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STABILITY ANALYSIS OF A CLASS OF NEUTRAL TYPE SYSTEMS IN

A CRITICAL CASE WITHOUT RESTRICTION ON THE PRINCIPAL

NEUTRAL TERM

Quan Quan and Kai-Yuan Cai

ABSTRACT

This study mainly focuses on the stability of a class of linear neutral
systems in a critical case, that is, the spectral radius of the principal neutral term
(matrix H in this paper) is equal to 1. It is difficult to determine the stability
of such systems by using existing methods. In this study, a sufficient stability
criterion for the critical case without restrictions on the principal neutral term
is given in terms of the existence of solutions to a linear matrix inequality.
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I. Introduction

The principal neutral term usually plays an
important role in the stability analysis of a neutral
system. For clarity, we first introduce a class of linear
neutral systems

ẋ (t)−Hẋ (t− τ) = F (xt) (1)

where τ > 0 is a constant delay, F (·) is a linear
functional and xt , x (t + θ) , θ ∈ [−τ, 0]. According
to the spectral radius of matrix H, the neutral system (1)
can be classified into three cases: ρ (H) < 1, ρ (H) > 1
and ρ (H) = 1. The case ρ (H) < 1, namely matrix H
is Schur stable, is a necessary condition for exponential
stability of the linear neutral system (1) [1, p. 30,
Corollary 7.1],[2]. To the best knowledge of the authors,
the case ρ (H) > 1 usually leads the linear neutral
system (1) to instability, for there exist characteristic
roots with positive real parts [1, p. 29, Lemma 7.1]. The
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last case ρ (H) = 1 is the critical case which is mainly
concerned in this paper.

Neutral systems in the critical case need to be
considered in practice because they are in fact related
to a class of repetitive control systems [3],[4]. However,
it is difficult to determine the stability of such systems
because their characteristic equations may have an
infinite sequence of roots with negative real parts
approaching zero. In recent years, stability problem
of neutral systems in the critical case is investigated
by frequency-domain methods [5],[6] (the interested
readers could consult [5] and references therein for
the development on such a problem). Unfortunately,
the frequency-domain stability criteria are becoming
increasingly difficult as the dimension of matrix H
increases. As pointed out in [7], the difficulty remains
as well when time-domain methods are used. To the
best of the authors’ knowledge, the existing stability
theorems of the direct Lyapunov’s method for neutral
type systems cannot be applicable to the critical case.

Taking this into account, Quan et al. in [7] first
proposed a linear matrix inequality (LMI) approach to
analyze the stability of a class of linear neutral systems
in the critical case. However, [7] requires the principal
neutral term, namely matrix H, to be nonsingular. In
this paper, a new stability criterion is proposed to
remove the restriction on the principal neutral term by
using a model transformation [8]. Moreover, it is proven
that the model transformation is necessary to use here.
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The contributions of this paper are: 1) a new criterion to
analyze the stability of a class of linear neutral systems
in the critical case; 2) an improvement on an existing
method which broadens the applications of existing
criteria.

II. Problem Formulation and Model
Transformation

Consider a class of neutral type systems

0 = F (A0, A1, x, ẋ) (2)

with the initial condition

x (θ) = φ (θ) , θ ∈ [t0 − τ, t0] ,

where F (X0, X1, x, v) , v (t) −Hv (t− τ) −X0x (t)
−X1x (t− τ) , x (t) ∈ Rn, τ > 0 is a constant delay
and H, A0, A1 ∈ Rn×n are constant system matrices.
φ (t) is a continuously differentiable smooth vector
valued function representing the initial condition
function for the interval of [t0 − τ, t0]. Suppose
x (t0, φ) (t) to be the solution of (2). For simplicity, let
t0 = 0 and denote x (t0, φ) (t) to be x (t, φ) here. It is
proven in [1, pp. 26–27, Theorem 7.1] that the solution
x (t, φ) is unique and, continuously differentiable
except maybe at the points kτ, k = 0, 1, 2 · · · . The
purpose of this paper is to derive a stability criterion in
terms of an LMI for the linear neutral system (2) with
ρ (H) ≤ 1, especially for the critical case. Unlike [7], H
is not required to be nonsingular here.

Before deriving the stability criterion, we need
to transform (2) by using the model transformation
proposed in [8].

Define
y (t) , ẋ (t)− Sx (t) (3)

where S ∈ Rn×n is the slack matrix which needs to be
designed later. Substituting ẋ (t) = Sx (t) + y (t) into
(2) yields:

0 = [Sx (t) + y (t)]−H [Sx (t− τ) + y (t− τ)]
−A0x (t)−A1x (t− τ) .

Consequently, system (2) is transformed into the
following equivalent form:

{
ẋ (t) = Sx (t) + y (t)

0 = F (A0 − S,A1 + HS, x, y) (4)

where y (t) can be treated as the ‘fast variable’ as
mentioned in [9].

III. A Stability Criterion for the Critical Case

Before proceeding further, a definition and a
lemma are needed.

Definition 1 [10, pp. 128, 157],[11]: The trivial
solution of the system (2) is said to be KN-stable if for
any ε > 0, there is a δ = δ (t0, ε) > 0 such that ‖φ‖W <
δ implies ‖x (t0, φ) (t)‖ < ε, t ≥ t0. The trivial solution
of the system (2) is said to be asymptotically KN-
stable if the trivial solution is KN-stable, and for any
ε > 0, there is a δ = δ (t0, ε) > 0 such that ‖φ‖W < δ
implies lim

t→∞
‖x (t0, φ) (t)‖ = 0. The trivial solution is

said to be globally asymptotically KN-stable if it is
KN-stable and lim

t→∞
‖x (t0, φ) (t)‖ = 0 for any initial

condition ‖φ‖W < ∞.

Remark 1: Note that the definitions of stability
in [10, pp. 128, 157] are slightly different from
these proposed in [1, p. 130]. In [1, p. 130], the
initial condition is restricted by sup

θ∈[−τ,0]

‖φ (θ)‖ < δ

rather than ‖φ‖W < δ. The latter depends on the
derivative of the initial condition. To distinguish these
two definitions, we say that “stable” in the sense of
Kolmanovskii-Nosov is “KN-stable” here.

Lemma 1 [7]: For any negative semidefinite matrix
Φ = ΦT ∈ Rn×n, if ϕkk = 0, then ϕkj = 0 and ϕjk =
0, j = 1, · · · , n, where ϕij corresponds to the element
in the ith row and jth column of Φ.

With Definition 1 and Lemma 1, we can state the
following theorem.

Theorem 1. If there exist S ∈ Rn×n, 0 < P1 =
PT

1 , P2, P3 ∈ Rn×n and 0 < Q1 = QT
1 ∈ Rn×n, 0 ≤

Q2 = QT
2 ∈ Rn×n, 0 < W = WT ∈ Rn×n such that:

Ω + LWLT ≤ 0 (5)

then the solution x (t, φ) of neutral type system (2) is
globally asymptotically KN-stable, where

L =
[

In 0n×n 0n×n 0n×n

]T
,

Ω =




M11 M12 PT
2 (A1 + HS) PT

2 H
∗ M22 PT

3 (A1 + HS) PT
3 H

∗ ∗ −Q2 0n×n

∗ ∗ ∗ −Q1




M11 = P1S + ST P 1 + (A0 − S)T
P2

+PT
2 (A0 − S) + Q2

M12 = P1 − PT
2 + (A0 − S)T

P3

M22 = −PT
3 − P3 + Q1.
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Proof. The Lyapunov functional is chosen to be

V (t) = x (t)T
P1x (t) +

∫ t

t−τ

y(s)T
Q1y (s) ds

+
∫ t

t−τ

x (s)T
Q2x (s) ds. (6)

The time derivative of V (t) is

V̇ (t) = 2x (t)T
P1ẋ (t) + y(t)T

Q1y (t)

− y(t− τ)T
Q1y (t− τ)

+ x (t)T
Q2x (t)− x (t− τ)T

Q2x (t− τ) .

Introducing a zero term

[P2x (t) + P3y (t)]T F1 (A0 − S,A1 + HS, x, y, t) = 0

into equation above yields

V̇ (t) = ξT (t)Ωξ (t) (7)

where

ξ (t) ,
[

x (t)T
y (t)T

x (t− τ)T
y (t− τ)T

]T

.

Since Ω ≤ −LWLT by (5), equation (7) becomes

V̇ (t) ≤ −ξ (t)T
LWLT ξ (t)

= −x (t)T
Wx (t) . (8)

Up to now, we can conclude this proof for
the case where ρ (H) < 1 using the existing stability
theorems. However, there is no stability theorems
of the direct Lyapunov’s method for the critical
case as far as the authors know, which implies
that we need continue to complete this proof by
using some new techniques. The remainder proof is
composed of four propositions: Proposition 1 is to
show x (t, φ) is bounded; Proposition 2 is to show the
solution x (t, φ) is KN-stable; Proposition 3 is to show
x (t, φ) ∈ L2 ([0,∞) ;Rn) ; Proposition 4 is to show
that ‖x (t, φ)‖2 is uniformly continuous. If the four
propositions are satisfied, then the solution x (t, φ) of
(2) is globally asymptotically KN-stable. The outline
of the proof is as follows. Let f (t) =

∫ t

0
‖x (s, φ)‖2 ds,

then ḟ (t) = ‖x (t, φ)‖2 . Since ‖x (t, φ)‖2 is uniformly
continuous by Proposition 4, hence f (t) is a
differentiable function. Moreover, f (t) has a finite
limit as t →∞ by Proposition 3 and ḟ (t) is
uniformly continuous by Propositions 4. It follows that
lim

t→∞
x (t, φ) = 0 for any bounded initial condition by

Barbalat’s Lemma [12, p. 123]. Moreover, the solution
x (t, φ) is KN-stable by Proposition 2, therefore the
solution x (t, φ) of (2) is globally asymptotically KN-
stable by Definition 1. In Appendix, Proposition 2 is
proven in detail and the other proofs are similar to that
in [7], which are omitted because of limited space. ¤

Remark 2. Unlike most proofs of existing stability
theorems and stability criteria, the proof of Theorem
1 does not rely on the condition ρ (H) < 1. This
implies that Theorem 1 can be applicable to the critical
case, and to the case ρ (H) > 1 as well. However,
the case ρ (H) > 1 leads the system to instability [5].
Accordingly, this implies that we cannot find a solution
to the inequality (5) when ρ (H) > 1. Therefore, ρ (H)
considered here is restricted to the case ρ (H) ≤ 1.

Remark 3. The front of the proof until (7) is
similar to the proof of Corollary 2 in [9]. A major
difference is that y is used to play the role of ẋ.
Compared with ẋ, y has a freedom to choose the slack
matrix S. If S = 0, then the front of the proof until (7)
is the same as the proof of Corollary 2 in [9].

Remark 4. The slack matrix mentioned here is
different from that proposed in [13]. The slack matrices
mentioned in the later only exist in introducing zero
terms, but the slack matrix mentioned here exists in the
designed Lyapunov functionals not just in zero terms.

Theorem 2. If H = In, then a necessary condition
to (5) is that S = −A1.

Proof. We have

ΨT ΩΨ =




# # # #
∗ 0n×n Q1 (A1 + S) #
∗ ∗ # #
∗ ∗ ∗ #




when choosing H = In, where “#” in matrices denotes
the term which is not used in the development and

Ψ =




In 0n×n 0n×n 0n×n

0n×n In 0n×n 0n×n

0n×n 0n×n In 0n×n

− (A0 − S) In − (A1 + HS) In


 .

Inequality (5) implies that Ω ≤ 0, then ΨT ΩΨ ≤ 0. By
Lemma 1, we can obtain Q1 (A1 + S) = 0. Note Q1

is nonsingular, then inequality (5) always requires S =
−A1.

Remark 5. Theorem 2 demonstrates the necessity
of the flexibility brought by the slack matrix S. If the
slack matrix S is fixed to be S = 0 or S = A0 as in [9]
or [14], then feasible solutions usually cannot be found,
unless A1 = 0 or A1 = −A0, respectively. Theorem 2
also implies that S could be partly determined by a
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concrete neutral type system in an usual critical case
not just in the case where H = In. Therefore, the slack
matrix S in the transformation is important.

Remark 6. The LMI Control Toolbox in MAT-
LAB 6.5 cannot be used to solve the optimization
problem (5) directly because Ω + LWLT is a nonlinear
matrix function with respect to S and P1, P2, P3. Two
modified procedures with the aid of the LMI Control
Toolbox proposed in [8] can be tried to solve such an
optimization problem.

Remark 7. The paper [15] removes the assumption
on the Lipschitzian constant with respect to the delayed
state derivative with a constant less than 1. However,
it is clear from implications of the frequency-domain
stability conditions, such as proposition 1 (ii) in [15],
that the proposed results in fact relax conservatism of
previous work in noncritical case. Therefore the paper
[15] cannot be applied to the critical case. Compared
with the previous work, the change in this paper is
essential (from noncritical case to critical case).

IV. Illustrative Examples

Example 1. Consider a two-dimensional system
(2) with

H =
[

1 0
0 0

]
, A0 =

[ −2 −0.1
0.1 −1

]
, A1 =

[
1 0.2
0 0

]
,

where H is a singular matrix with ρ (H) = 1. For any
delay τ > 0, choosing

S = −
[

1 0.2
0 1

]
,

we obtain the following solution to (5) that

P1 = P2 =
[

1 −0.1
−0.1 1

]
, P3 = Q1 = I2,

Q2 = 02×2,W = 0.1I2.

Therefore, the system in Example 1 is globally
asymptotically KN-stable. This example demonstrates
the effectiveness of Theorem 1, which shows an
improvement on the proposed criterion in [7].

Example 2. Consider a two-dimensional system
(2) with

H =
[

1 0
0 1

]
, A0 =

[ −2 0.1
0.1 −1

]
, A1 =

[
0.4 −0.1
−0.1 0.1

]

where H is a nonsingular matrix with ρ (H) = 1. For
any delay τ > 0, choosing S = −A1, we obtain the

following solution to (5) that

P1 = P2 =
[

1.6 0
0 0.9

]
, P3 = Q1 = I2,

Q2 = 02×2,W = 0.1I2.

Therefore, the system in Example 2 is globally
asymptotically KN-stable. This example demonstrates
the effectiveness of Theorem 2.

V. Conclusions

Global asymptotic stability of a class of linear
neutral systems in the critical case is studied and a
stability criterion in terms of an LMI is proposed.
Unlike the previous work, the proposed stability
criterion removes the restriction on the principal neutral
term by using a model transformation. This broadens its
application.
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VI. Appendix

The following proof is similar to that in [7], so we
omit some details because of limited space.

Proposition 1: x (t, φ) is bounded.
Since W > 0, hence V̇ (t) ≤ 0 by (8). This gives

V (t) ≤ V (0) . From (6), x (t) is bounded as

sup
t∈[0,∞)

‖x (t)‖ ≤ b1 (9)

where b1 =
√

V (0)/λmin (P1). Therefore, x (t, φ) is
bounded.

Proposition 2: x (t, φ) is KN-stable.
Since φ (t) is continuously differentiable, the

solution x (t, φ) is continuously differentiable except
maybe at the points kτ, k = 0, 1, 2 · · · [1, p. 26,
Theorem 7.1]. Then, by Newton–Leibniz Formula,
it follows that x (s) = x (t)− ∫ t

s
ẋ (ζ) dζ for s ∈

[t− τ, t] . Based on the equation above, we have

∫ t

t−τ

‖x (s)‖2 ds =
∫ t

t−τ

∥∥∥∥x (t)−
∫ t

s

ẋ (ζ) dζ

∥∥∥∥
2

ds

≤ 2τ ‖x (t)‖2 + 2
∫ t

t−τ

(∫ t

s

‖ẋ (ζ)‖ dζ

)2

ds.

(10)

Using the Cauchy–Schwarz inequality 〈a, b〉2 ≤
〈a, a〉 〈b, b〉 , we obtain

(∫ t

s

‖ẋ (ζ)‖ dζ

)2

≤ (t− s)
∫ t

s

‖ẋ (ζ)‖2 dζ

≤ τ

∫ t

t−τ

‖ẋ (ζ)‖2 dζ.

Consequently, (10) becomes
∫ t

t−τ

‖x (s)‖2 ds ≤ 2τ ‖x (t)‖2 + 2τ2

∫ t

t−τ

‖ẋ (s)‖2 ds.

(11)
Using (11), we have

V (t) ≤ ρ1 ‖x (t)‖2 + ρ2

∫ t

t−τ

‖ẋ (s)‖2 ds

≤ max (ρ1, ρ2) ‖xt‖2W
where ρ1 = λmax (P1) + 4τλmax (Q1) ‖S‖2
+ 2τλmax (Q2) and ρ2 = 2λmax (Q1)
+4τ2λmax (Q1) ‖S‖2 +2τ2λmax (Q2) . Therefore,
V (0)≤max (ρ1, ρ2) ‖φ‖2W . For any ε > 0, there exists
a δ (ε) = ε

√
λmin (P ) /max (ρ1, ρ2) > 0 such that

‖φ‖W < δ (ε) implies that the inequality (9) becomes

sup
t∈[0,∞)

‖x (t)‖ ≤
√

max (ρ1, ρ2) ‖φ‖2W
/

λmin (P1)

= ε.

Therefore, the solution x (t, φ) is KN-stable by
Definition 2.
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