term (the first controller) is designed to
stabilise the attitude of the quadrotor. Furthermore, to avoid
discontinuous control caused by the sliding mode term, a
modified sliding mode term is designed. The resulting
continuous feedback controller (the second controller) can
make the attitude error uniformly ultimate bounded. These
results are confirmed by numerical simulations.

1.3 Organisation

The remainder of this paper is organised as follows. In
Section 2, the attitude mathematical model of a quadrotor
aircraft is introduced, and the model of the disturbance is
formulated. In Section 3, an extended observer is designed
to estimate the disturbance. Two feedback controllers based
on the extended observer are designed in Section 4. In
Section 5, numerical simulations are presented.

We use the following notation. Rn is Euclidean space of
dimension n. ‖.‖ denotes the Euclidean vector norm or
induced matrix norm.

2 Problem statement

The quadrotor aircraft, shown in Fig. 1, has four rotors to
generate the propeller forces Fi, i ¼ 1, . . . , 4. The up (down)
motion is achieved by increasing (decreasing) the rotor
speeds altogether with the same quantity. The two pairs of
rotors (front, end) and (left, right) turn in opposite directions
in order to balance the moments and produce yaw motion as
needed. On the other hand, forward (backward) motion is
achieved by pitching in the desired direction by increasing
the end (front) rotor thrust and decreasing the front (end)
rotor thrust to maintain the total thrust. Finally, a sideways

Fig. 1 Sketch map of quadrotor aircraft
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motion is achieved by rolling in the desired direction by
increasing the left (right) rotor thrust and decreasing the right
(left) rotor thrust to maintain the total thrust.

The unit quaternion is a vector denoted by (q0 q), where
q0

2 + ‖q‖2 ¼ 1. In this paper, the unit quaternion, which is
free of singularity, is used to represent the attitude
kinematics of a quadrotor aircraft as follows [9]

q̇ = 1

2
(q × w + q0w) (1)

q̇0 = − 1

2
wTq (2)

where w [ R3. The dynamic equation of attitude motion is

ẇ = −J−1w × Jw + J−1t+ d (3)

where J [ R3×3 is known, t [ R3 and d [ R3 is the
unknown disturbance vector.

Our major goal is to design t to make q uniformly ultimate
bounded with an ultimate bound bq . 0.

We impose the following assumptions on the systems
(1)–(3).

Assumption 1: The disturbance d satisfies

ḋ = s(t) (4)

where d(0) ¼ d0 is unknown, s(t) is an unknown function
vector which satisfies supt[[0,1] ‖s(t)‖ ; ≤ bs, and bs is a
positive constant.

Assumption 2: q and w are available from measurements.

Remark 1: Thrust force T of a rotor, the resultant of the vertical
forces acting on all the blade elements, can be written as

T = CTrA(wr)2

Rolling moment M of a rotor, the integration over the entire
rotor of the lift of each section acting at a given radius, can
be written as

M = CMrA(wr)2r

Therefore, rolling moment M can be written as

M = cT

where c ¼ CMr/CT. The force F and torque t produced by
the propeller system of a quadrotor aircraft (four rotors) are
[10, 11]

F =

0
0∑4

i=1
Fi

⎡
⎢⎢⎣

⎤
⎥⎥⎦, t =

l(F2 − F4)
l(F3 − F1)

c
∑4

i=1
( − 1)i+1Fi

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (5)

Readers can refer to [12] for the actuator dynamics. Given F
and t, the rotor thrusts Fi, i ¼ 1, . . . , 4 can be obtained by
solving (5). Since F is determined by the attitude and the
gravity of the quadrotor aircraft, and the attitude dynamics is
faster than the position dynamics, we focus on designing t
here for simplicity.
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Remark 2: The disturbance d can describe uncertainties such
as inaccurate torques and lifts of the rotors, the ground effects
and the bias between the geometric centre and its centre of
gravity etc.

3 Design of extended observer

To deal with time-varying disturbances, the usual method is
to employ a high-gain feedback controller to attenuate the
disturbance. It is well known that the drawbacks of the
high-gain feedback solutions are related to the fact that they
may saturate the joint actuators, excite high-frequency
modes etc. To avoid these drawbacks, a natural way is to
design an observer to estimate the disturbance, then use the
estimate to compensate for the disturbance.

Define

w̃ = ŵ − w

d̃ = d̂ − d

where ŵ is the estimate of the angular velocity w and d̂ is the
estimate of the disturbance d. Although the angular velocity w
is known from Assumption 2, the reason for introducing ŵ is
to construct an extended observer to obtain d̂. Before
introducing the proposed observer, we need

Lemma 1 [13, p. 475]: If A11 and A22 are square matrices,
then

det
A11 A12

A21 A22

( )
= det (A11) det (A22 − A21A−1

11 A12)

when A−1
11 exists, and

det
A11 A12

A21 A22

( )
= det (A22) det (A11 − A12A−1

22 A21)

when A−1
22 exists.

Theorem 1: Under Assumptions 1–2, for system (3), if the
designed extended observer is

˙̂w = −J−1w × Jw + J−1t+ d̂ − k1

1
w̃ (6)

˙̂d = − k2

12
w̃, ŵ(0) = 0, d̂(0) = 0 (7)

where k1, k2 and 1 are all positive constants. Then we obtain

lim
1�0

lim
t�1

||w̃(t)|| = 0

lim
1�0

lim
t�1

||d̃(t)|| = 0
(8)

Proof: Considering the difference between (6) and (3) and the
difference between (7) and (4), we obtain

ż = A1z+ Ls (9)
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where

z = w̃
d̃

[ ]
, A1 =

− k1

1
I3 I3

− k2

12
I3 03×3

⎡
⎢⎣

⎤
⎥⎦, L = 0

−I3

[ ]

In the presence of s, the transfer function from s to z is

G1(s) = (sI6 − A1)−1L

= 1(s1I6 − 1A1)−1L

= 1
adj(s1I6 − 1A1)L

det (s1I6 − 1A1)

Since

det(s1I6−1A1)=det
s1I3+k1I3 −1I3

k2

1
I3 s1I3

⎡
⎣

⎤
⎦

⎛
⎝

⎞
⎠

=det(s1I3+k1I3)det[s1I3+k2(s1I3+k1I3)−1]

by Lemma 1 and

adj(s1I6 − 1A1)L =
∗ 1I3

∗ (s1I3 + k1I3)−1

[ ]
L

=
1I3

(s1I3 + k1I3)−1

[ ]

where I3 is the identity matrix of dimension 3.
We have

lim
1�0

det (s1I6 − 1A1) = k3
2

lim
1�0

[adj(s1I6 − 1A1)L] = 03

k−1
1 I3

[ ]

Therefore lim
1�0

G1(s) = 0. Note that as s is an unknown and

bounded function vector, we have

lim
1�0

lim
t�1

z(t) = 0

That is to say, when 1 is sufficiently small, the observer error
will also be sufficiently small. This completes the proof. A

Remark 3: The external disturbance is applied to the system
after a kind of proportional integral (PI) action in (6), that
is, ˙̂w = −J−1w × Jw + J−1t− (k2/1

2)
�t

0
w̃(s)d̂s − (k1/1)w̃.

By applying the high gain k2/1
2, the observer can estimate

the disturbance quickly.

Remark 4: The mathematical proof shows that observer error
d̃ vanishes as 1 � 0 and t � 1, but measurement noise and
unmodelled high-frequency sensor dynamics will put a
practical limit on how small 1 could be. This implies that
observer error d̃ can only be uniformly ultimate bounded in
practice. According to (8), for a given disturbance d, there
exists a time t1 such that supt≥t1

||d̃|| ≤ bd̃(t1, 1).

Remark 5: The observer is designed based on Assumption 1,
where the derivative of disturbance is bounded. Another type
IET Control Theory Appl., 2011, Vol. 5, Iss. 9, pp. 1140–1146
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of disturbance model may upset the observer, that is when the
second-order derivative of disturbance is bounded. Similar to
the design idea, we can also design another observer
applicable to the disturbance whose second-order derivative
is bounded.

4 Controller design

Based on systems (1)–(3), two attitude controllers by using
the extended observer mentioned in Section 3 are developed
to stabilise the attitude for the quadrotor aircraft. First, a
feedback controller with a sliding mode term (the first
controller) is designed to stabilise the attitude of the
quadrotor. Furthermore, to avoid the discontinuous control
law caused by the sliding mode term, a modified sliding
mode term is further designed. The resulting continuous
feedback controller (the second controller) can make the
attitude error uniformly ultimate bounded.

Let d ¼ mq + w and m . 0, and select a Lyapunov
function as Vd ¼ dTd. The reason for choosing d ¼ mq + w
is to make d ; 0 (in the proof of Theorem 2) or d
sufficiently small (in the proof of Theorem 3). Then by
w ¼ 2mq + d, system (1)–(2) therefore becomes a stable
autonomous system (in the proof of Theorem 2) or a stable
autonomous system with a sufficiently small external signal
(in the proof of Theorem 3).

Taking the derivative of Vd, we have

V̇ d = 2dTḋ

= 2dT(mq̇ + ẇ)

= 2dT 1

2
m(q × w + q0w) − J−1w × Jw + J−1t+ d

[ ]

Design t to be

t = Jv − J d̂ + w × Jw − 1

2
mJ (q × w + q0w) (10)

then

V̇ d = 2dT(v − d̃) (11)

The remaining work is to design v. First, we design a
feedback controller with v in the form of a sliding mode
term and give the following theorem.

Theorem 2: Under Assumptions 1–2, design the controller as
(10), where d̂ is estimated by the extended observer (6)–(7)
and

v = −h
d

||d|| ||d|| = 0

0 ||d|| = 0

⎧⎨
⎩ (12)

where h . 2bd̃(t1, 1) and bd̃(t1, 1) is defined in Remark
4. Then limt�1q(t) ¼ 0.

Proof: If v is designed as (12), then (11) becomes

V̇ d = 2dT −h
d

||d|| − d̃

( )

where ||d|| = 0. Otherwise, V̇ d = 0 and then d ; 0. From
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Remark 4, we have

V̇ d ≤ 2[−h+ bd̃(t1, 1)]||d||

when t ≥ t1. Since h . 2bd̃(t1, 1), we obtain

V̇ d ≤ −h||d|| (13)

when t ≥ t1.
Based on the result above, we have d ¼ 0 within a finite

time tf [14, p. 553]. Then if t ≥ t1+ tf, we have d(t) ; 0.
Therefore the attitude kinematics (1) and (2) will become

q̇ = − 1

2
mq0q (14)

q̇0 = 1

2
mqTq (15)

when t ≥ t1+ tf. Select a Lyapunov function as

V = qTq + (1 − q0)2

then we have

V̇ = 2qTq̇ − 2(1 − q0)q̇0

= −mq0qTq − m(1 − q0)qTq

= −mqTq

Similar to [15, p. 77], we have limt�1q(t) ¼ 0. A

From Theorem 2, for any given bq . 0, the controller t
makes q uniformly ultimate bounded with the ultimate
bound bq. The control law given by (10) with v designed
in (12) is a discontinuous function. Practically, the
implementation of such a discontinuous controller is
characterised by the phenomenon of chattering. This will not
only result in low control accuracy, high heat losses in
electrical power circuits [16, 17], but also excite high-
frequency modes which may lead systems to instability in
practice [14, p. 555]. Moreover, we should consider the
relative degree condition that has to be fulfilled when
designing sliding mode controllers. To avoid these problems,
we design a feedback controller with a modified sliding
mode term and give the following theorem.

Theorem 3: Under Assumptions 1–2, design the controller
as (10), where d̂ is estimated by the extended observer (6),
(7) and

v =
−h

d

||d|| ||d|| ≥ 1

h

−h2 d

1
||d|| ,

1

h

⎧⎪⎪⎨
⎪⎪⎩

(16)

where 1 . 0, h . 2bd̃(t1, 1), mh− 1 − 1 . 0 and bd̃(t1, 1)
is defined in Remark 4. Then q is uniformly ultimate bounded
with an ultimate bound

��
2

√
1/(mh− 1 − 1).

Proof: Note that d ¼ mq + w, then we have

w = −mq + d
1143
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Consequently, systems (1) and (2) become

q̇ = 1

2
[q × (−mq + d) + q0(−mq + d)] (17)

q̇0 = − 1

2
(−mq + d)Tq (18)

respectively. We select a Lyapunov function as

V = qTq + (1 − q0)2

The derivative of V along systems (17) and (18) is

V̇ = 2qTq̇ − 2(1 − q0)q̇0

= qT[q × d+ q0(−mq + d)] + (1−q0)( − mq + d)Tq

= −mqTq + dTq (19)

Noticing (13) in the proof of Theorem 2, we have
V̇ d ≤ −h||d|| when ||d|| ≥ (1/h). Therefore the trajectory d
will arrive B1/h = {||d|| ≤ (1/h)} within a finite time t′f .
Moreover, V̇ d ≤ 0 when ||d|| = (1/h), hence the trajectory
d will stay in B1/h when t . t1 + t′f . This implies that
||d|| ≤ (1/h) when t . t1 + t′f . Consequently, when

t . t1 + t′f V̇ in (19) is bounded as

V̇ ≤ − m− 1

h

( )
||q||2 + 1

h
||q|| (20)

Since

qTq + (1 − q0)2 = 2 − 2q0

≤ 2 − 2q2
0

= 2||q||2

we can obtain

||q||2 ≤ V ≤ 2||q||2

Moreover, from (20), it is easy to verify that if
||q|| ≥ (1/(mh− 1 − 1)), then

V̇ ≤ − 1

h
||q||2

Therefore, from Theorem 4.18 in [14, p. 172], there exists a
T . 0 such that

||q|| ≤
��
2

√
1

mh− 1 − 1
, t ≥ t1 + t′f + T

That is to say q is uniformly ultimate bounded with an
ultimate bound

��
2

√
1/(mh− 1 − 1). A

Remark 6: It should be noted that the resulting control is
continuous when (16) is adopted. For a given bq, if 1 is
chosen to be

1 ≤
(mh− 1)bq��

2
√

+ bq
1144
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then q is uniformly ultimate bounded with an ultimate bound
bq. Since w ¼ 2mq + d and d is bounded, w is bounded. By
noticing (7) and (9), d̂ is bounded and continuous. Then t
is bounded by recalling the form of (10) and (16).
Consequently, w is continuous by (3). Furthermore, the
term v in (16) is continuous. We conclude that the control
law t is continuous when (16) is adopted.

5 Numerical simulations

The simulation parameters are chosen as follows: the inertial
matrix J of a quadrotor aircraft is as in [8] that

J = diag(0.16, 0.16, 0.32) kg m2

The initial condition of (1) – (3) is q0(0) ¼ 0.707, q(0)
= [−0.4 −0.3 0.5 ]T and w(0) = [ 0 0 0 ]T rad/s.
The disturbance d is assumed to be

d =
sin (||q||) + 1 + 0.2 sin t

sin (0.5||q||) + 0.5 + 0.2 cos 2t
0.5

⎡
⎣

⎤
⎦N m

where d depends on both the state of quadrotor aircraft
and time and is non-vanishing.

Case 1: The extended observer is designed as (6), (7) with
k1 ¼ 1, k2 ¼ 1 and 1 ¼ 0.1. The controller is designed as
(10) with v designed in (12), where m ¼ 1 and h ¼ 2.
Fig. 2 shows the estimate of the disturbance d by the
extended observer. As shown in Fig. 2, the extended
observer can estimate the time-varying disturbance d
extremely well within 1 s. From the first second to the 10th
second, the observer error is very small. This is consistent
with Theorem 1. Fig. 3 shows the evolution of the
quaternion in (1) and (2) driven by the controller mentioned
in Case 1, where q0 and q are the scalar part and vector
part of the quaternion, respectively. As shown in Fig. 3, the
vector part of the quaternion q approaches zero. This is
consistent with Theorem 2. Fig. 4 shows the control input
in Case 1, where the phenomenon of chattering occurs in
about 2 s. In order to overcome the phenomenon of
chattering, we design another feedback controller in Case 2.

Case 2: The extended observer is designed as (6), (7) with
k1 ¼ 1, k2 ¼ 1 and 1 ¼ 0.1. The controller is designed as (10)
with v designed in (12), where m ¼ 1 and h ¼ 2, 1 ¼ 0.1.

Fig. 2 Estimate of the disturbance by the extended observer
IET Control Theory Appl., 2011, Vol. 5, Iss. 9, pp. 1140–1146
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Fig. 4 Control input in Case 1

Fig. 3 Quaternion driven by the controller in Case 1

Fig. 5 Vector part of the quaternion and control input in Case 2
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Given bq ¼ 0.2, parameter 1 is chosen to be

1 = 0.1 ≤
(mh− 1)bq��

2
√

+ bq

= 0.12

(see Remark 6). As shown in Fig. 5, the control input is
continuous without the phenomenon of chattering. Vector
part of the quaternion q is ultimately bounded with the
ultimate bound bq ¼ 0.2. This is consistent with Theorem 3.

6 Conclusions

This paper studies attitude control of a quadrotor aircraft in
the presence of a class of time-varying disturbances. An
extended observer is proposed to estimate the disturbance.
Then, a controller with a compensation term and a sliding
mode term is designed to stabilise the attitude of the
quadrotor. In the controller, the compensation term is used
to compensate for the disturbance by using the obtained
estimate. The remaining disturbance is further attenuated by
the sliding mode term. In order to avoid chattering caused
by the sliding mode term, a modified feedback controller
with continuous output is further designed. Numerical
simulations are provided to demonstrate the effectiveness of
the proposed controllers.
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