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a b s t r a c t

In this paper, a new control scheme, called additive-state-decomposition-based tracking
control, is proposed to solve the tracking (rejection) problem for rotational position of the
translational oscillator with a rotational actuator (TORA, a nonlinear nonminimum phase
system). By the additive state decomposition, the tracking (rejection) task for the

(rejection) subtask for a linear time invariant (LTI) system, leaving a stabilization subtask
for a derived nonlinear system. By the decomposition, the proposed tracking control
scheme avoids solving regulation equations and can tackle the tracking (rejection)
problem in the presence of any external signal (except for the frequencies at71)
generated by a marginally stable autonomous LTI system. To demonstrate the effective-
ness, numerical simulation is given.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The tracking (rejection) problem for a nonlinear benchmark system called translational oscillator with a rotational
actuator (TORA) and also known as rotational–translational actuator (RTAC) has received a considerable amount of attention
these years [1–11]. Due to its special nonminimum phase and nonlinearity, the TORA is often of independent interest to
sever as a benchmark for different nonlinear control methods. Some results were presented to concern the tracking
(rejection) problem for general external signals [2,4,5]. However, the proposed control methods cannot achieve asymptotic
disturbance rejection. By taking this into account, the nonlinear output regulation theory was applied to track (reject)
external signals generated by an autonomous system. The considered external signals are often constant or periodic due to
some periodic operations and vibrations, which can often be modeled as an autonomous system approximately. In this case,
asymptotic disturbance rejection can be achieved. With different measurement, the tracking (rejection) problem for
translational displacement of the TORA was investigated [6–8]. Readers can refer to [8] for details. Based on the same
benchmark system, some other work was also presented to concern the tracking (rejection) problem for rotational position
[9,10]. In this problem, the rotational actuator may be considered as a rotational antenna, which is required to point a given
direction. For the two types of tracking (rejection) problems, regulator equations have to be solved and then the resulting
solutions will be further used in the controller design. However, the difficulty of constructing and solving regulator
equations will increase as the complexity of external signals increases.
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To overcome these drawbacks above, the tracking (rejection) problem for rotational position of the TORA as [9,10] is
revisited by a new control scheme called additive-state-decomposition-based tracking control, which is based on the
additive state decomposition.1 The proposed additive state decomposition is a new type of decomposition different from the
lower-order subsystem decomposition. Concretely, taking the system _xðtÞ ¼ fðt; xÞ; x∈Rn for example, it is decomposed into
two subsystems: _x1ðtÞ ¼ f1ðt; x1; x2Þ and _x2ðtÞ ¼ f2ðtÞ; x1; x2Þ, where x1∈Rn1 and x2∈Rn2 , respectively. The lower-order
subsystem decomposition satisfies

n¼ n1 þ n2 and x¼ x1⊕x2:

By contrast, the proposed additive state decomposition satisfies

n¼ n1 ¼ n2 and x¼ x1 þ x2:

In our opinion, lower-order subsystem decomposition aims to reduce the complexity of the system itself, while the additive
state decomposition emphasizes the reduction of the complexity of tasks for the system.

By following the philosophy above, the original tracking (rejection) task is “additively” decomposed into two
independent subtasks: an output tracking (rejection) subtask for a linear time invariant (LTI) system and a state stabilization
subtask for a derived nonlinear system. Since tracking (rejection) subtask only needs to be achieved on an LTI system, the
complexity of external signals can be handled easier by the transfer function method. It is proved that the designed
controller can tackle the tracking (rejection) problem for rotational position of the TORA in the presence of any external
signal (except for the frequency at71) generated by a marginally stable autonomous LTI system.

This paper is organized as follows. In Section 2, the problem is formulated and the additive state decomposition
is recalled briefly first. In Section 3, an observer is proposed to compensate for nonlinearity; then the resulting system
is “additively” decomposed into two subsystems; sequently, controllers are designed for them. In Section 4, numerical
simulation is given. Section 5 further discusses the proposed method. Section 6 concludes this paper.

2. Nonlinear benchmark problem and additive state decomposition

2.1. Nonlinear benchmark problem

As shown in Fig. 1, the TORA system consists of a cart attached to a wall with a spring. The cart is affected by
a disturbance force F. An unbalanced point mass rotates around the axis in the center of the cart, which is actuated by
a control torque N. The translational displacement of the cart is denoted by xc and the rotational position of the unbalanced
point mass is denoted by θ.

For simplicity, after normalization and transformation, the TORA system is described by the following state-space
representation [1]:

_x1 ¼ x2 (1a)

_x2 ¼−x1 þ ε sin x3 þ Fd (1b)

_x3 ¼ x4 (1c)

_x4 ¼ u−
ε cos x3

1−ε2 cos 2 x3
Fd; xð0Þ ¼ x0 (1d)

where 0oεo1, x¼ ½x1 x2 x3 x4�T∈R4, x3 ¼ θ, Fd∈R is the unknown dimensionless disturbance, u∈R is the dimensionless
control torque. In this paper, the tracking (rejection) problem for rotational position of the TORA as [9,10] is revisited.
Concretely, for system (1), it is to design a controller u such that the output yðtÞ ¼ x3ðtÞ-r as t-∞, meanwhile keeping the
other states bounded, where r∈ð−π=2; π=2Þ is a known constant. Obviously, this is a nonlinear nonminimum phase tracking
problem, or say a nonlinear weakly minimum phase tracking problem. For system (1), the following assumptions are
imposed.

Assumption 1. The state x can be obtained.

Assumption 2. The disturbance Fd∈R is generated by an autonomous LTI system

_w ¼ Sw; Fd ¼ CT
dw (2)

where S¼−ST∈Rm�m, Cd∈Rm are constant, w∈Rm, and the pair ðCT
d ; SÞ is observable.

Remark 1. If all eigenvalues of S have zero real part, then, in suitable coordinates, the matrix S can always be written as a
skew-symmetric matrix. The matrix S in previous literature on the output regulation problem is often chosen in a simple
form S¼ ½ 0−ω ω

0�, where ω is a positive real [6–10]. In such a case, Fd is in the form as sin ð7ωtÞ and the solution to the
regulator equation is easier to obtain. However, this becomes difficult when S is complicated.
1 In this paper we have replaced the term “additive decomposition” in [12] with the more descriptive term “additive state decomposition”.



Fig. 1. TORA system configuration [1].
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2.2. Additive state decomposition

In order to make the paper self-contained, the additive state decomposition [12] is recalled here briefly. Consider the
following “original” system:

fðt; _x ; xÞ ¼ 0; xð0Þ ¼ x0 (3)

where x∈Rn. We first bring in a “primary” system having the same dimension as (3), according to

fpðt; _xp; xpÞ ¼ 0; xpð0Þ ¼ xp;0 (4)

where xp∈Rn. From the original system (3) and the primary system (4) we derive the following “secondary” system:

fðt; _x ; xÞ−fpðt; _xp; xpÞ ¼ 0; xð0Þ ¼ x0 (5)

where xp∈Rn is given by the primary system (4). Define a new variable xs∈Rn as follows:

xs≜x−xp: (6)

Then the secondary system (5) can be further written as follows:

fðt; _xp þ _xs; xp þ xsÞ−fpðt; _xp; xpÞ ¼ 0; xsð0Þ ¼ x0−xp;0: (7)

From the definition (6), we have

xðtÞ ¼ xpðtÞ þ xsðtÞ; t≥0: (8)

Remark 2. By the additive state decomposition, the system (3) is decomposed into two subsystems with the same
dimension as the original system. In this sense our decomposition is “additive”. In addition, this decomposition is with
respect to state. So, we call it “additive state decomposition”.

As a special case of (3), a class of differential dynamic systems is considered as follows:

_x ¼ fðt; xÞ; xð0Þ ¼ x0

y¼ hðt; xÞ (9)

where x∈Rn and y∈Rm: Two systems, denoted by the primary system and (derived) secondary system, respectively, are
defined as follows:

_xp ¼ fpðt; xpÞ; xpð0Þ ¼ xp;0

yp ¼ hpðt; xpÞ (10)

and

_xs ¼ fðt; xp þ xsÞ−fpðt; xpÞ; xsð0Þ ¼ x0−xp;0

ys ¼ hðt; xp þ xsÞ−hpðt;xpÞ (11)

where xs≜x−xp and ys≜y−yp. The secondary system (11) is determined by the original system (9) and the primary system
(10). From the definition, we have

xðtÞ ¼ xpðtÞ þ xsðtÞ; yðtÞ ¼ ypðtÞ þ ysðtÞ; t≥0: (12)
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3. Additive-state-decomposition-based tracking control

In this section, an observer is first proposed to compensate for nonlinearity. After the compensation, the resulting
nonlinear nonminimum phase tracking system is decomposed into two systems by the additive state decomposition: an LTI
system including all external signals as the primary system, leaving the secondary system with a zero equilibrium point.
Therefore, the tracking problem for the original system is correspondingly decomposed into two subproblems by the
additive state decomposition: a tracking problem for the LTI “primary” system and a stabilization problem for the secondary
system. Obviously, the two subproblems are easier than the original one. Therefore, the original tracking problem is
simplified. The structure of the closed-loop system is shown in Fig. 2.

3.1. Nonlinearity compensation

First, in order to estimate the term ðε cos x3=ð1−ε2 cos 2 x3ÞÞFd, an observer is designed, which is stated in Theorem 1.

Theorem 1. Under Assumptions 1 and 2, let the observer be designed for system (1) as follows:

_̂w ¼ Sŵ þ l1
ε cos x3

1−ε2 cos 2 x3
Cdðx̂4−x4Þ

_̂x4 ¼−l2ðx̂4−x4Þ−l1
ε cos x3

1−ε2 cos 2 x3
CT
dŵ þ u

F̂ d ¼ l1C
T
dŵ ; ŵð0Þ ¼ 0; x̂4ð0Þ ¼ 0 (13)

where l1; l240. Then limt-∞ðε cos x3=ð1−ε2 cos 2 x3ÞÞ ~FdðtÞ ¼ 0, where ~Fd≜F̂ d−Fd.

Proof. See Appendix A.

By using the observer (13), the controller u in (1) is designed as follows:

u¼KTx þ vþ ε cos x3
1−ε2 cos 2 x3

F̂ d

where K∈R4 and v∈R will be specified later. Then the system (1) becomes

_x1 ¼ x2
_x2 ¼−x1 þ ε sin x3 þ Fd

_x3 ¼ x4

_x4 ¼KTx þ vþ ε cos x3
1−ε2 cos 2 x3

~Fd; xð0Þ ¼ x0: (14)

3.2. Additive state decomposition of original system

Introduce a zero term εDðCþ aBÞTx−εDðyþ a _yÞ ¼ 0 into the system (14), where a40, B¼ ½0 0 0 1�T , C¼ ½0 0 1 0�T ,
D¼ ½0 1 0 0�T and BTx¼ _y. Then the system (14) becomes

_x ¼Ax þ Bvþ ϕðy; _yÞ þ DFd þ φ
TORA

Nonlinearity
Compensation

Decomposed System
Observer

Tracking Controller for 
Primary system

Stabilized Controller
for Secondary System

dFr

x

TK x

+

+
+

v

x

pv

sv

+

+

pv

+ u

Xp , Xs

Fig. 2. Structure of the closed-loop system.
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y¼ CTx; xð0Þ ¼ x0 (15)

where

A¼A0 þ BKT þ εDðCþ aBÞT ; A0 ¼

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 0 0

2
6664

3
7775; ϕðy; _yÞ ¼

0
ε sin y−εðyþ a _yÞ

0
0

2
6664

3
7775; φ¼

0
0
0

ε cos x3
1−ε2 cos 2 x3

~Fd

2
66664

3
77775: (16)

The additive state decomposition is ready to apply to the system (15), for which the primary system is chosen to be an LTI
system as follows:

_xp ¼Axp þ Bvp þ dþ φ

yp ¼ CTxp; xpð0Þ ¼ x0 (17)

where d¼ ϕðr;0Þ þ DFd. Then, according to the rule (11), the secondary system is derived from the original system (15) and
the primary system (17) as follows:

_xs ¼Axs þ Bvs þ ϕðyp þ ys; _yp þ _ysÞ−ϕðr;0Þ
ys ¼ CTxs; xsð0Þ ¼ 0 (18)

where vs ¼ v−vp. According to (12), we have

x¼ xp þ xs and y¼ yp þ ys: (19)

Remark 3. The pair ðA0;BÞ is uncontrollable, while the pair ðA0 þ εDðCþ aBÞT ;BÞ is controllable. Therefore, there always
exists a vector K such that A¼A0 þ BKT þ εDðCþ aBÞT is a stable matrix.

Remark 4. If yp≡r and _yp≡0; then ðxs; vsÞ ¼ 0 is a zero equilibrium point of the secondary system (18).

So far, the nonlinear nonminimum phase tracking system (15) is decomposed into two systems by the additive state
decomposition, where the external signal dþ φ is shifted to (17) and the nonlinear term ϕð�Þ is shifted to (18). The strategy
here is to assign the tracking (rejection) task to the primary system (17) and stabilization task to the secondary system (18),
as shown in Fig. 3. More concretely, in (17) design vp to track r, and design vs to stabilize (18). If so, by the relationship (19), y
can track r. In the following, controllers vp and vs are designed separately. There exist many mature methods for nonlinear
system state feedback stabilization, such as backstepping technique. It is well known that nonminimum phase behavior
restricts the application of basic nonlinear controllers. However, by the proposed decomposition, we only need to consider
state feedback stabilization for (18), namely nonminimum phase behavior is avoided for the stabilization problem. Hence,
the advantage of the proposed method lies in the decomposition of the problem into two well-studied control problems.

3.3. Tracking controller design for primary system

Before proceeding further, we have the following preliminary result. Consider the following linear system:

_z1 ¼ Szz1 þ A12ez
_z2 ¼ A21z1 þ A22z2 þ d1 þ φ1

ez ¼ CT
ez2 þ d2 þ φ2; zð0Þ ¼ z0 (20)

where Sz∈Rm1�m1 is a marginally stable matrix, A12∈Rm1 , Ce∈Rm2 , A21∈Rm2�m1 , A22∈Rm2�m2 , z1∈Rm1 , z2;d1;φ1∈Rm2 ,
z¼ ½zT1 zT2�T∈Rm1þm2 and ez; d2;φ2∈R.

Lemma 1. Suppose (i) φ1ðtÞ;φ2ðtÞ are bounded on ½0;∞Þ and limt-∞∥φ1ðtÞ∥¼ 0; limt-∞φ2ðtÞ ¼ 0, (ii) every element of
d1ðtÞ; d2ðtÞ is bounded on ½0;∞Þ and can be generated by _wz ¼ Szwz; dz ¼ CT

zwz with appropriate initial values, where
Tracking (Rejection) Task for
Nonlinear System (15):

State Stabilization Subtask for 
Nonlinear System (18):

Tracking (Rejection) Subtask
for Nonminimun Phase LTI 
System (17): py r 0sy

y r

p sy y y

Fig. 3. Additive state decomposition of the TORA system.
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Cz;wz∈Rm1 , (iii) the parameters in (20) satisfy

max Re λðAzÞo0; Az ¼
Sz A12C

T
e

A21 A22

" #
: (21)

Then in (20) limt-∞ezðtÞ ¼ 0, meanwhile keeping z1ðtÞ and z2ðtÞ bounded.

Proof. See Appendix B.

Define a filtered tracking error to be

ep ¼ ~yp þ a _~yp ¼ ðCþ aBÞTxp−r (22)

where ~yp ¼ yp−r. _r ¼ 0 and a40. Let us consider the tracking problem for the primary system (17). With Lemma 1 in hand,
the design of vp is stated in Theorem 2.

Theorem 2. For the primary system (17), let the controller vp be designed as follows:

_ξ ¼ Saξ þ L1ep
vpðξ; xp; rÞ ¼ LT2xp þ LT3ξ (23)

where Sa ¼ diagð0; SÞ; L1∈Rmþ1; L2∈R4 and L3∈Rmþ1 satisfy

max Re λðAaÞo0; Aa ¼
Sa L1ðCþ aBÞT
BLT3 A þ BLT2

" #
: (24)

Then limt-∞ypðtÞ ¼ r and limt-∞ _ypðtÞ ¼ 0 meanwhile keeping xpðtÞ and ξðtÞ bounded.

Proof. Incorporating the controller (23) into the primary system (17) results in

_ξ ¼ Saξ þ L1ep
_xp ¼ ðA þ BLT2Þxp þ BLT3ξ þ dþ φ

ep ¼ ðCþ aBÞTxp−r

where the definition (22) is utilized. Moreover, every element of d and r can be generated by an autonomous system in the
form _wa ¼ Sawa;da ¼ CT

awa with appropriate initial values, where Ca ¼ ½1 CT
d �T . By Lemma 1, if (24) holds, then

limt-∞epðtÞ ¼ 0 meanwhile keeping xpðtÞ and ξðtÞ bounded. It is easy to see from (22) that both ~yp and _~yp can be viewed
as outputs of a stable system with ep as input. This means that ~yp and _~yp are bounded if ep is bounded. In addition,
limt-∞ ~ypðtÞ ¼ 0 and limt-∞

_~ypðtÞ ¼ 0. □

In most of cases, the controller parameters L1; L2 and L3 in (23) can always be found. This is shown in the following
proposition.

Proposition 1. For any S¼−ST without eigenvalues 7 j, the parameters

L1 ¼ ½1 CT
d �T ; L2 ¼−

1
a
C−B−

1
a
H−

1
a
K; L3 ¼−

1
a
L1 (25)

can always make max Re λðAaÞo0, where H¼ ½0 ε 0 1�T .

Proof. See Appendix C.

Remark 5. Proposition 1 in fact implies that, in the presence of any external signal (except for the frequencies at 71), the
controller (23) with parameters (25) can always make limt-∞ypðtÞ ¼ r and limt-∞ _ypðtÞ ¼ 0 meanwhile keeping xpðtÞ and ξðtÞ
bounded. In other words, the disturbance like sin t cannot be dealt with, which is consistent with [9]. If the external signal
contains the component with frequencies at 71, then such a frequency component can be chosen not to compensate for,
i.e., Sa in (23) will not contain eigenvalues 7 j.

3.4. Stabilized controller design for secondary system

So far, we have designed the tracking controller for the primary system (17). In this section, we are going to design the
stabilized controller for the secondary system (18). It can be rewritten as

_x1;s ¼ x2;s
_x2;s ¼−x1;s þ ε sin ðx3;s þ rÞ−ε sin r þ g

_x3;s ¼ x4;s
_x4;s ¼KTxs þ vs; xsð0Þ ¼ 0 (26)
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where g¼ ε sin ðyp þ x3;sÞ−ε sin ðr þ x3;sÞ−εðyp þ a _yp−rÞ. Our constructive procedure has been inspired by the design in [4].
We will start the controller design procedure from the marginally stable ðx1;s; x2;sÞ�subsystem.

Step 1: Consider the ðx1;s; x2;sÞ�subsystem of (26) with x3;s viewed as the virtual control input. Differentiating the
quadratic function V1 ¼ 1

2 ðx21;s þ x22;sÞ results in

_V 1 ¼ εx2;s½ sin ðx3;s þ rÞ− sin r� þ εx2;sg: (27)

Guided by the state-feedback design [3], we introduce the following “Certainty Equivalence” (CE) based virtual controller

x3;s ¼−b atan x2;s þ x′3;s: (28)

Then

_x1;s ¼ x2;s

_x2;s ¼−x1;s þ 2ε sin
−b atan x2;s

2

� �
cos

−b atan x2;s þ 2r
2

� �
þ g′ (29)

where

g′¼ ε sin ðr−b atan x2;s þ x′3;sÞ−ε sin ðr−b atan x2;sÞ þ g: (30)

In order to ensure cos ðð−b atan x2;s þ 2rÞ=2Þ40, the parameter b is chosen to satisfy 0obo2ð1−2jrj=πÞ. Since r∈ð−π=2; π=2Þ
is a constant, b always exists. The term CE is used here because x′3;s ¼ 0 in (28) makes _V 1 in (27) negative semidefinite as
g≡0.

Step 2: We will apply backstepping to the ðx′3;s; x4;sÞ�subsystem and design a nonlinear controller vs to drive x′3;s to the
origin. By the definition (28), x′3;s ¼ x3;s þ b atan x2;s. Then the time derivative of the new variable x′3;s is

_x′3;s ¼ x4;s þ ψ þ b
1

1þ x22;s
g (31)

where ψ ¼ bð1=ð1þ x22;sÞÞ½−x1;s þ ε sin ðx3;s þ rÞ−ε sin r�. Define a new variable x′4;s as follows:

x′4;s ¼ x′3;s þ x4;s þ ψ : (32)

Then (31) becomes

_x′3;s ¼−x′3;s þ x′4;s þ b
1

1þ x22;s
g:

By the definition (32), the time derivative of the new variable x′4;s is

_x′4;s ¼ _x′3;s þ _x4;s þ _ψ

¼−x′3;s þ x′4;s þ b
1

1þ x22;s
g þ KTxs þ vs þ _ψ ;

where

_ψ ¼ −2bx2;s
1

ð1þ x22;sÞ2
½−x1;s þ ε sin ðx3;s þ rÞ−ε sin r� þ b

1
1þ x22;s

½−x2;s þ ε cos ðx3;s þ rÞx4;s�:

Design vs for the secondary system (26) as follows:

vsðxp; xs; rÞ ¼ x′3;s−2x′4;s−KTxs− _ψ : (33)

Then the ðx′3;s; x′4;sÞ�subsystem becomes

_x′3;s ¼−x′3;s þ x′4;s þ b
1

1þ x22;s
g

_x′4;s ¼−x′4;s þ b
1

1þ x22;s
g: (34)

It is easy to see that limt-∞x′3;sðtÞ ¼ 0 and limt-∞x′4;sðtÞ ¼ 0 as limt-∞limgðtÞ ¼ 0.
We are now ready to state the theorem for the secondary system.

Theorem 3. Suppose limt-∞ypðtÞ ¼ r and limt-∞ _ypðtÞ ¼ 0. Let the controller vs for the secondary system (26) be designed as
(33), where 0obo2ð1−2∥r∥=πÞ. Then limt-∞∥xsðtÞ∥¼ 0 meanwhile keeping xsðtÞ bounded.

Proof. See Appendix D.
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3.5. Controller synthesis for original system

It should be noticed that the controller design above is based on the condition that xp and xs are known as priori.
A problem arises that the states xp and xs cannot be measured directly except for x¼ xp þ xs. By taking this into account, the
following observer is proposed to estimate the states xp and xs, which is stated in Theorem 4.

Theorem 4. Let the observer be designed as follows:

_̂x s ¼Ax̂s þ Bvs þ ϕðy; _yÞ−ϕðr;0Þ
x̂p ¼ x−x̂s; x̂sð0Þ ¼ 0 (35)

where A is stable. Then x̂p≡xp and x̂s≡xs.

Proof. Since x¼ xp þ xs, we have y¼ yp þ ys. Consequently, (35) can be rewritten as

_̂x s ¼Ax̂s þ Bvs þ ϕðyp þ ys; _yp þ _ysÞ−ϕðr;0Þ
x̂p ¼ x−x̂s; x̂sð0Þ ¼ 0: (36)

Subtracting (18) from (36) results in

_~x s ¼A ~xs; ~xsð0Þ ¼ 0 (37)

where ~xs ¼ x̂s−xs. Then x̂s≡xs. Furthermore, with the aid of the relationship xp ¼ x−xs, we have x̂p≡xp. □

Remark 6. Unlike traditional observers, the proposed observer can estimate the states of the primary system and the
secondary system directly rather than asymptotically or exponentially. This can be explained that, although the initial value
x0 is unknown, the initial value of either the primary system or the secondary system can be specified exactly, leaving an
unknown initial value for the other system. The measurement x and parameters may be inaccurate. In this case, it is
expected that small uncertainties lead to x̂p close to xp (or x̂s close to xs). From (37), a stable matrix A can ensure a small ~xs

in the presence of small uncertainties.

Theorem 5. Suppose that the conditions of Theorems 1–4 hold. Let the controller u in the system (1) be designed as follows:

_ξ ¼ Saξ þ L1½ðCþ aBÞT x̂p−r�
u¼KTx þ vpðξ; x̂p; rÞ þ vsðx̂p; x̂s; rÞ þ

ε cos x3
1−ε2 cos 2 x3

F̂ d (38)

meanwhile keeping x and ξ bounded.

Proof. Note that the original system (1), the primary system (17) and the secondary system (18) have the relationship:
x¼ xp þ xs and y¼ yp þ ys. With the controller (38), for the primary system (17), limt-∞ypðtÞ ¼ r meanwhile keeping xp and
ξ bounded by Theorem 2. On the other hand, for the secondary system (18), we have limt-∞∥xsðtÞ∥¼ 0 meanwhile keeping
xs bounded on ½0;∞Þ by Theorem 3. In addition, Theorem 4 ensures that x̂p≡xp and x̂s≡xs. Therefore, limt-∞yðtÞ ¼ r
meanwhile keeping x and ξ bounded. □

4. Numerical simulation

In the simulation, set ε¼ 0:2 and the initial value x0 ¼ ½0 0 0 0�T in (1). The unknown dimensionless disturbance Fd
is generated by an autonomous LTI system (2) with the parameters as follows:

S¼ 0 2
−2 0

� �
; Cd ¼ ½1 0�T ; wð0Þ ¼ ½0 0:02�T :

The objective here is to design a controller u such that the output yðtÞ ¼ x3ðtÞ-r¼ 0:5 as t-∞ meanwhile keeping the other
states bounded.

The parameters of the observer (13) are chosen as l1 ¼ l2 ¼ 10. In (16), the parameters of A are chosen as a¼ 1 and
K¼ ½0 −ε −1 −2�T : Then max ReðλðAÞÞ ¼−0:01o0. Since matrix S does not possess the eigenvalues 7 j, the parameters of
the tracking controller (23) of the primary system can be chosen according to Proposition 1 that L1 ¼ ½1 CT

d �T ; L2 ¼ 0 and
L3 ¼ −L1. Then max Re λðAaÞ ¼−0:0084o0. The parameter b of the stabilized controller (33) is chosen as b¼ 1:5ð1−1=πÞo
2ð1−2jrj=πÞ.

The TORA system (1) is driven by the controller (38) with the parameters above. The evolutions of all states of (1) are
shown in Fig. 4. As shown, the proposed controller u drives the output yðtÞ ¼ x3ðtÞ-0:5 as t-∞, meanwhile keeping the
other states bounded. Moreover, the control signal is smooth and bounded.

Unlike the output regulation theory, the proposed method does not require the regulator equations. If the disturbance Fd
consists of more frequency components, i.e., S is more complicated, the designed controller above does not need to
be changed except for the corresponding S and Cd. This demonstrates the effectiveness of the proposed control method.
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For example, we consider that the unknown dimensionless disturbance Fd is generated by an autonomous LTI system (2)
with the parameters as follows:

S¼ diagðS1; S2Þ; S1 ¼
0 2
−2 0

� �
; S2 ¼

0 1:5
−1:5 0

� �
; Cd ¼ ½1 0 1 0�T ; wð0Þ ¼ ½0 0:02 0 0:02�T :

The controller in the first simulation is still applied to this case except for replacing S and Cd (the dimension is changed
correspondingly). Driven by the new controller, the evolutions of all states of (1) are shown in Fig. 5. As shown, the proposed
controller u drives the output yðtÞ ¼ x3ðtÞ-0:5 as t-∞, meanwhile keeping the other states bounded. Moreover, the control
signal is smooth and bounded.
5. Discussions

The idea of the proposed additive state decomposition has been implicitly mentioned in existing literature. For example,
a commonly used step to transform a tracking problem to a stabilization problem has implicitly used the additive state
decomposition, where the reference system presents the primary system, leaving the error dynamics to be the secondary
system. The decomposition here is with respect to state. So, we call it “additive state decomposition”. The authors also
proposed “additive output decomposition” [16], namely the decomposition is with respect to output. By additive state
decomposition, the output tracking task is decomposed into an output tracking subtask for an LTI system and a state
feedback stabilization subtask for a nonlinear system. Then one can design a controller for each subtask, respectively; these
are combined together to achieve the original control task. The tensor product (TP) model transformation [5,17,18] can offer
us another way to decompose the original system, namely two decomposed subsystems are both nonlinear but with one in
the form of TP model. The TP model can be considered as a class of linear-parameter-varying models by the convex
combination of linear LTI models. According to this, it is easier to deal with than a general nonlinear system. The additive-
state-decomposition-based control design methodology is in fact a framework rather than a control technology. By such a
framework, a tracking problem is decomposed into two well solved problems. Control methods in both the time domain and
frequency domain are applicable to the component systems. Owing to the decomposition, the resulting controller can avoid
conflict among tracking performance, rejection performance and robustness. This is similar to the idea of two-degree-of-
freedom control [19]. For further information on additive-state-decomposition-based control, readers can refer to [20–22].

The TORA is often of independent interest to sever as a benchmark for different nonlinear control methods. Some of
researchers have focused on global stabilization [18,23–25]. These methods can be applied to the stabilized controller design
for the secondary system under the framework of the proposed additive-state-decomposition-based control design. Due to
the decomposition, we can verify the performance of the designed stabilized controller separately. The difficulties will
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obviously increase as more general control problems such as output tracking and disturbance rejection are considered.
Motivated by this, the proposed additive-state-decomposition-based control aims to reduce the difficulties. In this paper, we
give the solutions to the controller design for the primary system and secondary system, but in fact do not have to limit them.
With different solutions, the resulting controller may achieve better performance and different requirements.
6. Conclusions

In this paper, the tracking (rejection) problem for rotational position of the TORA was discussed. Our main contribution
lies in the presentation of a new decomposition scheme, named additive state decomposition, which not only simplifies the
controller design but also increases flexibility of the controller design. By the additive state decomposition, the considered
system was decomposed into two subsystems in charge of two independent subtasks, respectively: an LTI system in charge
of a tracking (rejection) subtask, leaving a nonlinear system in charge of a stabilization subtask. Based on the decomposition,
the subcontrollers corresponding to two subsystems were designed separately, which increased the flexibility of design.
The tracking (rejection) controller was designed by the transfer function method, while the stabilized controller was
designed by the backstepping method. This numerical simulation has shown that the designed controller can achieve the
objective, moreover, can be changed flexibly according to the model of external signals.
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Appendix A. Proof of Theorem 1

The disturbance Fd∈R is generated by an autonomous LTI system (2) with an initial value wð0Þ. It can also be generated
by the following system:

_w ¼ Sw; Fd ¼ l1C
T
dw (A.1)
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with the initial value ð1=l1Þwð0Þ. Subtracting ((1d) and A.1) from (13) results in

_~w ¼ S ~w þ l1
ε cos x3

1−ε2 cos 2 x3
Cd ~x4

_~x4 ¼ −l2 ~x4−l1
ε cos x3

1−ε2 cos 2 x3
CT
d ~w (A.2)

where l1; l240, ~x4≜x̂4−x4 and ~w≜ŵ−w. Design a Lyapunov function as follows:

V1 ¼ 1
2
~wT ~w þ 1

2
~x24:

Taking the derivative of V1 along (A.2) results in

_V 1 ¼
1
2

~wT ðSþ ST Þ ~w þ l1 ~wT ε cos x3
1−ε2 cos 2 x3

Cd ~x4

−l2 ~x
2
4−l1 ~x4

ε cos x3
1−ε2 cos 2 x3

CT
d ~w :

By Assumption 2, Sþ ST ¼ 0. Then the derivative of V1 becomes

_V 1≤−l2 ~x
2
4≤0:

Since l240, from the inequality above, it can be concluded by LaSalle's invariance principle [14] that limt-∞ ~x4ðtÞ ¼ 0
and limt-∞ðε cos x3=ð1−ε2 cos 2 x3ÞÞCT

d ~wðtÞ ¼ 0.

Appendix B. Proof of Lemma 1

Before proving Lemma 1, we need the following preliminary result.

Lemma 2. If the pair ðAz;BzÞ is controllable, then there exists a C0∈Rm such that

CT
0ðsIm−AzÞ−1Bz ¼

1
detðsIm−AzÞ

where Az∈Rm�m and Bz∈Rm.

Proof. First, we have

ðsIm−AzÞ−1Bz ¼N½sn−1 ⋯ 1�T=detðsIm−AzÞ
where N∈Rm�m. If the pair ðAz;BzÞ is controllable, the matrix N is full rank [13]. We can complete this proof by choosing
C0 ¼ ðN−1ÞT ½0 ⋯ 0 1�T . □

With Lemma 2 in hand, we are ready to prove Lemma 1.
(i) For the system (20), we have

zðtÞ ¼ e−Aztz0 þ
Z t

0
e−Azðt−τÞðda þ φaÞðτÞ dτ; t≥0

where da ¼ ½dT
2A

T
12 dT

1�T and φa ¼ ½φT
2A

T
12 φ1�T . Based on the equation above, since λðAzÞo0 and ∥daðtÞ∥, ∥φaðtÞ∥ are bounded

on ½0;∞Þ, it is easy to see that ∥z1ðtÞ∥ and ∥z2ðtÞ∥ are bounded on ½0;∞Þ.
(ii) For the system (20), the Laplace transformation of zðsÞ is

zðsÞ ¼ ðsIm1þm2−AzÞ−1½daðsÞ þ φaðsÞ þ z0�:
Then z1ðsÞ ¼ CT

a ðsIm1þm2−AzÞ−1½daðsÞ þ φaðsÞ þ z0�, where Ca ¼ ½Im1 0m1�m2 �T : The condition λðAzÞo0 implies that the pair
ðSz;A12Þ is controllable. Otherwise, for the autonomous system _z ¼ Azz, the variable z1 cannot converge to zero as Sz is a
marginally stable matrix. This contradicts with the condition λðAzÞo0. Then by Lemma 1, there exists a C0∈Rm1 such that

CT
0z1ðsÞ ¼

1
detðsIm1−SzÞ

ezðsÞ:

Then ezðsÞ can be written as

ezðsÞ ¼ detðsIm1−SzÞCT
0z1ðsÞ

¼Q ðsÞ detðsIm1−SzÞ½daðsÞ þ φaðsÞ þ z0�

where Q ðsÞ ¼ CT
0C

−1
a ðsIm1þm2−AzÞ−1Da. Since every element of da can be generated by _wz ¼ Szwz; dz ¼ CT

zwz, we have
daðsÞ ¼ ½CT

z ðsIm1−SzÞ−1wz;ið0Þ�ðm1þm2Þ�1, where wz;ið0Þ∈R. Since ðsIm1−SzÞ−1 ¼ ð1=detðsIm1−SzÞÞadjðsIm1−SzÞ, ezðsÞ is further
represented as

ezðsÞ ¼Q ðsÞCT
dwzð0Þ½CT

z adjðsIm1−SzÞwz;ið0Þ�ðm1þm2Þ�1
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þðsIm1þm2−AzÞ−1½φaðsÞ þ z0�: (B.1)

Since λðAzÞo0 and the order of Az is higher than that of Sz, moreover ∥φaðtÞ∥ is bounded on ½0;∞Þ and limt-∞∥φaðtÞ∥¼ 0, for
any initial value wz;ið0Þ, we have limt-∞limezðtÞ ¼ 0 from (B.1).

Appendix C. Proof of Proposition 1

If we can prove that the following system:

_ξ ¼ Saξ þ L1ðCþ aBÞTxp

_xp ¼ ðA þ BLT2Þxp þ BLT3ξ (C.1)

is asymptotic stable, then Re λðAaÞo0 holds. Choose a Lyapunov function as follows:

V ¼ 1
2 ξ

Tξ þ 1
2 x

2
1;p þ 1

2 x
2
2;p þ 1

2p
2

where p¼ x3;p þ ax4;p ¼ ðCþ aBÞTxp. With the parameters L1 ¼ ½1 CT
d �T ; L2 ¼−ð1=aÞC−B−ð1=aÞH−K and L3 ¼ −ð1=aÞL1, the

derivative of V along (C.1) is

_V ¼−p2:

Define S ¼ fxj _V ðxÞ ¼ 0g, where x¼ ½ξT xT
p �T . The remaindering work is to prove S ¼ fxjx¼ 0g. If so, by LaSalle's invariance

principle [14], we have limt-∞∥xðtÞ∥¼ 0. Therefore, the system (C.1) with the parameters is globally asymptotically stable.
Then Re λðAaÞo0.

Since _V ¼ 0⇒p¼ 0 and a40, we have S ¼ fxjx3;p ¼ x4;p ¼ 0g. Let x be a solution belonging to S identically. Then, from
(C.1), we have

_ξ ¼ Saξ (C.2)

_x1;p ¼ x2;p; _x2;p ¼ −x1;p (C.3)

0¼−εx2;p þ LT3ξ (C.4)

From (C.3), it holds that

x2;p∈S1 ¼ ½0 1�ξj_ξ ¼ 0 1
−1 0

� �
ξ

� �
:

On the other hand, from (C.(2) and C.4), it holds that

x2;p∈S2 ¼
1
ε
LT3ξj_ξ ¼ Saξ

��

where matrix Sa does not possess eigenvalues 7 j since matrix S does not. Therefore x2;p∈S1∩S2 ¼ f0g and then x1;p ¼ 0,
namely S ¼ fxjxp ¼ 0g.

Let x be a solution that belongs identically to S. Then LT3ξ¼ 0 by (C.4). Since the pair ðCT
d ; SÞ is observable, by the definition

L1 ¼ −ð1=aÞ½1 CT
d �T , the pair ðLT3; SaÞ is observable as well. Consequently, we can conclude that ξ¼ 0, namely

S ¼ fxjx¼ ½ξT xT
p �T ¼ 0g.

Appendix D. Proof of Theorem 3

This proof is composed of three parts.
Part 1. limt-∞x′3;sðtÞ ¼ 0, limt-∞x′4;sðtÞ ¼ 0 and limt-∞g′ðtÞ ¼ 0 as limt-∞gðtÞ ¼ 0. If limt-∞ypðtÞ ¼ r and limt-∞ _ypðtÞ ¼ 0;

then from the definition of ϕðy; _yÞ, we have limt-∞gðtÞ ¼ 0 no matter what ys is. According to this, it is easy from (34) to see
that limt-∞x′3;sðtÞ ¼ 0 and limt-∞x′4;sðtÞ ¼ 0 when the controller vs for the secondary system (26) is designed as (33). Then,
in (29), limt-∞g′ðtÞ ¼ 0.

Part 2. limt-∞x1;sðtÞ ¼ 0 and limt-∞x2;sðtÞ ¼ 0. Since 0obo2ð1−2∥r∥=πÞ, the derivative V1 in (27) negative semidefinite
when g′ðtÞ≡0, namely,

_V 1 ¼ 2εx2;s sin
−b atan x2;s

2

� �
cos

−b atan x2;s þ 2r
2

� �
≤0;

where the equality holds at some time instant t≥0 if and only if x2;sðtÞ ¼ 0. By LaSalle's invariance principle [14] that
limt-∞x1;sðtÞ ¼ 0 and limt-∞x2;sðtÞ ¼ 0 when g′ðtÞ≡0. Because of the particular structure of ðx1;s; x2;sÞ�subsystem (29), by
using [15, Lemma 3.6], one can show that any globally asymptotically stabilizing feedback for ðx1;s; x2;sÞ�subsystem (29)
when g′ðtÞ≡0 achieves global asymptotic stability of ðx1;s; x2;sÞ�subsystem (29) when limt-∞g′ðtÞ ¼ 0. Therefore, based on
Part 1, limt-∞x1;sðtÞ ¼ 0 and limt-∞x2;sðtÞ ¼ 0.
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Part 3. Combining the two parts above, we have limt-∞∥xsðtÞ∥¼ 0. For the ðx1;s; x2;sÞ�subsystem and ðx′3;s;
x′4;sÞ�subsystem, ∥xsðtÞ∥ is bounded in any finite time. With the obtained result limt-∞∥xsðtÞ∥¼ 0, we have ∥xsðtÞ∥ is
bounded on ½0;∞Þ.
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