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SUMMARY

In this paper, an internal-model-based controller (IMBC) is designed to reject an external signal generated
by a class of infinite-dimensional systems for a class of nonlinear systems. First, a new description of the
external signal is proposed. By this new description, the IMBC is designed, and the resulting closed-loop
error dynamics are analyzed with the help of a Lyapunov–Krasovskii functional. Compared with existing
IMBCs, the designed IMBC provides the flexibility to cope with more types of external signals as well as to
choose controller parameters to achieve a tradeoff between rejection performance and stability. Finally, the
method is applied to attitude control of a quadrotor aircraft. Effectiveness of the IMBC is demonstrated by
simulation. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The internal-model-based control (IMBC, or internal-model-based controller, also designated
IMBC) has received considerable attention over these years [1–4]. The external signals considered
therein are usually assumed to be generated by finite-dimensional systems. However, many external
signals, such as the triangular wave, are only generated by infinite-dimensional systems. For such
external signals, there has been little research on designing IMBCs for linear systems [5–7], let
alone designing IMBCs for nonlinear systems. This motivates us to design an IMBC for a class of
nonlinear systems to reject an external signal generated by a class of infinite-dimensional systems
[8, 9]. There exist two major difficulties.

(i) It is difficult to design the IMBC by frequency-domain methods. The internal model principle
[10] reveals that asymptotic tracking (or rejection) of the external signal can be achieved by
incorporating a copy of the exogenous dynamics, namely the infinite-dimensional system, in
the feedback loop. When the infinite-dimensional system and its copy reduce to systems as
w.t/ D w.t � T /, the resulting closed-loop system becomes a repetitive control system cor-
respondingly [11]. In other words, a repetitive control system is a special case of the resulting
closed-loop system. It was proved in [11] that, for a class of general linear plants, exponential
stability of repetitive control systems could be achieved only when the plant is proper but not
strictly proper. For this reason, as shown in Figure 1, a filtered repetitive controller‡ was further
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Figure 1. A suitable filter Q.s/ is introduced into a repetitive controller to form a filtered repetitive
controller.

proposed to achieve a tradeoff between the tracking (or rejection) performance and stability
[11, 12]. With the considered external signals, we also need to consider a tradeoff between
the tracking (or rejection) performance and stability in the resulting closed-loop system when
designing the IMBC. Unfortunately, it is not trivial to follow the idea of the filtered repetitive
controller because the related theories are derived in the frequency domain and can be applied
only with difficulty, if at all, to nonlinear systems.

(ii) It is difficult to design the IMBC by the geometric approach. The geometric approach
[1],[2, pp. 10, 43–44],[10, 13] is often used to design IMBCs. However, the existing theories
on geometric approach are only applicable to the case where the closed-loop system is
finite dimensional. Whereas, when the external signal is generated by an infinite-dimensional
system, the resulting closed-loop system, which contains the copy, is infinite dimensional
as well.

To overcome the two major difficulties earlier, a new description of the external signal is proposed,
and the resulting closed-loop error dynamics are analyzed with the help of a Lyapunov–Krasovskii
functional. The contributions of this paper are (i) for a class of nonlinear systems, a novel method
to design an IMBC to reject an external signal generated by an infinite-dimensional system;
(ii) a tradeoff achieved by tuning controller parameters between rejection performance and stability;
(iii) a new model proposed to describe a signal generated by an infinite-dimensional system.

We use the following notation. Rn is Euclidean space of dimension n, and RC denotes the
space of nonnegative reals in R. k�k denotes the Euclidean vector norm or induced matrix norm.
C .Œ�T , 0�IRn/ denotes the space of continuous n-dimensional vector functions on Œ�T , 0�. kxtkc ,

sup
�2Œ�T ,0�

kx.t C �/k, where xt , xt .�/ D x.t C �/, � 2 Œ�T , 0�. �min.X/ and �max.X/ denote the

minimum and maximum eigenvalues, respectively, of a symmetric matrix X . X> is used for the
transpose of matrix X . X > 0.X > 0,X < 0,X 6 0/ denotes matrix X is a positive definite
(positive semidefinite, negative definite, negative semidefinite) matrix. In is the identity matrix with
dimension n. 0n1�n2 denotes a zero matrix with dimension n1 � n2.

2. EXTERNAL SIGNAL

The external signal is assumed to be generated by a class of infinite-dimensional systems. In this
section, we introduce the class of systems and propose a new model to describe the external signal.
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2.1. A class of infinite-dimensional systems

Before introducing the class of systems, we define

Dy.t/,
�
y1.t/

Py2.t/

�
,Fy.t/,

�
y1.t � T /
y2.t/

�

where y.t/ D
�
y>1 .t/ y>2 .t/

�>
2 Rp1Cp2 , y1.t/ 2 Rp1 and y2.t/ 2 Rp2 . ‘�’ represents the

right-hand derivative here. For simplicity, let p D p1C p2.

Assumption 1
The external signal w.t/ is generated by a class of infinite-dimensional systems as follows:

Dxw.t/DFAwxw.t/
w.t/DCwxw.t/, xw.�/D '.�/, � 2 Œ�T , 0� (1)

where xw.t/ 2 Rp ,Aw 2 Rp�p , and Cw 2 Rm�p . Moreover, sup
t2Œ0,1/

kxw.t/k < M1 < 1 and

sup
t2Œ0,1/

k Pxw.t/k<M2 <1, where M1,M2 2RC.

Example 1 shows that the system (1) can represent not only a finite-dimensional system but also
an infinite-dimensional system.

Example 1
For simplicity, let

Aw D

�
A1 A2
A3 A4

�
,A1 2R

p1�p1 ,A2 2R
p1�p2 ,A3 2R

p2�p1 ,A4 2R
p2�p2 ,

Cw D
�
C1 C2

�
,C1 2R

m�p1 ,C2 2R
m�p2 .

If p1 D 0, then the system (1) reduces to a finite-dimensional system Pxw.t/ D A4xw.t/,
w.t/ D C2xw.t/. If p2 D 0, then the system (1) reduces to an infinite-dimensional system
xw.t/D A1xw.t � T /, w.t/D C1xw.t/. In particular, if p1 Dm, A1 D Im, and C1 D Im, then (1)
becomes w.t/ D w.t � T /, which can generate any T -periodic signal vector. If p1 D p2 D m,
A1 D C1 D 0m�m, and A2 D C2 D Im, then the system (1) reduces to a retarded system
Pw.t/D A4w.t/CA3w.t � T /.

2.2. New description

It is well known that, with an appropriate initial condition, any step signal or any T -periodic signal
can be generated by an autonomous system, namely Pw.t/D 0 or w.t/D w.t � T /, respectively. In
fact, both types of signal can be described by nonautonomous systems as well. It is easy to verified
that, any step signal can also be generated by Pw.t/D�˛w.t/C�.t/, where �.t/D ˛w.t/ is viewed
as a signal depending on t , and any T -periodic signal satisfying Assumption 1 can be generated by
˛ Pw.t/D�w.t/C .1�˛/w.t �T /C�.t/, where �.t/D ˛Œw.t �T /C Pw.t/� is viewed as a signal
depending on t . In particular, by setting ˛ D 0, the descriptions in form of nonautonomous systems
reduce to those in form of autonomous systems. With the freedom of ˛, the former is more general.
This will help to design an IMBC that can recover a filtered repetitive controller. In the following, a
new description of the external signal generated by (1) is proposed. Before proceeding further, we
introduce the following system:

Aw0 Pxv.t/DAw1xv.t/CAw2xv.t � T /C �.t/

v.t/DCwxv.t/, xv.�/D '.�/, � 2 Œ�T , 0� (2)

where xv.t/ 2Rp and Aw0 ,Aw1 ,Aw2 2R
p�p .
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Lemma 1
Under Assumption 1,

�
x�w ,w

�
is the solution of (1). Then, there exists a bounded function � such

that the solution
�
x�v , v

�
of (2) satisfies

x�v D x
�
w , v D w (3)

where � can be chosen as follows:

�.t/D Aw0 Px
�
w.t/�Dx�w.t/�FAwx�w.t/�Aw1x�w.t/�Aw2x�w.t � T /. (4)

Proof
Under Assumption 1, because

�
x�w ,w

�
is the solution of (1), thus

Dx�w.t/DFAwx�w.t/
w.t/DCwx

�
w.t/, x

�
w.�/D '.�/, � 2 Œ�T , 0�.

The aforementioned system can be rewritten as

Aw0 Px
�
w.t/DAw1x

�
w.t/CAw2x

�
w.t � T /C �.t/

w.t/DCwx
�
w.t/, x

�
w.�/D '.�/, � 2 Œ�T , 0� (5)

where �.t/ is defined in (4). Therefore,
�
x�w ,w

�
is also a solution of the system (2) when the system

is driven by the �.t/ defined in (4). By the uniqueness of solutions, there exists such a function �
that Equation (3) holds. Because sup

t2Œ0,1/
kxw.t/k < M1 < 1 and sup

t2Œ0,1/
k Pxw.t/k < M2 < 1 by

Assumption 1, the function � is bounded. �

From Lemma 1, w.t/ defined in (1) can also be generated by

Aw0 Pxw.t/DAw1xw.t/CAw2xw.t � T /C �.t/

w.t/DCwxw.t/ (6)

with an appropriate initial condition and a bounded function � . In particular, the new description (6)
can reduce to (1).

Examples 2 and 3 are given to show the effectiveness of Lemma 1.

Example 2
If p1 D 0, p2 D 3, and Aw ,Cw in the system (1) are

Aw D 03�1,Cw D I3 (7)

then the system (1) reduces to

Pxw.t/D 03�1,w.t/D xw.t/ (8)

where xw.t/ 2 R3. Then, the external signal w.t/ represents a vector of step signals. From
Lemma 1, any external signal w.t/ generated by the system (1) can also be generated by (6) with

Aw0 D I3 2R
3�3,Aw1 D Aw � ˛I3 2R

3�3,Aw2 D 03�3 (9)

and a bounded function � , where ˛ 2 R. By setting ˛ D 0, then �.t/ � 0 and the new description
(6) with (9) reduces to (8).

Example 3
If p1 D 3, p2 D 0, and Aw ,Cw in the system (1) are

Aw D I3,Cw D I3 (10)

then the system (1) reduces to

w.t/D w.t � T /. (11)
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The external signal w.t/ can represent any T -periodic signal. If Aw0 ,Aw1 , and Aw2 are chosen
to be

Aw0 D ˛I3,Aw1 D�I3,Aw2 D .1� ˛/I3, (12)

where ˛ 2R, then by Lemma 1, the system (6) is simplified to

˛ Pw.t/D�w.t/C .1� ˛/w.t � T /C �.t/. (13)

By setting ˛ D 0, then �.t/� 0 and (13) reduces to (11).

The new description (6) is a retarded system driven by an external signal �.t/, t 2 Œ0,1/.
The retarded system can be designed appropriately to achieve a tradeoff between its stability and
the bound on k�.t/k, t 2 Œ0,1/. In Examples 2 and 3, setting ˛ D 0 results in �.t/ � 0,
but the resulting systems are marginally stable, whereas with ˛ > 0, the retarded systems are
asymptotically stable, although sup

t2Œ0,1/
k�.t/k > 0. We next examine the relationship between

�.t/ and ˛ in Example 3 by the frequency response method. The Laplace transform of (13)
results in �.s/ D G.s/w.s/, where �.s/ and w.s/ are the Laplace transforms of �.t/ and w.t/,
respectively; G.s/ D ˛s C 1 � .1 � ˛/ exp.�sT /. The frequency responses of G.s/ with T D 2�
and ˛ D 0.1, 0.05, 0.01 are shown in Figure 2.

As shown in Figure 2, G.s/ has a comb shape with notches matching the frequencies of the
periodic signal w.t/. This makes the frequency response of G.s/ close to zero at k, k D 0, 1, 2, � � � .
As the parameter ˛ decreases, the periodic components, especially in low frequency band, will be
attenuated by G.s/ more strongly. Since low frequency band is dominant in most periodic signals,
this will result in a smaller upper bound on k�.t/k. In particular, �.t/� 0 when ˛ D 0.
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Figure 2. Frequency responses of G.s/.
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3. PROBLEM FORMULATION

To illustrate the generality of the IMBC, we consider the following nonlinear error dynamics
[14, 15]:

Pe.t/D f .t , e.t//C b.t , e.t// Œw.t/� Ow.t/� (14)

where e.t/ 2 Rn is the error, f W RC � Rn ! Rn and b W RC � Rn ! Rn�mIw.t/ 2 Rm is an
external signal satisfying Assumption 1; Ow.t/ 2Rm is an estimate of w.t/ to be specified.

We impose the following assumption on the system (14).

Assumption 2
For Pe.t/ D f .t , e.t//, there exists a known function V0 W RC � Rn ! RC that satisfies the
following inequalities

c1 ke.t/k
2 6 V0.t , e.t//6 c2 ke.t/k

2

@V0

@t
C
@V0

@e
f .t , e.t//6 �c3 ke.t/k

2
(15)

where c1, c2, and c3 are all positive reals.
Under Assumptions 1 and 2, the control objective is to seek an IMBC, which generates Ow.t/, to

reject the external signal w.t/.

Remark 1
Note that a sine wave and a triangular wave are bounded; moreover, their right-hand derivatives
exist and are also bounded; hence, Assumption 1 is satisfied whenw.t/ is a sine wave or a triangular
wave. If the zero solution of Pe.t/ D f .t , e.t// is globally exponentially stable, then Assumption 2
is satisfied. As in [16] and [17], exponentially stable controllers together with the considered plants
therein can result in the error dynamics as Pe.t/D f .t , e.t// and make Assumption 2 hold.

4. INTERNAL-MODEL-BASED CONTROLLER DESIGN AND STABILITY ANALYSIS

In this section, the IMBC is designed by using the new description (6). Stability of the resulting
closed-loop error dynamics is then analyzed with the help of a Lyapunov–Krasovskii functional.
These results are stated in Theorem 1.

4.1. Internal-model-based controller design

By the new description (6), we design the IMBC as follows:

Aw0
POxw.t/DAw1 Oxw.t/CAw2 Oxw.t � T /CH.t , e.t//

Ow.t/DCw Oxw.t/, Oxw.�/D 0, � 2 Œ�T , 0� (16)

where H.t , e.t// 2Rp will be designed later and Oxw.t/ 2Rp . Subtracting (16) from (6) yields

Aw0
PQxw.t/DAw1 Qxw.t/CAw2 Qxw.t � T /�H.t , e.t//C �.t/

Qw.t/DCw Qxw.t/ (17)

where Qxw , xw � Oxw and Qw , w � Ow. In (17), the initial condition on Qxw is bounded. We do
not concern ourselves with the concrete value of the initial condition as the following results hold
globally. Combining (14) and (17) yields the closed-loop error dynamics as follows:

E Ṕ.t/D fa.t , ´.t//C fd .´.t � T //C ba.t , ´.t//�.t/ (18)

with ´D

�
Qxw
e

�
2RpCn,fa.t , ´.t//D

�
Aw1 Qxw.t/�H.t , e.t//

f .t , e.t//C b.t , e.t//Cw Qxw.t/

�
2RpCn,fd .´.t � T //D�

Aw2 Qxw.t � T /
0n�1

�
2 RpCn,E D

�
Aw0 0p�n
0n�p In

�
2 R.pCn/�.pCn/, ba.t , ´.t// D

�
Ip
0n�p

�
2

R.pCn/�p .
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4.2. Stability analysis

To begin with, the following result is needed.

Definition 1 ([18])
A solution ´.t , ´t0/ of (18) is said to be uniformly ultimately bounded with respect to the bound �
if for each ı > 0, there exists T 0 D T 0.�, ı/ > 0 independent of t0 > 0 such that

��´.t , ´t0/�� 6 � for
all t > t0C T 0 when

��´t0��c < ı, where ´t0 2 C .Œ�T , 0�IRn/.

Lemma 2 ([18])
Assume that there exists a continuously differentiable functional V.t , ´t / WRC�C .Œ�T , 0�IRn/!
RC such that

�1 k´.t/k
2 6 V.t , ´t /6 �2 k´.t/k2C

Z t

t�T

k´.s/k2 ds (19)

where �1 and �2 are positive reals. If there exists ı0 2RC such that

PV .t , ´t /6 ��3 k´.t/k2C ı0 (20)

where �3 is a positive real, then the solutions of (18) are uniformly ultimately bounded with respect

to the bound
q
.1C �1/

ı0
�1�3

.�2C T /, where �1 is an arbitrarily small positive real.

Theorem 1
Suppose (i) Assumptions 1 and 2 hold; (ii) in (16), 0 6 Aw0 D A>w0 2 R

p�p; moreover, there exist
a 	 2RC and a positive real " such that


C "�0LL
> 6 0 (21)

where


D

�
Aw1 CA

>
w1
C	Ip Aw2

A>w2 �	Ip

�
,LD

�
Ip 0p�p

�>
and �0 D sup

t2Œ0,1/
k�.t/k I

(iii) the estimate Ow.t/ in the system (14) is generated by (16) with

H.t , e.t//D C>w b
>.t , e.t//

@V0

@e
(22)

and Aw0 ,Aw1 ,Aw1 satisfying (21). We claim that (i) if �0 D 0, then e 2 L1Œ0,1/ \ L2Œ0,1/;
(ii) if Aw0 > 0, 	 > 0, and �0 > 0, then for any bounded initial condition, e.t/ in (18) is uniformly
ultimately bounded with respect to the bound � defined in (29).

Proof
For (18), design a Lyapunov–Krasovskii functional W.t , ´t / as

W.t , ´t /D 2V0.t , e.t//C Qx
>
w .t/Aw0 Qxw.t/C	

Z t

t�T

Qx>w .s/ Qxw.s/ds (23)

where V0 satisfies Assumption 2, 06 Aw0 D A>w0 2R
p�p and 	 2RC.

Taking the time derivative of W.t , ´t / along (18) yields

PW .t , ´t /D2
@V0

@t
C 2

	
@V0

@e


>
f .t , e.t//C 2

	
@V0

@e


>
b.t , e.t//Cw Qxw.t/

� 2 Qx>w .t/H.t , e.t//C Nx
>
w .t/
 Nxw.t/C 2 Qx

>
w .t/�.t/ (24)

where Nxw.t/D
�
Qx>w .t/ Qx>w .t � T /

�>
2R2p .
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Since 
 6 �"�0LL> by (21), we obtain Nx>w .t/
 Nxw.t/ 6 �"�0 k Qxw.t/k
2. Then, further using

Assumption 2 and (22), we have

PW .t , ´t /6 �2c3 ke.t/k2 � "�0 k Qxw.t/k2C 2�0 k Qxw.t/k . (25)

On the basis of the aforementioned results, we now prove conclusions (i) and (ii).

(i) If �0 D 0, then (25) becomes

PW .t , ´t /6 �2c3 ke.t/k2 . (26)

From the aforementioned inequality, we obtain

W.t , ´t /6W.0, ´0/. (27)

Integrating both sides of (26) yields

W.t , ´t /�W.0, ´0/6 �2c3
Z t

0

ke.s/k2 ds.

Note that W.t , ´t /> 0 and c3 > 0, the aforementioned inequality becomesZ t

0

ke.s/k2 ds 6 1

2c3
W.0, ´0/. (28)

Because W.t , ´t / > 2V0.t , e.t// > c1 ke.t/k
2 by Assumption 2, hence e 2 L1Œ0,1/ \

L2Œ0,1/ by (27) and (28).
(ii) For all positive reals " and �0, we have

�
"

2
�0 k Qxw.t/k

2C 2�0 k Qxw.t/k �
2

"
�0 6 0

then (25) becomes

PW .t , ´t /6 �2c3 ke.t/k2 �
"

2
�0 k Qxw.t/k

2C
2

"
�0.

With 	 > 0, let V.t , ´t / D 1
�
W.t , ´t /. Note that k´.t/k2 D ke.t/k2 C k Qxw.t/k

2,

then the inequality (19) is satisfied with �1 D 1
�

min.2c1,�min.Aw0// and �2 D
1
�

max.2c2,�max.Aw0//. Moreover, the inequality (20) is satisfied with �3 D 1
�

min
�
2c3, "

2
�0
�

and ı0 D 2
�"
�0. Because Aw0 > 0 and �0 > 0, hence �1, �2, �3, ı0 are all positive reals. Note

the fact that ke.t/k6 k´.t/k by the definition of ´.t/, then e.t/ in (18) is uniformly ultimately
bounded with respect to the bound

� D

s
2.1C �1/�0

�
max.2c2,�max.Aw0//C	T

�
"min.2c1,�min.Aw0//min

�
2c3, "

2
�0
� (29)

by Lemma 2, where �1 is an arbitrarily small positive real.

�

Remark 2
Obviously, the time-domain analysis proposed in this paper can also be applicable to linear systems.
Compared with the frequency-domain analysis, the proposed analysis can give some performance
specifications in the time domain, such as the ultimate bound.

5. ATTITUDE CONTROL OF A QUADROTOR AIRCRAFT

To show its effectiveness, we apply the proposed method to attitude control of a quadrotor aircraft
subject to disturbances.
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5.1. Error dynamics

The unit quaternion is a vector denoted by .q0 q/, where q0.t/ 2 R, q.t/ 2 R3 are the scalar part
and vector part of the unit quaternion, respectively, and q20.t/C kq.t/k

2 D 1. The unit quaternion,
which is free of singularity, is used to represent the attitude kinematics of a quadrotor aircraft as
follows [19]:

Pq.t/D
1

2
Œq.t/�!.t/C q0.t/!.t/� (30)

Pq0.t/D�
1

2
q>.t/!.t/ (31)

where !.t/ 2R3 denotes the angular velocity of the airframe in the body fixed frame. For simplicity,
the dynamic equation of attitude motion is assumed to be

P!.t/D�J�1!.t/� J!.t/C J�1�.t/Cw.t/ (32)

where J 2 R3�3 is the inertial matrix, �.t/ 2 R3 is the control torque, and w.t/ 2 R3 is the dis-
turbance vector. By the coordinate transformation x D ! C 2q, the systems (30)–(32) is converted
as follows:

Pq.t/D
1

2
Œq.t/� x.t/C q0.t/x.t/�� q0.t/q.t/

Pq0.t/D�
1

2
!>.t/x.t/C q.t/ (33)

Px.t/D�J�1!.t/� J!.t/C J�1�.t/C Œq.t/� x.t/C q0.t/x.t/� 2q0.t/q.t/�Cw.t/.

Design � D J
�
J�1! � J! � .q � xC q0x/C 2q0q � 2x � Ow

�
. Then,

Pq.t/D
1

2
Œq.t/� x.t/C q0.t/x.t/�� q0.t/q.t/

Pq0.t/D�
1

2
!>.t/x.t/C q.t/ (34)

Px.t/D�2x.t/Cw.t/� Ow.t/.

The aforementioned system can be rewritten in the form of (14) with

e D
�
q> x>

�>
,

f .t , e.t//D

�
1
2
.q.t/� x.t/C q0.t/x.t//� q0.t/q.t/

�2x.t/

�
,

b.t , e.t//D

�
03�3
I3

�
.

Here, q0.t/ is generated by Pq0.t/D�12!
>.t/x.t/C q.t/.

5.2. Verification of Assumption 2

For the system Pe.t/D f .t , e.t//, the Lyapunov function is chosen to be

V0.t/D Œ1� q0.t/�
2C q>.t/q.t/C x>.t/x.t/.

The derivative of V0.t/ along Pe.t/D f .t , e.t// is

PV0.t/D
@V0

@t
C
@V0

@e
f .t , e.t//

Dq>.t/Œ�2q.t/C x.t/�� 4x>.t/x.t/ (35)

6� ke.t/k2 .
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Let q>.t/q.t/D sin2 �
2

and q0.t/D cos �
2

, where 06 � 6 � [2, pp. 198]. Then,

Œ1� q0.t/�
2C q>.t/q.t/D2� 2q0.t/

D2� 2 cos
�

2

D4 sin2
�

4
.

Since sin2 �
4
6 sin2 �

2
when 06 � 6 � , we have Œ1�q0.t/�2Cq>.t/q.t/6 4 kq.t/k2. Consequently,

1

2
ke.t/k2 6 V0.t/6 4 ke.t/k2 . (36)

From (36) and (35), Assumption 2 is satisfied.

5.3. Numerical simulation

The simulation parameters are chosen as follows: the inertial matrix J of a quadrotor aircraft is as
in [19] that J D diag.0.16, 0.16, 0.32/ kg�m2. The initial condition of (30)–(32) is q0.0/ D 0.707,

q.0/D
�
�0.4 �0.3 0.5

�T
, and !.0/D

�
0 0 0

�T
rad/s.

5.3.1. Case 1: w is a vector of step disturbances. The external signal w.t/ �
�
1 1 1

�T
N� m

is assumed to be the vector of step disturbances, which can be generated by the system (1) with (7).
Assumption 1 is satisfied. If Aw0 ,Aw1 , and Aw2 are chosen as in (9), then 
 in (21) becomes


D

�
.�2˛C	/I3 03�3

03�3 �	I3

�
.

If ˛ D 0, then �0 D 0 in the example. The inequality (21) is satisfied with 	 D 0. If ˛ > 0, then
�0 > 0. The inequality (21) is satisfied with 	 D ˛

2
and " D ˛

2�0
. Then, the IMBC (16) can be

written as

POxw.t/D� ˛ Oxw.t/C 2x.t/

Ow.t/DOxw.t/, Oxw.�/D 0, � 2 Œ�T , 0�. (37)

Under Assumptions 1 and 2, we can conclude by Theorem 1 that if ˛ D 0, then e 2 L1Œ0,1/ \
L2Œ0,1/ when the system (34) is driven by the IMBC (37). Furthermore, in this case, the func-
tion f W RC � Rn ! Rn and the function b W RC � Rn ! Rn�m in (14) are bounded when e
is bounded on RC. Then, Pe 2 L1Œ0,1/. This implies that lim

t!1
ke.t/k D 0 by Barbalat’s lemma

[20]. Under Assumptions 1 and 2, if ˛ > 0, then the tracking error e.t/ is uniformly ultimately
bounded. For rejection performance comparison, we define E.t/ D ke.t/k. As shown in Figure 3,
E.t/ approaches 0 as t increases with ˛ D 0 and E.t/ is bounded with ˛ D 0.1 or 0.05. These
results are consistent with conclusion (i) and conclusion (ii) in Theorem 1, respectively.

5.3.2. Case 2: w is a vector of T -periodic disturbances. The external signal w.t/ D
�

sin.t/

sin.t C 1/ cos.t/ sin2.t C 1/
�T

N �m is assumed to be the vector of T -periodic disturbances
(T D 2�), which can be generated by the system (1) with (10). Assumption 1 is satisfied. If
Aw0 ,Aw1 , and Aw2 are chosen as in (12), then 
 in (21) becomes


D

�
.�2C	/I3 .1� ˛/I3
.1� ˛/I3 �	I3

�
.

If ˛ D 0, then �0 D 0. The inequality (21) is satisfied with 	 D 1. If ˛ > 0, then �0 > 0. The
inequality (21) is satisfied with 	D 1 and "D ˛

2�0
. The IMBC (16) can be written as

˛ POxw.t/D� Oxw.t/C .1� ˛/ Oxw.t � T /C 2x.t/

Ow.t/DOxw.t/, Oxw.�/D 0, � 2 Œ�T , 0�. (38)
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Figure 3. The evolution of E.t/ with different ˛ under step disturbances.
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Figure 4. The evolution of E.t/ with different ˛ under T -periodic disturbances.

Under Assumptions 1 and 2, we can conclude by Theorem 1 that if ˛ D 0, then e 2 L1Œ0,1/ \
L2Œ0,1/. If ˛ > 0, then the tracking error e.t/ is uniformly ultimately bounded. As seen in
Figure 4, E.t/ approaches 0 as t increases with ˛ D 0, and E.t/ is bounded with ˛ D 0.1 or
0.05. These results are consistent with conclusion (i) and conclusion (ii) in Theorem 1, respectively.

Remark 3
Take the controller (38) for example. The Laplace transform of (38) is

˛s Oxw.s/D� Oxw.s/C .1� ˛/ Oxw.s/ exp.�sT /C 2x.s/

Ow.s/DOxw.s/

where Oxw.s/, Ow.s/ and x.s/ are the Laplace transforms of Oxw.t/, Ow.t/, and x.t/, respectively. Then
we have

Ow.s/D
1

1�Q.s/ exp.�sT /
I3 �

1

1� ˛
Q.s/x.s/
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where Q.s/D 1�˛
˛sC1

is a filter. Therefore, the IMBC (38) can recover a filtered repetitive controller.
In particular, with ˛ D 0, the IMBC (38) reduces to

Oxw.t/DOxw.t � T /C 2x.t/

Ow.t/DOxw.t/, Oxw.�/D 0, � 2 Œ�T , 0�

which is a repetitive controller. As shown in Figures 3 and 4, the rejection performance improves
as ˛ decreases. This is consistent with the conclusion for linear systems that as the bandwidth of
Q.s/ D 1�˛

˛sC1
increases, that is, ˛ decreases, the rejection performance improves, and vice versa

[11, 12]. On the other hand, when ˛ D 0, we only have e 2 L1Œ0,1/\L2Œ0,1/. The closed-loop
error dynamics are nonexponentially stable. Whereas, when ˛ > 0, the closed-loop error dynamics
(18) without �.t/, namelyE Ṕ.t/D fa.t , ´.t//Cfd .´.t�T //, are in fact exponentially stable. This
implies that the latter is more stable than the former. Therefore, the designed IMBC can provide the
flexibility to choose its parameters to achieve a tradeoff between rejection performance and stability
as well.

6. CONCLUSIONS

For a class of nonlinear systems, a time-domain method is developed to design an IMBC to reject
an external signal generated by a class of infinite-dimensional systems. This kind of systems can
represent not only a finite-dimensional system but also an infinite-dimensional system. Therefore, by
using the proposed design method, the IMBC can be designed with flexibility depending on the type
of the external signal. Furthermore, by a proposed description of the external signal, the designed
IMBC is flexible to choose its parameters to achieve a tradeoff between rejection performance
and stability.
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