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1. Introduction

The Savitzky–Golay (SG) filter was first proposed by Savitzky
and Golay [1]. Since then, various modified SG filters have been
proposed to improve smoothing and differentiation performance
or to satisfy different requirements [2–9]. The properties of the
SG smoothing filters have been well reviewed in [10–15]. How-
ever, as pointed out by Luo et al. in [16], the properties of first-
order SG differentiation filters have not been extensively reported.
The same is true of second-order SG differentiation filters. In [17,
18], an alternative way was offered to understand the proper-
ties of SG filters including the smoothing, first- and second-order
differentiation filters. These motivate us to analyze the proper-
ties of SG differentiation filters of order determined by context
(0th-order differentiation = smoothing). The digital differentiation
filters are usually designed in the frequency domain [19–21] to
satisfy various frequency-domain performance specifications. How-
ever, time-domain performance measures, such as the estimation
error bound, are often difficult to obtain. This motivates us to con-
duct a time-domain analysis for SG differentiation filters.

In this paper, the SG differentiation filters are formulated
first. In this formulation, the estimation error is decomposed into
the approximation error and the uncertainty caused by random
noise. Then some preliminary results are introduced. Among them,
Lemma 2 provides conditions under which we can reconstruct the
real signal perfectly from the sampling data by using the best ap-
proximation. With the help of a Taylor expansion and Lemma 2, we
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obtain the approximation error bound in explicit form. Using this
result, we further obtain an estimation error bound as the sum
of the approximation error bound and the bound on uncertainty
caused by random noise. Qualitative properties of the estimation
error bound are analyzed as well. Finally, we analyze statistical
properties of the estimation error caused by random noise. Here,
we do not focus on the significance of SG differentiation filters or
the calculation method of the filter coefficients. Instead, we focus
on the analysis of the SG differentiation filters’ properties, espe-
cially the relationships between the estimation error bound and
various parameters, such as the filter length and the sampling pe-
riod. Several results may be straightforward and already known in
the existing literature. However, certain other results are interest-
ing and believed to be new. More importantly, our approach offers
an alternative way to understand the properties of widely-used
SG differentiation filters in a unified framework. Specifically, the
major contributions are: (i) the estimation performance of the SG
differentiation filters is analyzed; (ii) a time-domain method is de-
veloped to analyze the estimation performance; (iii) a sufficient
condition is proposed for perfect reconstruction from the sampling
data using the best approximation.

Notation used in this paper is as follows. Rn is Euclidean
space of dimension n. IN is the set of nonnegative integers.
Cn

q[a,b] denotes the space of continuous n-dimensional vector

functions on [a,b] which are qth-order differentiable. x(q)(t) �[
dq x1(t)

dtq
dq x2(t)

dtq · · · dq xn(t)
dtq

]� ∈ Rn , q ∈ IN, where x(t) � [x1(t) x2(t)

· · · xn(t)]� ∈ Rn. Ai, j denotes the element in the ith row and jth
column of matrix A. In is the identity matrix with dimension n.
tr(A) represents the trace of matrix A. ‖ ·‖ is defined as Euclidean
norm or a matrix norm induced by Euclidean norm.
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Fig. 1. The relationship between ltm (s) and y(t).

2. Problem formulation

2.1. nth-order SG differentiation filters formulation

Suppose y(t) ∈ C1
qy

[0,∞) is a noise-free signal to be consid-
ered. In practice, we can only observe the noisy signal yξ (t) of the
form

yξ (t) = y(t) + ξ(t)

where ξ(t) is an unknown disturbance. By sampling yξ (t) with
sampling period T , the data are usually obtained at the sampling
times tk and denoted by yξ (tk), k ∈ IN. For given q ∈ IN, the es-
timate of y(q)(t) at t � tm is given by qth-order SG differentiation
filters when the noisy sampling data yξ (tk), tk � tm are measur-
able, where q � qy .

The idea of SG differentiation filters is to utilize a polynomial to
fit a segment of data points, then to differentiate the polynomial
analytically up to the qth order, where q ∈ IN. In order to make the
idea clear, the SG differentiation filters will be formulated next.

For clarity, we define a function ltm (s) on the segment [0,�tm ]
as follows:

ltm (s) = y(tm − �tm + s) (1)

where tm � �tm > 0, m ∈ IN. This is shown in Fig. 1.
Obviously,

l(q)
tm

(s) = y(q)(tm − �tm + s) (2)

where q � qy and q ∈ IN. The segment [0,�tm ] contains Ntm + 1
sampling points and the corresponding data points are denoted by
ltm + ξ tm

, where

ltm = [
ltm (s0) ltm (s1) · · · ltm (sNtm

)
]� ∈ RNtm +1, (3)

ξ tm
= [

ξtm (s0) ξtm (s1) · · · ξtm (sNtm
)
]� ∈ RNtm +1, (4)

sk = iT , �tm = Ntm T and i = 0,1, . . . , Ntm ∈ IN. Without loss of
generality, we only consider the estimation performance of SG dif-
ferentiation filters for y(q)(t) at tm − �tm � t � tm when ltm + ξ tm

is known. For convenience, the subscript of �tm , Ntm , ltm , ξ tm
, ltm

will be dropped in the following, i.e., � = �tm , N = Ntm , l = ltm ,
ξ = ξ tm

, l = ltm .

Based on the notation above, a detailed mathematical expres-
sion for SG differentiation filters is derived as follows:

(1) the function l(s) on [0,�] will be reconstructed to be θ̄
�
ξ L(s)

by using the noisy data points l + ξ , where L(s) � [L0(s) L1(s)
· · · L p−1(s)]� ∈ Rp , Lk(s) = sk , k = 0,1, . . . , p − 1 and θ̄ ξ ∈ Rp;

(2) the parameter θ̄ ξ is derived by solving the following optimiza-
tion problem

min
θ

N∑
i=0

[
l(si) + ξ(si) − θ�L(si)

]2
,

namely,

min
θ

∥∥(l + ξ) − �θ
∥∥2

(5)

where � = [L(s0) L(s1) · · · L(sN )]� ∈ R(N+1)×p;
(3) then l(q)(s) will be estimated by θ̄

�
ξ L(q)(s).

If ��� ∈ Rp×p is nonsingular, then the optimal solution θ̄ ξ of
(5) can be obtained explicitly as follows [22]:

θ̄ ξ = (
���

)−1
��(l + ξ)

= θ̄ + (
���

)−1
��ξ

where θ̄ = (���)−1��l. In fact, θ̄ can be defined as

θ̄ = arg min
θ

‖l − �θ‖. (6)

At time tm, for given s̄, the estimate of y(q)(tm − � + s̄), denoted
by ŷ(q)

ξ (tm − � + s̄|tm), can be expressed as

ŷ(q)
ξ (tm − � + s̄|tm) = θ̄

�
ξ L(q)(s̄).

Substituting θ̄ ξ = (���)−1��(l + ξ) into the equation above re-
sults in

ŷ(q)
ξ (tm − � + s̄|tm) = h(q)(s̄)�(l + ξ) (7)

where

h(s) � �
(
���

)−1
L(s) ∈ RN+1. (8)

In particular, the estimate of the qth-order derivative at the mid-
point, namely s̄ =�

2 , is

ŷ(q)
ξ

(
tm − �

2

∣∣∣∣tm

)
= h(q)

(
�

2

)�
Y ξ (tm) (9)

where Y ξ (tm) = [yξ (tm − �) yξ (tm − sN−1) · · · yξ (tm)]� = l + ξ .

The midpoint estimate ŷ(q)
ξ (tm − �

2 |tm) can be further represented
by a transfer function as follows:

ŷ(q)
ξ (z) = Hq(z)yξ (z)

where Hq(z) = ∑N
k=0 hq,k(

�
2 )z−N+k and h(q)(�

2 ) = [hq,0(
�
2 ) · · ·

hq,N(�
2 )]T . Hq(z) is a FIR digital filter with tap coefficients

hq,k(
�
2 ), k = 0,1, . . . , N.

Remark 1. The analysis above also allows N + 1 to be even. In fact,
it does not restrict the parity of N. If N + 1 is even, then h(s) is
still defined as in (8).

2.2. Objective

At time tm, for an s̄ ∈ [0,�], the estimation error can be writ-
ten as

eξ ,q(tm − � + s̄|tm) � y(q)(tm − � + s̄) − ŷ(q)

ξ (tm − � + s̄|tm).

Substituting (2) and (7) into the equation above yields
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eξ ,q(tm − � + s̄|tm) = l(q)(s̄) − h(q)(s̄)�l︸ ︷︷ ︸
approximation error

− h(q)(s̄)�ξ︸ ︷︷ ︸
caused by noise

. (10)

In the following sections, we focus on the bound and statistical
properties of eξ ,q(tm − � + s̄|tm). As seen in (10), the estimation
error is decomposed into the approximation error l(q)(s̄)−h(q)(s̄)�l
and an uncertainty caused by random noise, i.e., h(q)(s̄)�ξ . This
will help to analyze the estimation error explicitly.

3. Preliminary results

To begin with, the following preliminary results are needed; the
proofs of Lemmas 1–5 are in Appendix A.

Lemma 1. If and only if N + 1 � p, then ��� ∈ Rp×p is nonsingular.

Lemma 2. If l(s) ∈ Π
p−1
L [0,�] � span(L0(s), L1(s), . . . , L p−1(s)), s ∈

[0,�] and N + 1 � p, then l(s) − (�(���)−1 L(s))�l ≡ 0, for all s ∈
[0,�].

Remark 2. It is well known that the same sampling data may
be obtained from two different continuous signals. This means
that important time variations between sampling instants may be
missed if the sampling data are used to reconstruct the real sig-
nal. Lemma 2 implies that if l(s) ∈ Π

p−1
L [0,�] and the number of

sampling data in the segment [0,�] is larger than the polynomial
degree, then the polynomial l(s) can be reconstructed perfectly
from the sampling data by using the best approximation.

Lemma 3. If � is a positive constant, then limT →0(T ���)−1 = G−1,

where G i, j = ∫ �

0 si+ j−2 ds.

Lemma 4. (���)−1��w = v , where v = [1 0 · · · 0]� ∈ Rp, w =
[1 1 · · · 1]� ∈ RN+1.

Lemma 5. limN→∞ N2q‖�̄(�̄
�
�̄)−1 L(q)(γ N)‖2 = 0, where γ ∈

[0,1], �̄ = [L(0) L(1) · · · L(N)]� ∈ R(N+1)×p .

4. Estimation error analysis

In this section, we first give a bound on eξ ,q(tm − � + s̄|tm).

Based on it, the qualitative relationships between the estimation
error bound and various parameters, such as �, N and T , are fur-
ther analyzed. Then, statistical properties of eξ ,q(tm −�+ s̄|tm) are
derived.

4.1. Estimation error bound

First, we give a bound on eξ ,q(tm −�+ s̄|tm) in the special case
where ξ(t) ≡ 0, i.e., yξ (tk) = y(tk). In this special case, eξ ,q(tm −
� + s̄|tm) is only the approximation error.

Theorem 1. Suppose (i) l(s) ∈ C1
qy

[0,�] and lmax,p =
maxs∈[0,�] ‖l(p)(s)‖; (ii) N + 1 � p; (iii) q < p � qy . Then for s̄ ∈
[0,�], we have∥∥l(q)(s̄) − h(q)(s̄)�l

∥∥ � B(L, p,q,�, T , lmax,p, s̄)

where

B(L, p,q,�, T , lmax,p, s̄)

� lmax,p

p!
√

T (� + T )
∥∥�

(
T ���

)−1
L(q)(s̄)

∥∥ max
s∈[0,�] ‖s − s̄‖p .

Proof. See Appendix A.6. �
With ξ(t) ≡ 0, the estimation error is just the approximation

error. However, in practice, the estimation error is affected not only
by the approximation error but also by random noise. This effect
will be investigated in Theorem 2.

Theorem 2. Suppose that the conditions of Theorem 1 are satisfied and
max0�k�N ‖ξ(sk)‖ � δ. Then∥∥l(q)(s̄) − h(q)(s̄)�(l + ξ)

∥∥
� B(L, p,q,�, T , lmax,p, s̄) + Bξ (L, p,q,�, T , δ, s̄) (11)

where

Bξ (L, p,q,�, T , δ, s̄) = δ
√

T (� + T )
∥∥�

(
T ���

)−1 L(q)(s̄)
∥∥.

(12)

Proof. See Appendix A.7. �
With Theorem 2 in hand, we have

Corollary 1. Suppose (i) y(t) ∈ C1
qy

[0,∞), ymax,p =
maxt∈[0,∞) ‖y(p)(t)‖ and suptk

‖ξ(tk)‖ � δ; (ii) N + 1 � p; (iii)
q < p � qy . Then for s̄ ∈ [0,�], we have ‖eξ ,q(tm − � + s̄|tm)‖
� B(L, p,q,�, T , ymax,p, s̄) +Bξ (L, p,q,�, T , δ, s̄).

The estimation error bound is a function of the variables T , �,

N, p, q, s̄, ymax,p and δ. In a specific case, the estimation error
may reach the upper bound. In order to further clarify the relation-
ships between the estimation error bound and various parameters
�, N, T , two qualitative properties of the estimation error bound
are given next.

Property 1. Suppose that the conditions of Corollary 1 are satisfied.
If N remains constant and T tends to zero, i.e., � tends to zero, then
‖eξ ,0(tm − � + s̄|tm)‖ is bounded and the upper bound on ‖eξ ,q(tm −
� + s̄|tm)‖ is unbounded when q � 1.

Proof. If s̄ = γ NT , γ ∈ [0,1], then the relationship between
L(q)(s̄) and L(q)(γ N) is

L(q)(s̄) = T −qU L(q)(γ N) (13)

furthermore

� = �̄U (14)

where U = diag(1, T , . . . , T p−1) ∈ Rp×p and �̄ is defined in
Lemma 5.

Using (13) and (14), we have∥∥�
(
���

)−1 L(q)(s̄)
∥∥ = T −q

∥∥�̄
(
�̄

�
�̄

)−1 L(q)(γ N)
∥∥. (15)

Note that mins̄∈[0,�] maxs∈[0,�] ‖s − s̄‖p = (�
2 )p, maxs̄∈[0,�]

maxs∈[0,�] ‖s − s̄‖p = �p and � = NT . Then the bound on the
approximation error is

1

2p
M1T p−q � B(L, p,q,�, T , ymax,p, s̄) � M1T p−q (16)

where

M1 = ymax,p

p!
√

N + 1
∥∥�̄

(
�̄

�
�̄

)−1 L(q)(γ N)
∥∥N p . (17)

Since p − q > 0 and M1 is a constant as N remains constant, the
approximation error bound B(L, p,q,�, T , ymax,p, s̄) tends to zero
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as T tends to zero. By using (15) and � = NT , the bound on the
uncertainty (12) caused by random noise is

Bξ (L, p,q,�, T , δ, s̄) = M2T −q (18)

where

M2 = δ
√

N + 1
∥∥�̄

(
�̄

�
�̄

)−1 L(q)(γ N)
∥∥ (19)

is a constant when N remains constant. Therefore, if N remains
constant, then M2T −q will tend to infinity as T tends to zero
except in the case q = 0. Therefore, if the conditions of Corol-
lary 1 are satisfied, N remains constant and T tends to zero,
then ‖eξ ,0(tm − � + s̄|tm)‖ is bounded and the upper bound on
‖eξ ,q(tm − � + s̄|tm)‖ is unbounded when q � 1. �
Remark 3. Property 1 shows that the approximation error will de-
crease as � decreases (refer to Eq. (16)). However, when random
noise exists in the sampling data and N remains constant, the es-
timation error may be very large when � is small, and is more
sensitive as the derivative order increases (refer to Eq. (18)). There-
fore, in practice, if N is a small value, we cannot achieve good
estimation performance using a small sampling period T . Since the
estimation error is bounded by∥∥eξ ,q(tm − � + s̄|tm)

∥∥ � M1T p−q + M2T −q

we can conclude that if q = 0 and N remains constant, then the
smallest sample time T should be chosen. On the other hand, if
q � 1 and N remains constant, then the optimal sampling period
is

T ∗ = arg min
T

(
M1T p−q + M2T −q) =

(
qM2

(p − q)M1

) 1
p

.

Substituting (17) and (19) into the above equation results in

T ∗ =
(

qδp!
(p − q)lmax,p

) 1
p 1

N
.

From the equation above, we can observe that the optimal sam-
pling period T ∗ decreases as N increases, and vice versa. Generally,
if N can be chosen arbitrarily, then the lowest upper bound is al-
ways associated with the smallest sample time.

Property 2. Suppose the conditions of Corollary 1 are satisfied. If � re-
mains constant and T tends to zero, i.e., N tends to infinity, then

lim
T →0

∥∥eξ ,q(tm − � + s̄|tm)
∥∥

�
(

δ + ymax,p

p! �p
)√

�

√
L(q)(s̄)�G−1 L(q)(s̄).

Proof. See Appendix A.8. �
Remark 4. If � remains constant and T tends to zero, then the es-
timation error is bounded. The bound on the uncertainty caused
by random noise, i.e., Bξ (L, p,q,�, T , δ, s̄), may result in the es-
timation error bound being conservative. The reason is as follows.
In the proof of Theorem 2, the first inequality of (30) (see Ap-
pendix A.7) has used∥∥L(q)(s̄)�

(
���

)−1�
�
ξ
∥∥ �

∥∥�
(
���

)−1 L(q)(s̄)
∥∥‖ξ‖. (20)

When N is large enough, ξ will then show random characteris-
tics so that ξ and �(���)−1 L(q)(s̄) are linearly independent. The
possibility of both sides of (20) being equal is very small, espe-
cially when N is large. Therefore, the inequality is strict in most
cases. Generally, we may expect that

∥∥L(q)(s̄)�
(
���

)−1�
�
ξ
∥∥ 
 ∥∥�

(
���

)−1 L(q)(s̄)
∥∥‖ξ‖.

Therefore, the upper bound of estimation error is conservative
when N is large.

4.2. Statistical properties of the estimation error

According to Remark 4, statistical variables are proposed to de-
scribe the estimation error. This is more appropriate when N is
large.

Theorem 3. Suppose the random noise ξ(tk) is an uncorrelated process,
moreover, for all k ∈ IN, the expected value E(ξ(tk)) = μ and the vari-
ance D(ξ(tk)) = σ 2 . Then

E
(
eξ ,0(tm − � + s̄|tm)

) = e0(tm − � + s̄|tm) − μ,

E
(
eξ ,q(tm − � + s̄|tm)

) = eq(tm − � + s̄|tm), q � 1,

D
(
eξ ,q(tm − � + s̄|tm)

) = ∥∥�
(
���

)−1
L(q)(s̄)

∥∥2
σ 2

where eq(tm − � + s̄|tm) represents the approximation error, i.e.,
eξ ,q(tm − � + s̄|tm) with ξ(t) ≡ 0.

Proof. See Appendix A.9. �
Remark 5. If the expected value of the random noise is a constant,
then the expected value of the estimation error of smoothing is
equal to the approximation error minus the constant, and the ex-
pected value of the estimation error of the qth-order derivative
(q � 1) is equal to the approximation error.

The following Property 3 shows the qualitative relationships
between the variance of the estimation error and the variables
T ,�, N.

Property 3. Suppose the conditions of Corollary 1 and Theorem 3 are
satisfied. (i) If � remains constant and T tends to zero, then

lim
T →0

D
(
eξ ,q(tm − � + s̄|tm)

) = 0;
(ii) if T remains constant and N tends to infinity, then

lim
N→∞ D

(
eξ ,q(tm − � + s̄|tm)

) = 0.

Proof. See Appendix A.10. �
Remark 6. The variance of the estimation error tends to zero as the
number of sampling data used to fit the polynomial, i.e., the filter
length, tends to infinity. In other words, the uncertainty caused
by random noise will be reduced as the length of the filter, i.e.
N + 1, increases. However, when the sampling period is fixed, a
large number of sampling data results in a large value of � which
in turn gives a large approximation error.

Fig. 2 shows the behavior of expected value bound and vari-
ance of estimation error as N increases, when ymax,p = 1, p = 2,

T = 0.01 and q = 0. Hence, N should be selected appropriately to
achieve a tradeoff between the approximation error and the uncer-
tainty caused by random noise.

5. Conclusions

The estimation performance of the nth-order SG differentiation
filters is analyzed in the time domain. We obtain the following
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Fig. 2. The behavior of expected value bound and variance of estimation error as N increases.

conclusions: (i) when the filter length remains constant, the ap-
proximation error will decrease as the sampling period decreases;
(ii) when random noise exists in the sampling data and the filter
length remains constant, the estimation error may be very large
when the sampling period is small, and is more sensitive as the
derivative order increases; (iii) the optimal sampling period satis-

fies T ∗ ∝ (
qp!

(p−q)
)

1
p 1

N ; generally, if N can be chosen arbitrarily, then
the lowest upper bound is always associated with the smallest
sample time; (iv) if the time interval used for the estimate remains
constant and the sampling period tends to zero, then the estima-
tion error of the qth-order differentiation is bounded (q � 0); (v) if
the expected value of the random noise is constant, then the ex-
pected value of the estimation error of the qth-order derivative is
equal to the approximation error except in the case q = 0: the ex-
pected value of the estimation error of smoothing is equal to the
approximation error minus the constant; (vi) the variance of the
estimation error will be reduced as the filter length increases.
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Appendix A

A.1. Proof of Lemma 1

Obviously, when N + 1 < p, matrix � is not of full col-
umn rank. When N + 1 = p, matrix � is a Vandermonde ma-
trix. Since s0, s1, . . . , sN are different values, we have det(�) =∏

0�k1<k2�N (sk2 − sk1 ) �= 0. Then � is of full column rank. Conse-

quently, � is still of full column rank when N + 1 > p. Since ���

is nonsingular ⇔ � is of full column rank, hence ��� ∈ Rp×p is
nonsingular if and only if N + 1 � p holds.

A.2. Proof of Lemma 2

First, we let ¯̄θ = arg minθ (maxs∈[0,�] ‖l(s)−¯̄θ�L(s)‖). Since

l(s) ∈ Π
p−1
L [0,�], we have maxs∈[0,�] ‖l(s)−¯̄θ�L(s)‖ ≡ 0 by the

definition of ¯̄θ . Then ‖l(sk)−¯̄θ�L(sk)‖ = 0, k = 0,1, . . . , N , i.e.,

‖l − � ¯̄θ‖ = 0. By the definition of θ̄ in (6), we obtain 0 �
‖l − �θ̄‖ � ‖l − � ¯̄θ‖ = 0, thus ‖l − �θ̄‖ = 0. Next proves θ̄ = ¯̄θ .

Since l − �θ̄ = l − � ¯̄θ = 0, we obtain �(θ̄ − ¯̄θ) = 0. Note that ma-
trix � is of full column rank when N + 1 � p by Lemma 1, hence

θ̄ = ¯̄θ . This gives

l(s) − ¯̄θ�L(s) = l(s) − θ̄
�

L(s)

= l(s) − (
�

(
���

)−1
L(s)

)�
l ≡ 0,

for all s ∈ [0,�].

A.3. Proof of Lemma 3

Since sk = kT , every element of matrix T ��� is

(
T ���

)
i, j =

� �
T �∑

k=0

Li−1(kT )L j−1(kT )T

where ��
T � rounds �

T toward zero and Lk(s) = sk , k = 0,1, . . . ,

p − 1.
Since � remains constant, hence the following equation holds

as T tends to zero,

lim
T →0

(
T ���

)
i, j = lim

T →0

( � �
T �∑

k=0

Li−1(kT )L j−1(kT )T

)

= G i, j

where G i, j = ∫ �

0 Li−1(s)L j−1(s)ds = ∫ �

0 si+ j−2 ds. Since∫ �

0 Li−1(s)L j−1(s)ds is an inner product of Li−1 and L j−1, hence
G ∈ Rp×p, called the Gram matrix of L0(s), L1(s), . . . , L p−1(s), is
nonsingular by [22, p. 56]. Therefore, we have limT →0(T ���)−1 =
G−1.
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A.4. Proof of Lemma 4

Noticing the definition of �, we have

���v =
(

N∑
k=0

L(sk)L(sk)
�
)

v.

Since L(sk)
�v = 1 for k = 0, . . . , N, we have

���v =
N∑

k=0

L(sk)
(

L(sk)
�v

)

=
N∑

k=0

L(sk) = ��w

hence (���)−1��w = v .

A.5. Proof of Lemma 5

Matrix �̄ is rewritten as �̄ = [ρ(1) ρ(2) · · · ρ(p)], where
ρ(k) = [0k−1 1k−1 · · · Nk−1]� ∈ RN+1, k = 0, . . . , N. When N is

large enough, every element of �̄
�
�̄ is

(
�̄

�
�̄

)
i, j = ρ(i)�ρ( j) =

N∑
k=0

ki+ j−2

= Ni+ j−1
N∑

k=0

(
k

N

)
i+ j−2 1

N

= Ni+ j−1 Q i, j

where Q i, j = (Ḡ)i, j + o(N−1), o(·) presents the higher-order in-

finitesimal and (Ḡ)i, j = ∫ 1
0 si+ j−2 ds. Therefore

�̄
�
�̄ = F Q F

where Q ∈ Rp×p and F = diag
([

N
2·1−1

2 N
2·2−1

2 · · · N
2·p−1

2
]�)

.

Since Ḡ ∈ Rp×p , called the Gram matrix of 1, s, . . . , sp−1, is
nonsingular by [22, p. 56], we have ( Q −1)i, j = (Ḡ−1)i, j + o(N−1).

Consequently, every element of (�̄
�
�̄)−1 is

((
�̄

�
�̄

)−1)
i, j = N−i− j+1o(1). (21)

Moreover,

(
L(q)(γ N)

)
k,1 =

{
0 k − 1 − q < 0,

Nk−1−qo(1) k − 1 − q � 0.
(22)

Using (21) and (22), we obtain

L(q)(γ N)�
(
�̄

�
�̄

)−1
L(q)(γ N) = N−1−2qo(1). (23)

Since

∥∥�̄
(
�̄

�
�̄

)−1
L(q)(γ N)

∥∥2 = L(q)(γ N)�
(
�̄

�
�̄

)−1
L(q)(γ N)

substituting (23) into the inequality above yields

∥∥�̄
(
�̄

�
�̄

)−1
L(q)(γ N)

∥∥2 � N−1−2qo(1).

Therefore limN→∞ N2q‖�̄(�̄
�
�̄)−1 L(q)(γ N)‖2 = 0.

A.6. Proof of Theorem 1

The Taylor expansion of l(s) about the point s̄ ∈ [0,�] is

l(s) = g(s) + r(λ, s) (24)

where

g(s) =
p−1∑
k=0

l(k)(s̄)

k! (s − s̄)k, r(λ, s) = l(p)(s̄ + λ(s − s̄))

p! (s − s̄)p,

λ ∈ [0,1], s ∈ [0,�].
According to (24), l in (3) can be written as

l = g + r(λ) (25)

where

g = [
g(s0) g(s1) · · · g(sN)

]� ∈ RN+1,

r(λ) = [
r(λ0, s0) r(λ1, s1) · · · r(λN , sN )

]� ∈ RN+1,

λ = [
λ0 λ1 · · · λN

]� ∈ RN+1, λ0, λ1, . . . , λN ∈ [0,1].
Since N + 1 � p and g(s) ∈ Π

p−1
L [0,�], we have

g(s) − (
�

(
���

)−1
L(s)

)�
g = 0, for all s ∈ [0,�]

by Lemma 2. Thus

l(s) − h(s)�l = g(s) + r(λ, s) − (
�

(
���

)−1
L(s)

)�(
g + r(λ)

)
= r(λ, s) + r(λ)��

(
���

)−1
L(s) (26)

where (8) and (25) are utilized. Note the definition of r(λ, s), we
obtain r(q)(λ, s̄) ≡ 0 for all λ ∈[0,1], where r(q)(λ, s̄) = dqr(λ,s)

dsq |s=s̄
and q < p. Therefore for the s̄ ∈ [0,�], Eq. (26) becomes

l(q)(s̄) − h(q)(s̄)�l = r(q)(λ, s̄) + r(λ)��
(
���

)−1
L(q)(s̄)

= r(λ)��
(
���

)−1
L(q)(s̄)

where q < p. Taking norm ‖ ·‖ on both sides of the above equation
yields∥∥l(q)(s̄) − h(q)(s̄)�l

∥∥
�

(
max

λ0,λ1···λN∈[0,1]
∥∥r(λ)

∥∥)∥∥�
(
���

)−1
L(q)(s̄)

∥∥. (27)

Since lmax,p = maxs∈[0,�] ‖l(p)(s)‖, hence

∥∥r(λ, s̄)
∥∥ =

∥∥∥∥ l(p)(s̄ + λ(s − s̄))

p! (s − s̄)p

∥∥∥∥
� lmax,p

p! max
s∈[0,�] ‖s − s̄‖p .

Consequently

max
λ∈[0,1]

∥∥r(λ)
∥∥ �

√
N + 1 max

λ∈[0,1]
∥∥r(λ, s̄)

∥∥
�

√
N + 1

lmax,p

p! max
s∈[0,�] ‖s − s̄‖p . (28)

Substituting (28) into the inequality (27) yields∥∥l(q)(s̄) − h(q)(s̄)�l
∥∥

� lmax,p

p!
√

N + 1
∥∥�

(
���

)−1
L(q)(s̄)

∥∥ max
s∈[0,�] ‖s − s̄‖p

= B(L, p,q,�, T , lmax,p, s̄),

where � = NT has been utilized. �
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A.7. Proof of Theorem 2

For an s̄ ∈ [0,�], using (8), we have

l(q)(s̄) − h(q)(s̄)�(l + ξ)

= l(q)(s̄) − h(q)(s̄)�l − L(q)(s̄)�
(
���

)
��ξ . (29)

Since max0�k�N ‖ξ(sk)‖ � δ, hence ‖ξ‖ � δ
√

N + 1. Taking norm
‖ · ‖ on both sides of Eq. (29) yields∥∥l(q)(s̄) − h(q)(s̄)�(l + ξ)

∥∥
�

∥∥l(q)(s̄) − h(q)(s̄)�l
∥∥ + ∥∥�

(
���

)−1 L(q)(s̄)
∥∥‖ξ‖

�
∥∥l(q)(s̄) − h(q)(s̄)�l

∥∥ + Bξ (L, p,q,�, T , δ, s̄). (30)

Therefore, (11) is satisfied by Theorem 1.

A.8. Proof of Property 2

Since � remains constant and N tends to infinity, hence

lim
T →0

√
T (� + T )

∥∥�
(
T ���

)−1
L(q)(s̄)

∥∥
= lim

T →0

√
� + T

√
L(q)(s̄)�

(
T ���

)−1
L(q)(s̄)

= √
�

√
L(q)(s̄)�G−1 L(q)(s̄)

by Lemma 3. Consequently,

lim
T →0

B(L, p,q,�, T , ymax,p, s̄)

� ymax,p

p! �p
√

�

√
L(q)(s̄)�G−1 L(q)(s̄)

and

lim
T →0

Bξ (L, p,q,�, T , δ, s̄) � δ
√

�

√
L(q)(s̄)�G−1 L(q)(s̄).

Combining the two inequalities above concludes the proof.

A.9. Proof of Theorem 3

In light of (29), since E(ξ ) = μw , where w = [1 1 · · · 1]� ∈
RN+1, then

E
(
l(q)(s̄) − h(q)(s̄)�(l + ξ)

)
= l(q)(s̄) − h(q)(s̄)�l − L(q)(s̄)�

(
���

)
��E(ξ)

= l(q)(s̄) − h(q)(s̄)�l − μL(q)(s̄)�
(
���

)
��w.

Since (���)��w = v by Lemma 4, the equation above becomes

E
(
l(q)(s̄) − h(q)(s̄)�(l + ξ)

) = l(q)(s̄) − h(q)(s̄)�l − μL(q)(s̄)�v

where v = [1 0 · · · 0]� ∈ Rp .

Note that L(0)(s̄)�v = 1 and L(q)(s̄)�v = 0, q � 1, hence

E
(
eξ ,0(tm − � + s̄|tm)

) = E
(
l(s̄) − h(s̄)�(l + ξ)

)
= e0(tm − � + s̄|tm) − μ,

E
(
eξ ,q(tm − � + s̄|tm)

) = E
(
l(q)(s̄) − h(q)(s̄)�(l + ξ)

)
= eq(tm − � + s̄|tm), q � 1.

Since the random noise ξ(tk) is an uncorrelated process, the vari-
ance of eξ ,q(tm − � + s̄|tm) is

D
(
eξ ,q(tm − � + s̄|tm)

) = D
(
l(q)(s̄) − h(q)(s̄)�(l + ξ)

)
= D

(
L(q)(s̄)�

(
���

)
��ξ

)
= ∥∥�

(
���

)−1
L(q)(s̄)

∥∥2
σ 2.

A.10. Proof of Property 3

If � remains constant and T tends to zero, i.e., N tends to in-
finity, then

lim
T →0

D
(
eξ ,q(tm − � + s̄|tm)

)
= lim

T →0
T 2

∥∥�
(
T ���

)−1
L(q)(s̄)

∥∥2
σ 2

= lim
T →0

T L(q)(s̄)�
(
T ���

)−1
L(q)(s̄)σ 2

= σ 2 lim
T →0

T lim
T →0

L(q)(s̄)�
(
T ���

)−1
L(q)(s̄).

By Lemma 3, we obtain

lim
T →0

D
(
eξ ,q(tm − � + s̄|tm)

) = σ 2 L(q)(s̄)�G−1 L(q)(s̄)σ 2 lim
T →0

T

= 0.

Recalling (15), we have

D
(
eξ ,q(tm − � + s̄|tm)

) = σ 2T −q
∥∥�̄

(
�̄

�
�̄

)−1 L(q)(γ N)
∥∥.

If T remains constant and N tends to infinity, then

lim
N→∞ D

(
eξ ,q(tm − � + s̄|tm)

) = 0

by Lemma 5.
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