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A Profust Reliability Based Approach to
Prognostics and Health Management

Zhiyao Zhao, Quan Quan, and Kai-Yuan Cai

Abstract—Prognostics and health management (PHM) tech-
nology has been widely accepted, and employed to evaluate system
performance. In practice, system performance often varies con-
tinually rather than just being functional or failed, especially for a
complex system. Profust reliability theory extends the traditional
binary state space into a fuzzy state space , which is
therefore suitable to characterize a gradual physical degradation.
Moreover, in profust reliability theory, fuzzy state transitions
can also help to describe the health evolution of a component or
a system. Accordingly, this paper proposes a profust reliability
based PHM approach, where the profust reliability is employed as
a health indicator to evaluate the real-time system performance.
On the basis of the health estimation, the system remaining useful
life (RUL) is further defined, and the mean RUL estimate is
predicted by using a degraded Markov model. Finally, an experi-
mental case study of Li-ion batteries is presented to demonstrate
the effectiveness of the proposed approach.

Index Terms—Prognostics and health management, profust reli-
ability, health estimation, remaining useful life.
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I. INTRODUCTION

P ROGNOSTICS AND HEALTH MANAGEMENT
(PHM) is defined as an approach utilizing measurements,

models, and software to perform incipient fault detection,
condition assessment, and failure progression prediction [1].
As shown in Fig. 1, an integrated PHM framework generally
incorporates functions of data processing, condition monitoring
& health estimation, remaining useful life (RUL) prediction,
and condition-based maintenance (CBM) & intelligent deci-
sion-making [2]. Currently, the existing PHM approaches have
already covered each part of the PHM system for various types
of vehicles, systems, and products. In terms of the usage of
information, these approaches can be classified into three types
[3]: the physics-of-failure (PoF) approach, the data-driven
approach, and the fusion approach.
1) The PoF Approach: The PoF approach takes the

knowledge of a product’s lifecycle loading conditions into con-
sideration, together with the failure modes, mechanisms, and
sites to perform reliability modeling and assessment [4]. The
PoF approach was commonly employed in the PHM of various
electronic products [5]–[10]. Pecht introduced an integrated
framework of a PoF-based PHM approach for electric prod-
ucts, and presented a unified implementation including failure
modes, mechanisms, and effects analysis (FMMEA), data
reduction, and feature extraction [11]. PoF models were also
employed in the RUL prediction of mechanical products such
as aircraft engine bearings [12], and flight control actuators
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Fig. 1. PHM framework.

[13]. The main advantage of the PoF approach is the available
physical understanding and known failure mechanisms of
components or products, which is able to obtain high accuracy
of the prognostics. However, most PoF approaches mainly
focus on the component level, because it is often difficult,
costly, or even impossible to accurately model the complex
physical degradation of a system containing large numbers of
subsystems and components. This situation may to some extent
limit their engineering applications.
2) The Data-Driven Approach: The data-driven approach

uses mathematical analysis of current and historical data to pro-
vide signals of abnormal behavior, and estimate RUL [11]. The
neural network is the most popular technique in data-driven ap-
proaches [14], which has been applied to the PHM activities of
gearboxes [15], bearings [16], [17], chiller systems [18], aircraft
actuators [19], and Gas Turbines [20]. Other techniques such as
the relevance vector machine (RVM) [21], the hidden Markov
model (HMM) [22], [23], and the Bayesian network [24] were
also employed in data-driven approaches. The competitive ad-
vantage of the data-driven approach is that the system behavior
can be learned only frommonitored data with less systemmodel
knowledge, which is less complex and more applicable than the
PoF approach. However, the drawback includes a potentially
long learning time, and a lack of sufficient training data in prac-
tice, especially for non-operating systems. In terms of precision,
the data-driven approach gives less precise results than the PoF
one.
3) The Fusion Approach: The fusion approach combines

PoF and data-driven models for PHM, overcoming some
drawbacks of using either approach alone [25]. For example,
in [26], a fusion approach was implemented to assess and
mitigate reliability risks arising from free air cooling in a
data center. FMMEA was conducted to identify the weakest
subsystems or components, and was able to identify the critical
failure mechanisms and key parameters which indicated the
degradation trends of the system. Further, the data-driven ap-
proach identified the failure precursor parameters, which were
indicative of impending failures based on system performance
and the collected data. Other interesting works related to fusion
approaches can be found in [27]–[29].
From the aforementioned approaches, compared with PoF

approaches, it is easy to see that data-driven approaches are

more suitable for a complex system because the system model
is difficult to obtain [3]. However, most existing data-driven
approaches focus on either a specific system component, or a
general PHM framework. Moreover, the approaches often rely
on a comparison between in-situ parameters and healthy base-
lines to detect system anomalies, and evaluate system perfor-
mance, which is difficult to describe the whole system physical
degradation.
For such a purpose, this paper aims to propose a unified the-

oretical foundation for PHM based on profust reliability theory
[30], [31]. Compared with traditional reliability theory, profust
reliability theory is more suitable for PHM. Traditional relia-
bility approaches are always based on the analysis of historical
life-test data, which yield statistical results only reflecting popu-
lation characteristics of the same kind of systems under typical
conditions. However, PHM is related to on line system relia-
bility characteristics that are strongly affected by applications
and operating conditions in practice. Moreover, variations also
exist among individual systems. Thus, traditional reliability ap-
proaches, although widely used, have limitations in estimating
reliability for individual systems under dynamic operating and
environmental conditions [32]. In contrast, as a part of fuzzy
reliability theory [30], [31], [33]–[36], profust reliability theory
extends the traditional binary state space into a fuzzy state
space , and models fuzzy state transitions for a component
or system representing various degrees of success and failure.
This feature enables a profust reliability based approach to track
real-time operational performance, and characterize the phys-
ical degradation and property evolution of a specific system.
Furthermore, a complex system can work at a degraded level,
and the performance is always described by fuzzy measure-
ments. Therefore, the profust reliability based approach is a po-
tential method for PHM of complex systems.
This paper integrates PHM with profust reliability theory,

which distinguishes from a recent paper of ours presented at
PHM2013 (2013 Prognostics and System Health Management
Conference) [37]. In the work presented in [37], based on pro-
fust reliability theory, an algorithm in a discrete time domain
was proposed to measure the health of a class of Li-ion batteries
with data downloaded from the NASA website [38]. Moreover,
the health status was classified into different levels according
to the corresponding profust reliability. Compared with [37], a
generalized approach including a comprehensive case study is
presented in this paper. As a result, there are significant differ-
ences between the work presented in this paper and that pre-
sented in [37]. i) A profust reliability based PHM approach is
developed, which involves the continuous time domain as well
as the discrete time domain, whereas the algorithm presented
in [37] is confined to the discrete time domain. ii) The system
studied in this paper is distinguished from that in [37]. The
approach proposed in this paper is to describe the health of a
complex system with multi-parameters and multi-components,
whereas the algorithm proposed in [37] is devoted to systems
with a single parameter. iii) An important, new contribution,
namely the system RUL prediction algorithm, which is not con-
tained in [37], is developed based on the health estimation re-
sults. Accordingly, the experiments on RUL prediction of these
Li-ion batteries are further performed and discussed.
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The paper makes three major contributions. First, this paper
proposes an alternative data-driven PHM approach. With the
system-level integration between PHM and profust reliability
theory, it offers a theoretical support to the PHM of complex
systems. Second, the system binary states (either functional or
failed) are extended to fuzzy states, and transitions among them
are employed to evaluate system performance based on pro-
fust reliability theory. Finally, the proposed profust reliability
is developed as a unified health indicator for different kinds
of systems, which differs among most existing data-driven ap-
proaches only relying on various system parameters.
The remainder of this paper is organized as follows.

Section II proposes a methodology framework of the PHM
approach based on profust reliability theory, including a health
estimation module, and a RUL prediction module. Section III
presents an implementation process of the proposed approach.
In Section IV, a case study of Li-ion batteries is employed to
validate the proposed approach, and the experimental results
are given and discussed. Finally, Section V gives a conclusion,
and indicates the limitation and future development of the
proposed approach.

II. METHODOLOGY FRAMEWORK

Let be a continuous domain. In the
domain , system fuzzy success states are defined as

(1)

and fuzzy failure states are defined as

(2)

Under the fuzzy state assumption, the operational states of
parameters characterizing a component or a complex system can
be described with the degree of fuzzy health membership, rather
than just successful and failed states, through single threshold
segmentation. In general, we have

(3)

Profust reliability theory models fuzzy state transitions for a
component or system representing various degrees of success
and failure. Here, assume the fuzzy state transitions possess the
Markov property.
Assumption 1: Let the stochastic process

represent a sequence of system states with time. If

, then the transition
probability satisfies that [see (4) at the bottom of the page].

.
Remark 1: Assumption 1 indicates that the system state at

time only depends on the system state at time . It is rea-
sonable to use a Markov process to model system state tran-
sitions, when the lifecycle of the studied system conforms to
a negative exponential distribution, namely the system has the
memoryless property.
Definition 1: Let . In the

domain , a transition from a fuzzy success state to a fuzzy
failure state is defined as [30]

(5)

where is viewed as a fuzzy event, and the corresponding
membership function is determined as [30]

(6)

(7)

Remark 2: Here, is interpreted as the weight that
state is attached to the fuzzy failure state compared with the
fuzzy success state. In this case, only if condition

is true, a transition from state to state promotes the
transition from fuzzy success to fuzzy failure.
Definition 2: Let does not occur during a time

interval . For , the profust interval reliability
over the time interval is defined as (8) at the bottom of the
page [30].
The profust reliability is defined as [30].

(9)

Remark 3: The system’s reliability is decreasing during its
use because of the components’ degradation. Thus, the profust
reliability is closely related to the system performance, and
therefore served as a natural indicator of the system health
status. However, it is difficult to calculate the profust reliability

by (9) in practice. Also, it is inappropriate to perform
(8) in real-time performance monitoring, because it only con-
centrates on system degradation during the time interval
without considering the system health status at time . For the

(4)

(8)
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purpose of real-time performance monitoring, the concept of
conditional reliability is extended to real-time applications in
[32]. Similarly, a novel algorithm of is proposed here.
Definition 3: Let The system is in a fuzzy success state

at a time . For , and a time interval , the profust
reliability is computed as (10) at the bottom of the page.
The time interval can be viewed as an estimation interval.
Remark 4: Equation (10) denotes that the profust reliability
is computed by using information including the system

performance at the initial time , and state transitions during the
time interval . The physical meaning of profust reliability

is that, after a specific time , no further substantial perfor-
mance deterioration occurs during the time interval . The
value of belongs to . The situation of means
that the system is in a fully successful state, while
means that the system has completely failed. Without mainte-
nance actions, is a monotonically non-increasing function
under ideal conditions. However, in practice, observation noise,
system noise, and external disturbance will cause fluctuations
of in a small range.
Remark 5: Note that and are usually not restricted to

adjacent time indexes in (10). This means is a -step
transition probability, provided that , where is the
sample time, .
The status of human health can be divided into different levels

such as health, sub-health, disease, and serious illness. Also,
the severity degree of meteorological disasters is described with
levels, mainly because a qualitative index is easy to be under-
stood by non-technical users. Inspired by that approach, we pro-
pose the concept of system health level in terms of the con-
tinuous health indicator is shown in (11) at the bottom
of the page, where represent the classification
thresholds.
Remark 6: The establishment of health levels is mainly ap-

plied to the management phase in the PHM framework, such as
the maintenance schedule and resource management in CBM,
which is beyond the scope of this paper. From another perspec-
tive, the health level can improve the robustness, and partly mit-
igate the sensitivity of health estimation results to disturbances
caused by fluctuations of . Here, the level numbers and
thresholds among adjacent levels are usually determined based

on information of similar systems, and the engineers’ under-
standing to system performance, which can affect the selection
of the optimal maintenance policy. Actually, the introduction of
health levels is not a compulsive step in the proposed PHM ap-
proach, because the value of the profust reliability is capable of
evaluating system performance. The existence of this step de-
pends on the requirement of practical engineering applications.
On the basis of the health estimation1, a RUL definition based

on the profust reliability is proposed here referring to [39].
Definition 4: Let be the system failure threshold. The

RUL at a time is defined as

(12)

Remark 7: The true RUL of a system is obtained only if the
system is completely failed, or deemed as unusable. Thus, for
an incompletely failed system in operation, the RUL can only be
estimated with system operational information up to the current
time.
Definition 5: As shown in Fig. 2, let be the trajectory

of a predicted profust reliability sequence from time such that

, where is the sample time, and is the time when
the prediction ends. Let be the estimate of the RUL at the
current time , and be the system failure threshold. Then,
the mean value of the RUL estimate is defined as

(13)

Remark 8: The estimate of RUL is obtained based on the pre-
diction of profust reliability variation after system performance
deteriorates or a fault is detected. Note that the prediction of the
profust reliability variation trajectory is achieved till the pre-
dicted profust reliability curve reaches the predetermined .
The system failure threshold can be developed based on en-
gineers’ understanding of system performance. Generally, there
is useful information available to help select appropriate failure
thresholds such as historical data, and information of similar
cases.

1The presented health estimation work is an extension of Section 3.1 in [37].

(10)

(11)
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Fig. 2. A profust reliability trajectory prediction and RUL estimate.

Fig. 3. Discretization diagram.

III. IMPLEMENTATION PROCESS

Profust reliability plays a core role in the implementa-
tion of the proposed approach. After obtaining , the pro-
posed RUL in Definition 5 can be predicted based on the health
estimation results. In this section, the implementation process
of the proposed methodology is presented in the following four
steps below.

A. Discretization

To calculate by Definition 3, the transition probability
, the system state probability , and the cor-

responding membership functions are required. Traditional
reliability methods relying on the collection of failure data
can be employed to get the probability distribution function of

and in a continuous domain. However, these
methods assume that the operating conditions and the failure
mechanism of the complex system in practical engineering
applications are well addressed in reliability tests, which is
hard to satisfy [26]. In this case, it is inappropriate to calculate

and by imprecise probability distribution
functions. In the proposed approach, the continuous domain
is firstly discretized, and and are further

calculated in a discretized domain by the statistical method.
Theorem 1: For , let

as shown in Fig. 3, where
. Then, in Definition 3 is (14) at the bottom

of the page.
Proof: See the Appendix.

Remark 9: In Theorem 1, determines the degree of dis-
cretization. Theoretically, in Theorem 1 will be infinitely

close to in Definition 3 if approaches infinity. However,
a large will lead to heavy calculations which may not sat-
isfy the needs of real-time condition monitoring. On the other
hand, a small will affect PHM sensitivity because of insuffi-
cient fuzzification. Thus, the value needs to be appropriately
selected in practical engineering applications.
Remark 10: The definition of membership functions plays

an important role in calculating by Theorem 1, because an
inappropriate membership function will lead to problems such
as false detection of anomalies, and failure to detect anomalies.
First, for a single parameter, the function type needs to be se-
lected based on the system parameter type, and practical engi-
neering requirements. For example, when a system is working in
a fully successful state, a triangular or trapezoidal membership
function [40] should be chosen if a parameter is required to stay
at a fixed value or a range, respectively. Second, the thresholds
of a membership function can be determined by reference range
provided by the data sheet, historical data, and information of
similar products or systems. For a complex system containing
multi-parameters and multi-components, the membership cal-
culation is shown in the Appendix.

B. Transition Probability, and State Probability Calculation

Let be the transition
probability matrix of system states over the time interval .
The transition probability represents the probability
of the transition from state to state over the time interval

, satisfying that

(15)

Then, the transition probability can be obtained by the statis-
tical method [37]

(16)

where represents the number of transitions from state
to state over the time interval .
Remark 11: Equation (16) is true only if the law of large

numbers [41] is satisfied, which requires a sufficiently long time
interval . Thus, adjacent time indexes are not selected as
and in Definition 3, which means is a multi-step

transition probability as mentioned in Remark 5.
Let be the system state probability vector at time ,

(17)

(14)
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where represents the state probability
of system state at time . Then, we have

(18)

where is obtained iteratively using former time intervals.
Assume that the state is the fully successful state. Then, be-
fore the system starts to work, we have

(19)

C. Health Estimation

Following the two steps above, the real-time profust relia-
bility can be calculated using on-line data by applying
Theorem 1. Here, real-time health estimation is implemented
using two types of moving estimation windows. As shown in
Fig. 4, represents the length estimation window at time
, which can be employed as the time interval presented in The-
orem 1, ( is the sample time, ). The es-
timation window shown in Fig. 4(a) moves per sample time.
This window can be used to obtain the profust reliability at each
sample time such that

(20)

Similarly, Fig. 4(b) shows the type of moving per length,
which obtains the profust reliability at a fixed time interval
such that

(21)

Remark 12: The length of the proposed estimation window
should be selected by considering both the law of large numbers
mentioned in Remark 11, and the sensitivity of health estima-
tion, because a large data volume could cover anomaly features,
especially when a fault just appears. Thus, a balance should be
sought according to practical applications.
Remark 13: In the process of health estimation, the move-

ment of the estimation window in Fig. 4(a) has a higher estima-
tion frequency than that in Fig. 4(b). Correspondingly, the whole
estimation process is more time-consuming. Actually, can be
viewed as a sampling of .

D. RUL Prediction

The key to predict RUL is to obtain a predicted profust reli-
ability trajectory in Definition 5. According to Assumption

Fig. 4. Estimation window: (a) move per sample time, (b) move per window
length.

1, the variation of the system health state is viewed as a Markov
process. Note that this Markov process is non-homogeneous be-
cause a system tends to gradually become worn, and their health
states become worse, as it grows older, namely the probability
of becoming unhealthier will increase. This property leads to an
imprecise estimate of profust reliability by the
transition probability matrix . Therefore, a degraded
Markov model is proposed here to calculate the estimate of pro-
fust reliability at a future time.
Lemma 1: Let be a degradation factor, be the sample

time, be the fully successful state, and be the fully failed
state. Suppose represents the one-step
transition probability from state to state at time . For
time , the estimate of satisfies [42]
[see (22) at the bottom of the page].

(22)
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Proof: See the Appendix.
Remark 14: The value of reflects the speed of system

degradation. If and are available, Lemma 1
theoretically gives an approach to predict the one-step transi-
tion probability, which can further predict and

. However, according to Remark 11, (16) is used to calcu-
late the multi-step transition probability rather the than one-step
transition probability considering the law of large numbers. Fur-
ther, profust reliability reflects system performance over a time
interval. In this case, even though is known, it is
also improper to apply it to the prediction of . On
the other hand, the probability cannot be estimated
by using a traditional Chapman-Kolmogorov equa-
tion because of the non-homogeneous property of the proposed
Markov model [41]. Thus, an approach to the multi-step transi-
tion probability prediction is shown below.
Theorem 2: Let be a degradation factor, be the sample

time, be the fully successful state, and be the fully failed
state. Suppose represents the -step
transition probability from state to state over the time
interval . Then, for the time interval

,
i) the estimate of transition probability

satisfies [see (23) at the bottom of the next page]. ii) the
estimate of state probability vector satisfies

(24)

and iii) the estimate of profust reliability satisfies
[Ssee (25) at the bottom of the page].

Proof: See the Appendix.
Remark 15: In Theorem 2, the degradation factor is a

time-varying variable different from that of Lemma 1, because,
for a complex system, predictions made at an early stage have
less information about the dynamics of fault evolution. A fixed
degradation factor will lead to inaccurate RUL prediction. Thus,
in the proposed approach, a numerical search method based on a
least squares criterion is developed to determine as shown
below.

For a specific system, assume that we can obtain statis-
tically independent profust reliability trajectories reflecting
degradation processes of similar systems or the same tech-
nology family of products at a sampling period written
as . At the current time , a profust relia-
bility trajectory of the studied system ending at time
is easy to be obtained using Theorem 1. Comparing

with , a set of normalized distance score

is obtained

using the method in [43]. Because the degradation factor be-
longs to the range , with , and a set of
extended prediction of over , the optimal

can be found by numerical search based on a least squares
criterion. Then, a weighted degradation factor of the proposed
system at time is defined as

(26)

Remark 16: Using Theorem 2, a predicted profust reliability
trajectory , as shown in (21), is obtained at the current time
, and is further predicted using Definition 5. Because
is a weighted value, the obtained is also a mean estimate.
Here, the time interval is identical to the estimation window,
as shown in Remark 12. The length of could also affect
the RUL prediction performance. A smaller will lead to a
better result with high accuracy, but it also requires a longer run
time. Additionally, it must be noted that (15) should be always
satisfied when the transition probability matrix is updated by
Theorem 2.
Corollary 1: Let be a degradation factor, be the

sample time, be the fully successful state, and be
the fully failed state. For the transition probability matrix

, suppose that

(27)

Then, for the transition probability ,
we have (28) at the bottom of the next page.

(23)

(25)



ZHAO et al.: A PROFUST RELIABILITY BASED APPROACH TO PROGNOSTICS AND HEALTH MANAGEMENT 33

Proof: See the Appendix.
Remark 17: Equation (27) is true for a degraded system

without maintenance actions. This means that a transition will
not occur from a worse state to a better state without main-
tenance actions. In this case, Corollary 1 is more effective to
predict than Theorem 2 due to less calculation,
which leads to a more efficient RUL prediction.
Theorem 2 and Corollary 1 present the profust reliability pre-

diction algorithm only for adjacent time intervals. Corollary 2
gives a more general form below.
Corollary 2: Let be a degradation factor, be the

sample time, be the fully successful state, and be the
fully failed state. Suppose repre-
sents the -step transition probability from state to state
over the time interval . Then, for

,
i) the estimate of transition probability

satisfies [see (29) at the
bottom of the page]. ii) the estimate of state probability vector

satisfies [see (30) at the bottom of the page] and

iii) the estimate of profust reliability satisfies
[see (31) at the bottom of the page].

Proof: See the Appendix.
Remark 18: Both Theorem 2 and Corollary 1 are developed

to achieve an iterative RUL prediction algorithm. Here, Corol-
lary 2 is developed for the prediction without multiple itera-
tions, which is performed to search optimal with a higher
efficiency than Theorem 2.

IV. A CASE STUDY: DEGRADATION OF LI-ION BATTERIES

In this section, the proposed PHM approach is implemented
to study the degradation of Li-ion batteries. To make it self-con-
tained, the health estimation part in [37] is also presented here.
On this basis, the validation of the RUL prediction approach is
proposed, and the experimental results are given and discussed.
The data for Li-ion batteries are downloaded from the NASA
Ames Prognostics Data Repository [38].
The battery data set recorded accelerated aging experiments

of different batteries, which were run through repeated charge

(28)

(29)

(30)

(31)
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Fig. 5. Variations of charge voltage and current values.

and discharge cycles at different ambient temperatures. The ex-
periments were stopped until the battery capacity dropped to
70% of the rated value. Here, we mainly concentrate on the
charge cycles. Charging was carried out in a constant current
(CC) mode at 1.5 A until the battery voltage reached 4.2 V,
and then continued in a constant voltage (CV) mode until the
charge current dropped to 20 mA. Through studying the battery
performance during each charge cycle, the battery health status
after completely charging is estimated, and the estimate of re-
maining charge cycles (RCC) is predicted using the proposed
approach. By taking battery #5 as an example, the data contain
167 whole charge cycles. For ease of visualization, variations
of charge voltage and current of 8 charge cycles are shown in
Fig. 5.
Here, let , and represent the corresponding voltage

variable, and current variable, respectively. To consider both
and , the battery charge capacity is considered

as an assessable index for battery health estimation, which is
defined as

(32)

where the unit of is . Then, the real-time charge ca-
pacity of all 167 charge cycles are calculated using (32). Sim-
ilarly, the real-time charge capacity of the preceding 8 charge
cycles are shown in Fig. 6.
In practice, the first charge cycle after fully discharging is

able to charge the battery to the maximum capacity, which is
corresponding to the highest curve in Fig. 6. In this case, we
consider it as the fully successful state of the battery charge
process, which is also viewed as a standard charge cycle. Fur-
thermore, it is considered that the battery starts to degrade after
the first charge cycle. Let represent the real-time error that
the charge capacity of each charge cycle deviates from the stan-
dard curve with time. Then, for each charge cycle , we have

(33)

As shown in Fig. 7, is a continuous signal which is
viewed as a continuous system state. According to Remark 10,

Fig. 6. Charge capacity variation.

Fig. 7. Error variation.

a trapezoidal membership function is selected to be the fuzzy
success membership function because is always
required to be 0 if the battery is in a fully successful state. Then,
through analyzing historical data of similar batteries, thresholds
of the proposed trapezoidal membership function are given,

(34)

(35)

Then, following the implementation steps in Section III, we
can estimate the profust reliability at the time when a complete
charge is finished, and predict the number of remaining charge
cycles.

A. Discretization

For simplicity, is employed to represent a continuous
system state instead of , because is an even func-
tion. Let . For

, let
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where

Considering in the domain , let

In this case, is the fully successful state, and is the
fully failed state. Then, according to Theorem 1, the profust re-
liability of the th charge cycle is computed as (36) at the
bottom of the page, where represents the transi-
tion probability from state to state over the charge cycle

represents the state probability of system
state at the time when the charge cycle is completely
finished. The times and represent the start and end times
of the charge cycle , respectively. Here, for sake of simplicity,
we take the charge cycles as a continuous process. Then, we
have .

B. Transition Probability, and State Probability Calculations

After state discretization, the transition probability
, and state probability are easy to obtain through

(16), and (18), respectively. For the charge cycle , we have

(37)

(38)

where represents the number of transitions from
state to state over the charge cycle . Here, the state
probability vector is obtained from the charge
cycle .

C. Health Estimation

Let a charge cycle be the estimation window, which is
moving each charge cycle as shown in Fig. 4(b). Then, fol-
lowing the two steps above, a profust reliability trajectory is ob-
tained as

According to Remark 8, let be the failure threshold
in this case. The result is shown in Fig. 8.
Remark 19: The curve in Fig. 8 should bemonotonically non-

increasing with charge cycle, because the health status of the

Fig. 8. Profust reliability value variation of all charge cycles.

battery should decrease over time. However, the charge capacity
of each charge cycle is not monotonically decreasing in acceler-
ated aging experiments because the experimental process con-
tains various uncertainties. For example, incomplete discharge
may occur in discharge cycles, and an unstable chemical reac-
tion inside the battery will also lead to fluctuations of charge
capacity. Thus, these system uncertainties will eventually lead
to fluctuations of in a small range.

D. RUL Prediction

In this case study, the number of RCC is discussed as RUL. In
the battery data set [38], batteries #5, #6, #7, #18 were run in the
same environment, and degraded in similar patterns. Here, the
profust reliability trajectories of batteries #6, #7,
#18 are used to find the optimal as reference trajectories,
and the profust reliability data of battery #5 is used to test the
RCC prediction. Fig. 9 shows the 3 reference trajectories, and
the testing trajectory.
For battery #5 at a specific charge cycle , let

be a 20-long segment of profust
reliability trajectory calculated by Theorem 1. Comparing

with by [43], a set of normalized distance
scores is obtained as

Then, the optimal can be derived from a
numerical search over , and of the battery #5 at time
is calculated by (26) as

(36)
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Fig. 9. Profust reliability trajectories used for RUL prediction.

Fig. 10. Degradation factor variation.

After getting , a predicted profust reliability trajectory,
and a mean value of can be obtained using Theorem 2. The
aforementioned was chosen as the failure threshold
in this case. Actually, from Fig. 8, the profust reliability curve
fluctuates around 0.4 over charge cycles [142, 167]. Here, as-
sume that, after the charge cycle is complete, . Fur-
ther, assume the prediction starts at the time when the charge
cycle is complete in this case. Then, multiple predictions
are generated starting from the charge cycle to of bat-
tery #5. Then, for the charge cycle , the
experimental results of are shown in Fig. 10, and the cor-
responding mean value of is shown in Fig. 11.
To quantify the RCC prediction performance, several prog-

nostics metrics are implemented in this case, including accu-
racy, precision, prognostic horizon (PH), - performance, and
relative accuracy (RA), as shown in Table I. Interested readers
can get more details from [44]. Fig. 12 shows the absolute error
of each prediction for a more intuitive evaluation.
From Figs. 11 and 12, it can be observed that the prediction

at an early stage is unsatisfied due to less information about the
degradation pattern as compared with predicting at a later stage.
However, the mean value of converges to the true (with a
20% confidence interval) after the 93th charge cycle. Then, after
the 140th charge cycle, the mean fluctuates in a small range,
which is similar to the health estimation result of the battery

Fig. 11. RCC prediction of the battery #5.

Fig. 12. Absolute error of all predictions.

#5 in Fig. 8. The experimental results show that the proposed
approach can be effectively used to estimate battery health status
and predict remaining charge cycles.

V. CONCLUSION

This paper presents a data-driven PHM approach based on
profust reliability theory, where profust reliability is used to
evaluate the real-time system performance as a unified health in-
dicator for different kinds of systems. On the basis of the health
estimation results, RUL is predicted using a degraded Markov
model. To show effectiveness of the proposed approach, the
degradation process of Li-ion batteries is studied. The exper-
imental results show that the battery health status can be ef-
fectively estimated, and the number of remaining charge cy-
cles can be estimated in an accepted error range. In our future
works, system models will be taken into consideration for a
better health estimation and RUL prediction.

APPENDIX

A. Proof of Theorem 1

For a continuous domain , let

where
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TABLE I
PERFORMANCE EVALUATION FOR THE RCC PREDICTION

Then

correspondingly, (1) and (2) become

where

Equation (5) becomes

where

Then, (10) becomes the equation at the bottom of the page.

B. Membership Function Calculation of a Complex System

Generally, a complex system contains various components
and parameters. In this case, the weight of parameters and the
topological structure of the system should be taken into con-
sideration when operating PHM. For a single component, the
membership function is the weighted sum of each parameter’s
membership. Then, supposing the operational state of compo-
nent to be determined by parameters , the
membership function of component is obtained as

Fig. 13. System structure: (a) series system, (b) parallel system.

where represents the membership function of parameter
represents the weight of parameter in component ,

fulfilling the condition

Let , and be the fuzzy success, and failure member-
ship functions of component in a complex system, respec-
tively. Consider a series system in Fig. 13(a), we have

Considering a parallel system in Fig. 13(b), we have

C. Proof of Lemma 1

For the transition probability , we have
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From (15), we have

Thus, we have (39) at the bottom of the page. Here, a degrada-
tion factor is defined. ,

(40)

where represents the increase rate in for a

system becoming degraded.

Then,

For each element , if , we have (41) shown at the
bottom of the page, and if , combining (39) and (40), we
have (42) shown at the bottom of the page.
Then, we have (see the last equation at the bottom of the

page).

D. Proof of Theorem 2

Referring to Lemma 1, for the transition probability
, we have we have (43) shown at the bottom of

the page, where . For the state probability vector
,

(39)

(41)

(42)
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Correspondingly, substituting (43) into (14), we have the second
equation at the bottom of the page.

E. Proof of Corollary 1

According to (27), we have

For , (40) becomes

Then, (23) becomes the third equation at the bottom of the
page.

F. Proof of Corollary 2

For simplicity, let represent
, and represent .

From Theorem 2, for ,

for , see (44) at the bottom of the page, where, see (45) at
the bottom of the page.

(43)

(44)

(45)
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(46)

Equations (44) and (45) are simultaneously solved, so (see
the second equation on the next page).
Thus [see (46) on the next page], where

. For the state probability vector , see
the third equation on the next page.
Correspondingly, the estimate of profust reliability

satisfies that, see the last equation on the page.
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