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Besides parametric uncertainties and disturbances, unmodelled dynamics and time delay at the input are often present in
practical systems, and cannot always be ignored. This paper aims to solve the problem of output feedback tracking control
for a class of non-linear uncertain systems subject to unmodelled high-frequency gains and time delay in the input. By
additive state decomposition, the uncertain system is transformed to an uncertainty-free system, in which the uncertainties,
disturbances and effects of unmodelled dynamics along with time delay are lumped into a new disturbance at the output.
Subsequently, additive state decomposition is used to decompose the transformed system to simplify the tracking controller
design. The proposed control scheme is applied to three benchmark examples to demonstrate its effectiveness.
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1. Introduction

Tracking control of an uncertain system is a challenging
problem. Most existing methods mainly focus on systems
that are subject to parametric uncertainties and/or additive
disturbances (see Chen and Su 2002; Ruan, Yang, Wang,
and Li 2006; Nunes, Liu, and Lizarralde 2009). Studies of
Corradini and Orlando (2003) and Chaturvedi et al. (2006)
focused on systems that are subject to uncertainties at in-
puts, such as the backlash, dead zone or other nonlinearities.
It is well known that unmodelled dynamics and time delay
at the input are often present in practical systems, for exam-
ple flight control systems (see Smith and Sarrafian 1986;
Johnson, Davidson, and Murphy 1994). Such uncertainties
in the input, if not properly attended, may produce a sig-
nificant degradation in tracking performance or even cause
instability. For example, in Rohrs, Valavani, Athans, and
Stein (1985), the authors constructed a simple example,
later known as Rohrs’ example, to show that conventional
adaptive control algorithms lose their robustness in the pres-
ence of unmodelled dynamics. Furthermore, some control
algorithms, such as the repetitive control example consid-
ered in Quan and Cai (2011), may lose their robustness in
the presence of input delay. Therefore, it is important to
explicitly consider unmodelled dynamics and time delay in
the controller design.

In this paper, the output feedback tracking control prob-
lem is investigated for a class of single-input single-output
(SISO) non-linear systems subject to mismatching para-
metric uncertainties, mismatching additive disturbances,
unmodelled high-frequency gains and time delay at the
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input. This control problem has attracted a lot of atten-
tion, and many methods have been developed in the litera-
ture. A direct way is to estimate all the unknown parame-
ters, then compensate for them. In Bresch-Pietri and Krstic
(2009), a tracking problem for a linear system subject to
unknown parameters and an unknown input delay was con-
sidered, where both the parameters and input delay were
estimated by the proposed method. However, this method
cannot handle non-parametric uncertainties such as unmod-
elled high-frequency gains. The second way is to design an
adaptive controller to compensate for a set of unknown pa-
rameters but with robustness against other uncertainties. In
Xargay, Hovakimyan, and Cao (2009), the Rohrs’ exam-
ple and the two-cart example, which are tracking problems
for uncertain linear systems subject respectively to unmod-
elled dynamics and time delay at the input, were revisited
by L1 adaptive control. In Cao and Hovakimyan (2010),
the authors showed that their proposed method is robust
against time delay at the input. Since each unknown pa-
rameter needs an integrator to estimate (e.g. see Equations
(5)–(7) in Cao and Hovakimyan (2010)) an adaptive con-
troller may require numerous integrators for an uncertain
system with many unknown parameters. This will lead to a
resulting closed-loop system with a reduced stability mar-
gin. In addition, the estimates may not approach the true
parameters without persistently exciting signals, which are
difficult to generate in practice especially when the number
of unknown parameters is large (Landau, Lozano, M’Saad,
and Karimi 2011, pp. 111–118). A third way is to con-
vert a tracking problem to a stabilisation problem by the
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idea of internal model principle (see Francis and Wonham
1976), if disturbances or desired trajectories are generated
by an autonomous system. In Trinh and Aldeen (1996), the
problem of set point output tracking of an uncertain linear
system with multiple delays in both the state and control
vectors was considered. There also exist other methods to
handle uncertainties. However, some of them such as high-
gain feedback often cannot be applied to a practice system
directly as they rely on a rapidly changing control signal to
attenuate uncertainties and disturbance. The drawbacks of
high-gain feedback solutions are that they may saturate the
actuators or excite high-frequency modes.

Compared with the existing literature, the problem stud-
ied in this paper is more general since not only the uncer-
tainties in input but also output feedback and mismatching
are considered. For output feedback, the state needs to be
estimated, which is difficult mainly due to the uncertainties
and disturbances in the state equation. Even if parame-
ters and disturbances are estimated, it is also difficult to
compensate for mismatching uncertain parameters and dis-
turbances directly. To address these difficulties, two new
mechanisms are adopted in this paper. First, the input is
redefined so that signal is always smooth and bounded after
transmission through the unmodelled high-frequency gains
and time delay at the input. And then, to handle the estimate
and mismatching problem, the input-redefinition system is
transformed to an uncertainty-free system, which is proven
to be input–output equivalent with the aid of additive state
decomposition.1 All mismatching uncertainties, mismatch-
ing disturbances and effect of unmodelled dynamics along
with time delays are lumped into a new disturbance at the
output. An observer is then designed for the transformed
system to estimate the new state and the new disturbance.
Next, the transformed system is ‘additively’ decomposed
into two independent subsystems in charge of the corre-
sponding subtasks, namely the tracking (including rejec-
tion) subtask and the input-realisation subtask. Then, one
can design a controller for each subtask and finally inte-
grate them together to achieve the original control task.
Three benchmark examples are given to demonstrate the
effectiveness of the proposed control scheme.

Additive state decomposition is a decomposition
scheme proposed in our previous work (see Quan, Cai,
and Lin (2011, online)), which is used to transform output
feedback tracking control for systems with measurable non-
linearities and unknown disturbances and then decompose it
into three simpler problems. This makes a challenging con-
trol problem tractable. In this paper, a different control prob-
lem is investigated by using additive state decomposition.
Correspondingly, the transformation and decomposition are
different. The major contributions of this paper are: (i) a
tracking control scheme is able to handle mismatching para-
metric uncertainty, mismatching additive disturbances, un-
modelled high-frequency gains and time delay at the input;
(ii) a model transformation is to lump various uncertainties

together; (iii) additive state decomposition simplifies the
controller design, especially in handling a saturation term.

This paper is organised as follows. In Section 2, the
problem formulation is given, and additive state decom-
position is introduced briefly. In Section 3, the input is
redefined and the input-redefinition system is transformed
to an uncertainty-free system in the sense of input–output
equivalence. Sequentially, the controller design is given in
Section 4. In Section 5, the two-cart example is revisited
by the proposed control scheme. Section 6 concludes this
paper.

2. Problem formulation and additive
state decomposition

2.1. Problem formulation

Consider a class of SISO non-linear systems as follows:

ẋ = f (t, x, θ ) + buξ + d, x(0) = x0,

y = cT x. (1)

Here, b ∈ R
n and c ∈ R

n are constant vectors, θ (t) ∈ R
m

belongs to a given compact set � ⊆ R
m, x (t) ∈ R

n is the
state vector, y (t) ∈ R is the output, d (t) ∈ R

n is a bounded
disturbance vector and uξ (t) ∈ R is the control subject to
an unmodelled high-frequency gain and a time delay as
follows:

uξ (s) = H (s) e−τsu (s) . (2)

Here, H (s) is an unknown stable proper transfer func-
tion with H (0) = 1 representing the unmodelled high-
frequency gain at the input and τ ∈ R is the input delay.
It is assumed that only y is available from measurement.
The desired trajectory r(t) ∈ R is known a priori, t ≥ 0. In
the following, for convenience, we will drop the notation t

except when necessary for clarity.
For system (1), the following assumptions are made.

Assumption 1: The function f : [0,∞) × R
n × R

m →
R

n satisfies f (t, 0, θ ) ≡ 0, and is bounded when x is
bounded on [0,∞). Moreover, for given θ ∈ �, there ex-
ist positive definite matrices P ∈ R

n×n and Q ∈ R
n×n such

that

P∂xf (t, x, θ ) + ∂T
x f (t, x, θ ) P ≤ −Q,∀x ∈ R

n, (3)

where ∂xf � ∂f
∂x

∈ R
n×n.

Definition 1: Cao and Hovakimyan (2008) The L1 gain
of a stable proper SISO system is defined to be ‖G‖L1

=∫ ∞
0 |g (t)|dt, where g (t) is the impulse response of G (s).

Assumption 2: There exists a known stable proper transfer
function C(s) with C(0) = 1 such that ‖C (H − 1)‖L1

≤
εH , ‖sC‖L1

≤ ετ , where εH , ετ ∈ R are positive real.
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Mean Value Theorem (Dennis and Schnabel 1983,
p. 74): Let F : R

n → R
m be continuously differentiable

in an open convex set D ⊂ R
n. For any x, x + p ∈ D,

F (x + p) − F (x) = ∫ 1
0 ∂xF (x + tp) dt · p.

Under Assumptions 1–2, the objective here is to design a
tracking controller u such that y − r is ultimately bounded
by a small value.

Remark 1: In practice, many controlled systems such as
flight control systems are often linearised around a static
equilibrium. Besides this, some non-linear systems can be
linearised by feedback linearisation and backstepping tech-
nology. In these cases, the linearised system can be written
as (1) with f (t, x, θ ) = A(θ )x. The uncertain parameter θ ,
caused by system identification or modelling, is often within
an acceptance bound. Therefore, the stability of A (θ ) can
be ensured for given θ ∈ �. For such a case, there exist posi-
tive definite matrices P ∈ R

n×n and Q ∈ R
n×n such that (3)

holds. Notice that we do not need to know the matrices P ∈
R

n×n and Q ∈ R
n×n, which are only used for analysis. The

Assumption 1also covers a class of non-linear systems, such
as (6). By the mean value theorem, we have f (t, x, θ ) −
f (t, 0, θ ) = (

∫ 1
0 ∂xf (t, μx, θ ) dμ)x. Since f (t, 0, θ ) ≡

0 by Assumption 1, f (t, x, θ ) = (
∫ 1

0 ∂xf (t, μx, θ ) dμ)x.

Consequently, the system ẋ = f (t, x, θ ) is expo-
nentially stable by Lyapunov function xT Px and
property (3). The following three benchmark systems all
satisfy Assumption 1.

Example 1 (Rohrs’ example): Consider the Rohrs’ exam-
ple system as follows, see Rohrs et al. (1985):

y (s) = 2

s + 1

229

s2 + 30s + 229
u(s) . (4)

The nominal system is assumed to be y (s) = 2
s+3u (s) here.

In this case, the system (4) can be recast in the form (1) as

ẋ = −(3 + θ ) x + 2uξ , x(0) = 1,

y = x, (5)

where the parameter θ = −2 is assumed unknown and
H (s) = 229

s2+30s+229 , τ = 0. If θ ∈ � = [−2.5, 2.5] and the
set � is known, then the system (4) is stable. Consequently,
Assumption 1 is satisfied. Notice that we do not need to
know the matrices P and Q. Choose C(s) = 1

2s+1 . Then
Assumption 2 is satisfied with εH = 0.12 and ετ = 1.

Example 2 (Nonlinear): Consider a simple non-linear sys-
tem as follows, see Hagenmeyer and Delaleau (2003):

ẋ = −x − (1 + θ ) x3 + u (t − τ ) + d, x (0) = 1,

y = x, (6)

where x, y, u, d ∈ R, the parameter θ (t) = 0.2 sin(0.1t +
1), the input delay τ = 0.1 and d (t) = 0.5 sin (0.2t) are
assumed unknown. The system (6) can be recast in the
form (1) with f (t, x, θ ) = −x − (1 + θ ) x3 and H (s) =
1, τ = 0.1. If θ ∈ � = [−0.2, 0.2] and the set � is known,
the system (6) is stable. It is easy to verify ∂xf (t, x, θ ) =
−1 − 3 (1 + θ ) x2 ≤ −1. So, there exist P = 1 ∈ R and
Q = 2 ∈ R such that (3) holds. Consequently, Assumption
1 is satisfied. Let C (s) = 1

2s+1 . Then, Assumption 2 is sat-
isfied with εH = 0 and ετ = 1.

Remark 2: The Rohrs’ example was proposed by Charles
Rohrs in 1982, see Rohrs et al. (1985), which was to demon-
strate that the available adaptive control algorithms were
not able to adjust the bandwidth of the closed-loop system
and guarantee its robustness. The Non-linear example was
given in Hagenmeyer and Delaleau (2003) to show robust-
ness issues caused by using exact feedback linearisation.
Readers can refer to Rohrs et al. (1985) and Hagenmeyer
and Delaleau (2003) for details. The two benchmark exam-
ples imply that uncertainties either in system parameters or
in the input cannot be ignored in practice when designing a
tracking controller, even if the original systems are stable.
This is also the initial motivation of this paper.

2.2. Additive state decomposition

In order to make the paper self-contained, additive state
decomposition in Quan and Cai (2009) is recalled briefly
here. Consider the following ‘original’ system:

f (t, ẋ, x) = 0, x (0) = x0, (7)

where x ∈ R
n. We first bring in a ‘primary’ system having

the same dimension as (7), according to:

fp(t, ẋp, xp) = 0, xp (0) = xp,0, (8)

where xp ∈ R
n. From the original system (7) and the pri-

mary system (8), we derive the following ‘secondary’ sys-
tem:

f (t, ẋ, x) − fp(t, ẋp, xp) = 0, x (0) = x0, (9)

where xp ∈ R
n is given by the primary system (8). Define

a new variable xs ∈ R
n as follows:

xs � x − xp. (10)

Then, the secondary system (9) can be further written as
follows:

f (t, ẋs + ẋp, xs + xp) − fp(t, ẋp, xp) = 0,

xs (0) = x0 − xp,0. (11)
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From the definition (10), we have

x (t) = xp (t) + xs (t) , t ≥ 0. (12)

Remark 3: The ‘original’ system, namely (7), denotes the
system that is needed to decomposed. Correspondingly, the
‘primary’ system, namely (8), denotes a virtual system we
design. While, the ‘secondary’ system, namely (9), is deter-
mined by the ‘original’ system and the ‘primary’ system.
By the additive state decomposition, the system (7) is de-
composed into two subsystems with the same dimension
as the original system. In this sense, our decomposition is
‘additive’. In addition, this decomposition is with respect
to state. So, we call it ‘additive state decomposition’.

As a special case of (7), a class of differential dynamic
systems is considered as follows:

ẋ = f (t, x) , x (0) = x0,

y = h (t, x) , (13)

where x ∈ R
n and y ∈ R

m. Two systems, denoted by the
primary system and (derived) secondary system, respec-
tively, are defined as follows:

ẋp = fp(t, xp), xp (0) = xp,0,

yp = hp(t, xp), (14)

and

ẋs = f (t, xp + xs) − fp(t, xp), xs (0) = x0 − xp,0,

ys = h(t, xp + xs) − hp(t, xp), (15)

where xs � x − xp and ys � y − yp. The secondary sys-
tem (15) is determined by the original system (13) and the
primary system (14). From the definition, we have

x (t) = xp (t) + xs (t) ,

y (t) = yp (t) + ys (t) , t ≥ 0. (16)

3. Input redefinition and model transformation

Since H (s) is unmodelled high-frequency gain and τ is
input delay, the control signal should be smooth (low-
frequency signal) so that it will maintain its original form
as far as possible after transmission through H (s) e−τs .
Otherwise, the control signal will be distorted a lot. This
explains why high-gain feedback is often avoided in prac-
tice. For such a purpose, the input is redefined to make the
control signal smooth and bounded. This brings the effect of
H (s) e−τs under control, i.e. the effect will be predictable
and bounded.

3.1. Input redefinition

Redefine the input as follows:

u (s) = C (s) [σa (v) (s)] ,

where v ∈ R is the redefined control input and σa :
R → [−a, a] is a saturation function defined as σa (x) �
sign(x) min (|x| , a). Then, uξ is written as

uξ (s) = H (s) e−τsC (s) [σa (v) (s)]

= C (s) [σa (v) (s)] + ξ (s) , (17)

where ξ (s) = C (s) (H (s) e−τs − 1) [σa (v) (s)] represents
the effect of the unmodelled high-frequency gain and the
time delay. The function ξ (s) can be further written as

ξ (s) = C(s) (H (s) − 1) e−τs [σa (v) (s)]

+C(s) (e−τs − 1) [σa (v) (s)] . (18)

From the definition of σa , we have sup−∞<x<∞ |σa (x)| ≤ a.

In this paper, L−1 denotes the inverse Laplace transform.
By Assumption 2, ξ is bounded as follows:

sup
t≥0

|ξ (t)| ≤ ‖C (s) (H (s) − 1)‖L1
a + ‖sC (s)‖L1

× sup
t≥0

|L−1{(e−τs − 1)/s[σa(v)(s)]}|

≤ εHa + ετ sup
t≥0

∣∣∣∣
∫ t−τ

t

σa (v (λ)) dλ

∣∣∣∣
≤ (εH + τετ ) a, (19)

where ξ (t) = L−1 (ξ (s)) . The input redefinition makes ξ

bounded no matter what the redefined control input v is.
Therefore, it can be designed freely. According to the input
redefinition above, the controller (2) is rewritten as

uξ = u + ξ. (20)

Here, u (t) = L−1 (C (s) [σa (v) (s)]) can be written in the
form of a state equation as follows:

ż = Azz + bzσa (v) ,

u = cT
z z + dzσa (v) , (21)

where the vectors and matrices are compatibly dimensioned
depending on C (s) . Substituting (20) into the system (1)
results in

ẋ = f (t, x, θ ) + bu + dh, x (0) = x0,

y = cT x, (22)

where dh = d + ξ. The system (22) with the redefined con-
troller (21) is here called the input-redefinition system.
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3.2. Model transformation

The unknown parameter θ and the unknown disturbances d

do not appear in ‘matching’ positions for the control input,
i.e. θ and d do not appear as in b(uξ + θT x + d). Therefore,
in a general system except for a one-dimensional system,
the unknown uncertainties cannot often be compensated for
directly. Even if θ and d satisfy the ‘matching condition’,
it is also difficult to compensate for since the state x is
unknown. To address this difficulty, we first transform the
input-redefinition system (22) to an uncertainty-free sys-
tem, which is proved to be input–output equivalent with the
aid of the additive state decomposition as stated in Theo-
rem 1. Before proving the theorem, the following lemma is
needed.

Lemma 1: Consider the following system:

ẋ = f (t, x + z, θ ) − f (t, z, θ ) + ρ, (23)

where ρ (t) ∈ R
n is bounded. Under Assumption 1, the

solutions of (23) satisfy

‖x (t)‖ ≤ β (‖x (t0)‖ , t − t0) + γ sup
t0≤s≤t

‖ρ (s)‖ , (24)

where β is a class KL function2 and γ = 2 λ2
max(P )

λmin(P )λmin(Q) .

Proof: By the mean value theorem, the function f (t, x +
z, θ ) can be written as

f (t, x + z, θ )

= f (t, z, θ ) +
(∫ 1

0
∂xf (t, x + z + μx, θ ) dμ

)
x.

Then, the system (23) can be rewritten as

ẋ =
(∫ 1

0
∂xf (t, x + z + μx, θ ) dμ

)
x + ρ. (25)

Choose the Lyapunov function V = xT Px. By Assump-
tion 1, the derivative of V along (25) satisfies

V̇ ≤ −λmin (Q) ‖x‖2 + λmax (P ) ‖x‖ ‖ρ‖
≤ −1

2
λmin (Q) ‖x‖2 , ∀ ‖x‖ ≥ 2

λmax (P )

λmin (Q)
‖ρ‖ .

By Theorem 4.19 in Khalil (2002, p. 176), we conclude
the proof. �

With Lemma 1 in hand, we have

Theorem 1: Under Assumption 1, there exists an estimate
of θ, namely θ̂ ∈ �, such that the system (22) is input–
output equivalent to the following system:

ẋnew = f (t, xnew, θ̂ ) + bu, xnew (0) = 0,

y = cT xnew + dnew. (26)

Here xnew and dnew satisfy

‖x − xnew‖ ≤ β (‖x0‖ , t − t0) + γ sup
t0≤s≤t

∥∥dθ̃ (s)
∥∥ ,

‖dnew‖ ≤ ‖c‖ β (‖x0‖ , t − t0) + ‖c‖ γ sup
t0≤s≤t

‖dθ̃ (s)‖,
(27)

where β is a class KL function, γ = 2 λ2
max(P )

λmin(P )λmin(Q) and

dθ̃ = f (t, xnew, θ ) − f (t, xnew, θ̂ ) + dh.

Proof: In the following, additive state decomposition is
utilised to decompose system (22) first. Consider system
(22) as the original system and choose the primary system
as follows:

ẋp = f (t, xp, θ̂ ) + bu, xp (0) = 0,

yp = cT xp. (28)

Then, the secondary system is determined by the original
system (22) and the primary system (28) with the rule (15)
that

ẋs = f (t, xp + xs, θ ) − f (t, xp, θ̂ ) + dh, xs (0) = x0,

ys = cT xs. (29)

According to (16), we have x = xp + xs and y = yp + ys.

Consequently, we can get an uncertainty-free system as
follows:

ẋp = f (t, xp, θ̂ ) + bu, xp (0) = 0,

y = cT xp + ys,

where u and y are the same as in (22). Let xp = xnew and
dnew = ys. We can conclude that the system (22) is input–
output equivalent to (26). Next, we will prove that (27) is
satisfied. The system (29) can be rewritten as

ẋs = f (t, xp + xs, θ ) − f (t, xp, θ ) + dθ̃ , xs (0) = x0,

ys = cT xs, (30)

where dθ̃ = f (t, xp, θ ) − f (t, xp, θ̂ ) + dh. Then, by
Lemma 1, we have

‖x (t) − xnew (t)‖ = ‖xs (t)‖ ≤ β (‖x0‖ , t − t0)

+ γ sup
t0≤s≤t

‖dθ̃ (s)‖
‖dnew (t)‖ ≤ ‖c‖ ‖xs (t)‖ ≤ ‖c‖ β (‖x0‖ , t − t0)

+ ‖c‖ γ sup
t0≤s≤t

‖dθ̃ (s)‖.
�
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For the uncertainty-free transformed system (26), we de-
sign an observer to estimate xnew and dnew, as stated in
Theorem 2.

Theorem 2: Under Assumption 1, an observer is designed
to estimate state xnew and dnew in (26) as follows:

˙̂xnew = f (t, x̂new, θ̂ ) + bu, x̂new (0) = 0,

d̂new = y − cT x̂new. (31)

Then, x̂new ≡ xnew and d̂new ≡ dnew.

Proof: By the mean value theorem, subtracting (31) from
(26) results in

˙̃xnew = f (t, xnew, θ̂ ) − f (t, x̂new, θ̂ )

=
(∫ 1

0
∂xf (t, xnew + x̂new + μxnew, θ̂ )dμ

)
x̃new,

x̃new (0) = 0,

where x̃new � xnew − x̂new. Since x̃new (0) = 0,3 so x̃new ≡
0. This implies that x̂new ≡ xnew. Consequently, by the
relation y = cT xnew + dnew in (26), we have d̂new ≡ dnew.

�

Remark 4: By (21), the control signal u is always bounded.
Therefore, by Lemma 1, the state xnew is always bounded.
Consequently, by (27), dnew is always bounded as well. It is
interesting to note that the new state xnew and disturbance
dnewin the transformed system (26) can be observed di-
rectly rather than asymptotically or exponentially. This will
facilitate the analysis and design later.

Example 3 (Rohrs’ example, Example 1 continued): Ac-
cording to the input redefinition above, the Rohrs’ example
system (5) can be rewritten as follows:

ẋ = − (3 + θ ) x + 2u + (d + 2ξ ) ,

y = x,

where supt≥0 |ξ (t)| ≤ 0.12a, and u is generated by ż =
−0.5z + 0.5σa (v) , u = z. Then, according to (26), the
uncertainty-free transformed system of (5) is

ẋnew = −(3 + θ̂ )xnew + 2u,

y = xnew + dnew, (32)

where θ̂ will be specified later.

Example 4 (Nonlinear, Example 2 continued): Accord-
ing to the input redefinition above, the non-linear system
(6) can be rewritten as follows:

ẋ = −x − (1 + θ ) x3 + u + (d + ξ ) ,

y = x,

Figure 1. Additive state decomposition flow.

where supt≥0 |ξ (t)| ≤ 0.1a, and u is generated by ż =
−0.5z + 0.5σa (v) , u = z. Then, according to (26), the
uncertainty-free transformed system of (6) is

ẋnew = −xnew − (1 + θ̂ )x3
new + u, xnew (0) = 0,

y = xnew + dnew, (33)

where θ̂ will be specified later.

4. Controller design

In this section, the transformed system (26) is ‘additively’
decomposed into two independent subsystems in charge of
corresponding subtasks. Then, one can design a controller
for each subtask, respectively, and finally combine them to
achieve the original control task.

4.1. Additive state decomposition
of transformed system

Currently, based on the new transformed system (26), the
objective is to design a tracking controller u such that y − r

is ultimately bounded by a small value, while u is realised by
(21). According to this fact, the transformed system (26) is
‘additively’ decomposed into two independent subsystems
responsible for corresponding subtasks, namely the track-
ing (including rejection) subtask and the input-realisation
subtask. This is shown in Figure 1.

Consider the transformed system (26) as the original
system. According to the principle above, we choose the
primary system as follows:

ẋp = f (t, xp, θ̂ ) + bup, xp (0) = 0,

yp = cT xp + dnew. (34)

Then, the secondary system is determined by the original
system (26) and the primary system (34) with the rule (15),
and we can obtain that

ẋs = f (t, xp + xs, θ̂ ) − f (t, xp, θ̂ ) + b(u − up),

xs (0) = 0,

ys = cT xs. (35)
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According to (16), we have

xnew = xp + xs and y = yp + ys. (36)

The strategy here is to assign the tracking (including re-
jection) subtask to the primary system (34) and the input-
realisation subtask to the secondary system (35). It is clear
from (34)–(36) that if the controller up drives yp − r → 0
in (34) and u drives ys → 0 in (35), then y − r → 0 as
t → ∞. The benefit brought by the additive state decom-
position is that the controller u will not affect the tracking
and rejection performance since the primary system (34) is
independent of the secondary system (35). Since the states
xp and xs are unknown except for addition of them, namely
xnew, an observer is proposed to estimate xp and xs.

Remark 5: Although the proposed additive state decom-
position makes clear how to decompose a system, it still
leaves freedom to choose the primary system. By the addi-
tive state decomposition, the transformed system (26) can
be also decomposed into a primary system

ẋp = Axp + bup, xp (0) = 0,

yp = cT xp + dnew, (37)

and the derived secondary system

ẋs = f (t, xp + xs, θ̂ ) − Axp + b(uξ − up), xs (0) = x0,

ys = cT xs, (38)

where A ∈ R
n×n is an arbitrary constant matrix. Therefore,

there is an infinite number of decompositions. The principle
here is to derive the secondary system with an equilibrium
point as close to zero as possible. If so, the problem for the
secondary system is only a stabilisation problem, which is
easier compared to a tracking problem. In (35), xs = 0 is an
equilibrium point of ẋs = f (t, xp + xs, θ̂ ) − f (t, xp, θ̂ ),
whereas in (38), xs = 0 is not an equilibrium point of
ẋs = f (t, xp + xs, θ ) − Axp. This is why we choose the
primary system as (34) not (37). As mentioned above, a
good additive state decomposition often depends on the
concrete problem at hand.

Theorem 3: Under Assumption 1, suppose that an ob-
server is designed to estimate state xp and xs in (34)–(35)
as follows:

˙̂xp = f (t, x̂p, θ̂ ) + bup, x̂p (0) = 0,

x̂s = xnew − x̂p. (39)

Then, x̂p ≡ xp and x̂s ≡ xs .

Proof: Similar to the proof of Theorem 2. �
So far, we have transformed the original system to an

uncertainty-free system, in which the new state and the new

disturbance can be estimated directly. And then, decompose
the transformed system into two independent subsystems
in charge of corresponding subtasks. In the following, we
are going to investigate the controller design with respect
to the two decomposed subtasks, respectively.

4.2. Problem for tracking (including
rejection) subtask

Problem 1: For (34), design a controller

up = ur (t, xp, r, dnew) (40)

such that yp − r → B (δr )4 as t → ∞, meanwhile keeping
the state xp bounded, where δr ∈ R.

Remark 6 (on Problem 1): Since yp = cT xp + dnew,

Problem 1 can be also considered to design up such that
cT xp − (r − dnew) → 0. Here, the difference between r and
dnew should be clarified. The reference r is often known a
priori, i.e. r (t + T ) is known at time t, where T > 0. More-
over, its derivative is often given or can be obtained by an-
alytic methods; whereas the new disturbance dnew can only
be obtained at time twhose derivative can only be obtained
by numerical methods. By recalling (27), the new distur-
bance dnew depends on the disturbance d, the parameters θ

and θ̂ , the effect of unmodelled high-frequency gain namely
ξ, the state xnew, and initial value x0. One way of reducing
the complexity is to design an observer to estimate θ,and
make θ̂ → θ as t → ∞. As a result, the new disturbance
dnew finally depends on d and ξ as t → ∞. In practice,
a low-frequency band is often dominant in the reference
signal and disturbance. Therefore, from a practical point
of view, we can also modify the tracking target, namely
r − dnew. For example, let r − dnew transmit a low-pass fil-
ter to obtain its major component. If the major component
of r − dnew belongs to a fixed family of functions of time,
Problem 1can also be considered as an output regulation
problem (see Isidori, Marconi, and Serrani 2003).

4.3. Problem for input-realisation subtask

As shown in Figure 1, the input-realisation subtask aims
to make ys → 0. Let us investigate the secondary system
(35). By Lemma 1, we have

‖xs (t)‖ ≤ β (‖xs (t0)‖ , t − t0)

+ γ ‖b‖ sup
t0≤s≤t

‖u(s) − up(s)‖. (41)

This implies that ys → γ ‖b‖ ‖c‖B (δs) as u − up →
B (δs), where δs ∈ R. It is noticed that u can only be realised
by (21). Therefore, the problem for the input-realisation
subtask can be stated as follows:
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1806 Q. Quan et al.

Problem 2: Given a signalup, design a controller v =
vs

(
t, up

)
for (21) such that u − up → B (δs) as t → ∞.

This is also a tracking problem but with a saturation
constraint. Here, we give a solution to Problem 2. The main
difficulty is how to handle the saturation in (21). Here,
additive state decomposition will be used again. Taking
(21) as the original system, we choose the primary system
as follows:

żp = Azzp + bzv,

uzp = cT
z zp + dzv. (42)

Then, the secondary system is determined by the original
system (21) and the primary system (42) with the rule (15),
and we obtain

żs = Azzs + bz (σa (v) − v) ,

uzs = cT
z zp + dz (σa (v) − v) . (43)

According to (16), we have z = zp + zs and u = uzp + uzs.

The benefit brought by the additive state decomposition is
that the controller saturation will not affect the primary sys-
tem (42). Moreover, the controller v can be designed based
only on the primary system (42), where the controller v

uses the state zp not z. So, the strategy here is to design
v = vs(t, up) in (42) to drive uzp − up → 0 as t → ∞
and neglect the secondary system (43). Since vs(t, up) is
bounded, the state of the secondary system (43) will be
bounded as well. If σa(vs(t, up)) − vs(t, up) → 0 as t →
∞, then uzs → 0 as t → ∞. Consequently, u − up → 0
as t → ∞. For (42), the transfer function from v to uzp is
uzp (s) = C (s) v (s) , where

C (s) = cT
z (sI − Az)

−1 bz + dz. (44)

If C (s) is designed to be minimum phase, an easy way is
to design v to be

v(s) = C−1 (s) up (s) . (45)

The design will make the signal σa (v) close to the ideal
one, meanwhile maintaining the signal σa (v) smooth as far
as possible. By recalling (18), it will make the effect of
the unmodelled high-frequency gain and the time delay ξ

smaller. Once v is determined, the control signal can be
generated by (21).

Remark 7: This paper focuses on a general decomposi-
tion idea rather than a detailed technology. So, we do not
limit methods to solve Problems 1–2,which are both stan-
dard control problems. To avoid abstract, we give detailed
analysis for the two problems. In addition, we give three
examples to show how Problems 1–2 are solved.

4.4. Controller integration

In summary, we have

Theorem 4: Under Assumptions 1–2, suppose (i) Prob-
lems 1–2 are solved; (ii) the controller for system (1) (or
(26)) is designed as

Observer:

˙̂xnew = f (t, x̂new, θ̂ ) + bu, x̂new (0) = 0,

˙̂xp = f (t, x̂p, θ̂ ) + bup, x̂p (0) = 0,

d̂new = y − cT x̂new (46)

Controller:

up = ur (t, x̂p, r, d̂new), v = vs(t, up),

ż = Azz + bzσa (v) , u = cT
z z + dzσa (v) . (47)

Then, the output of system (1) (or (26)) satisfies y − r →
B (δr + γ ‖b‖ ‖c‖ δs) as t → ∞, meanwhile keeping all
states bounded. In particular, if δr + δs = 0, then the output
in system (1) (or (26)) satisfies that y − r → 0 as t → ∞.

Proof: It is easy to see from the proof in Theorems 2–3
that the observer (45) will make

x̂new ≡ xnew, d̂new ≡ dnew, x̂p ≡ xp. (48)

Suppose that Problem 1 is solved. By (40) and (48),
the controller up = ur (t, x̂p, r, d̂new) can drive yp − r →
B (δr ) as t → ∞ in (34). Suppose that Problem 2 is
solved. By (48), the controller v = vs

(
t, up

)
can drive

u − up → B (δs) as t → ∞ in (35). Further by (41), we
have ys → B (γ ‖b‖ ‖c‖ δs) . Since y = yp + ys, we have
y − r → B (δr + γ ‖b‖ ‖c‖ δs). �

Example 5 (Rohrs’ example, Example 3 continued): Ac-
cording to (34), the primary system of linear system (32)
can be rewritten as follows:

ẋp = −(3 + θ̂ )xp + 2up,

y = xp + dnew.

Design up = 1
2 [(2 + θ̂ )xp + r + ṙ − dnew − ḋnew]. Then,

the system above becomes ėp = −ep, where ep = yp − r.

Therefore, yp → r as t → ∞. According to (45), v is
designed as vs(t, up) = 2u̇p + up. Here, u̇p and ḋnew

are approximated by ḋnew ≈ L−1( s
0.1s+1dnew (s)) and u̇p ≈

L−1( s
0.1s+1up (s)), respectively. Suppose θ̂ = 0 and given

r = 0.5 and r = 0.5 sin(0.2t) , respectively. Driven by the
resulting controller (47), the simulation result is shown in
Figure 2.
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Figure 2. Output of the Rohrs’ example system.

Example 6 (Nonlinear, Example 4 continued): Accord-
ing to (34), the primary system of non-linear system (33)
can be rewritten as follows:

ẋp = −xp − (1 + θ̂ )x3
p + up, xp (0) = 0,

yp = xp + dnew.

Design up = (1 + θ̂ )x3
p + ṙ + r − ḋnew − dnew. Then, the

system above becomes ėp = −ep, where ep = yp − r.

Therefore, yp − r → 0 as t → ∞. According to (45),
vs(t, up) is designed as vs(t, up) = 2u̇p + up. Here, the
derivative of up and dnew are approximated by ḋnew ≈
L−1( s

0.1s+1dnew (s)) and u̇p ≈ L−1( s
0.1s+1up (s)), respec-

tively. Suppose θ̂ = 0 and given r = 0.5 and r = 0.5
sin(0.2t) , respectively. Driven by the resulting controller
(47), the simulation result is shown in Figure 3.

Remark 8: The derivative of dnew and up can be also ob-
tained by the differentiator technique (see Han and Wang
1994; Levent 1998). It is interesting to note that θ̂ is dif-
ferent from θ, but y − r is ultimately bounded by a small
value. This is one major advantage of this proposed control
scheme. Moreover, all the unknown parts such as θ, d and
H (s)e−sτ are treated as a lumped disturbance dnew. This can

explain why the proposed scheme can handle many kinds
of uncertainties together.

5. Two-cart example

The two-cart mass-spring-damper example was originally
proposed as a benchmark problem for robust control design
(see Fekri, Athans, and Pascoal 2006; Xargay et al. 2009).
Next, we will revisit the two-cart example by the proposed
control scheme.

The two-cart system is shown in Figure 4. The states
x1(t) and x2(t) represent the absolute positions of the two
carts, whose masses are m1 and m2, respectively; k1, k2

are the spring constants, and b1, b2 are the damping coeffi-
cients; d(t) is a disturbance force acting on the mass m2; u(t)
is the control force subject to an unmodelled high-frequency
gain and a time delay, which acts upon the mass m1. The
parameter m1 = 1 is known, whereas the following parame-
ters m2 = 2,k1 = 0.8, k2 = 0.5, b1 = 1.3, b2 = 0.9 are as-
sumed unknown. The unmodelled high-frequency gain and
a time delay is assumed to be H (s) e−τs = 229

s2+30s+229e−0.1s .
The disturbance force ζ (t) is modelled as a first-order
(coloured) stochastic process generated by driving a low-
pass filter with continuous-time white noise ε(s), with
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1808 Q. Quan et al.

Figure 3. Output of the non-linear system.

Figure 4. The two-cart system.

zero-mean and unit intensity, i.e. � = 1, as follows
form ζ (s) = 0.1

s+0.1ε(s).
The overall state-space representation is recast in the

form (1) as follows:

ẋ = A (θ ) x + buξ + d,

y = cT x, (49)

where

x =

⎡
⎢⎢⎣

x1

x2

ẋ1

ẋ2

⎤
⎥⎥⎦ ,

A (θ ) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0 0 1

− k1

m1

k1

m1
− b1

m1

b1

m1
k1

m2
−k1 + k2

m2

b2

m2
−b1 + b2

m2

⎤
⎥⎥⎥⎥⎥⎦

,

d =

⎡
⎢⎢⎢⎣

0
0
0
1

m2

⎤
⎥⎥⎥⎦ ζ, b =

⎡
⎢⎢⎢⎢⎣

0
0
1

m1
0

⎤
⎥⎥⎥⎥⎦, c =

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦, θ =

⎡
⎢⎢⎢⎢⎢⎢⎣

m1

m2

k1

k2

b1

b2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The objective here is to design a tracking controller u

such that y − r is with a good tracking accuracy or is
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Figure 5. Output of the two-cart system in Case 1.

ultimately bounded by a small value. Since the dampers
will always absorb energy untitle the two carts are at rest,
it can be concluded that the two-cart system (a phys-
ical system) is stable. This implies that, for any given
θ ∈ �, there exist positive definite matrices P ∈ R

n×n and
Q ∈ R

n×n such that PA (θ ) + AT (θ ) P ≤ −Q,∀x ∈ R
n,

where � represents the set that θ is normally encoun-
tered in practice. Assumption 1 is satisfied. Let C (s) =

1
2s+1 . Then, Assumption 2 is satisfied with εH = 0.12 and
ετ = 1.

According to the input redefinition above, the two-cart
system (49) can be rewritten as follows:

ẋ = A (θ ) x + bu + (d + ξ ) ,

y = cT x,

where supt≥0 |ξ (t)| ≤ 0.17a and u is generated by

ż = −0.5z + 0.5σa (v) ,

u = z. (50)

Then, according to (26), the uncertainty-free transformed
system of (49) is

ẋnew = A(θ̂)xnew + bu, xnew (0) = 0,

y = cT xnew + dnew, (51)

where dnew = cT eA(θ)t x0 + ∫ t

0 cT eA(θ)(t−s)b[d (s) + ξ (s) +
A (θ ) xnew (s) − A(θ̂)xnew (s)]ds. According to (34),
the primary system of (51) can be rewritten as
follows:

ẋp = A(θ̂)xp + bup, xp (0) = 0,

yp = cT xp + dnew. (52)

The transfer function from up to yp in (52) is

Gyu (s) = cT (sI − A(θ̂ ))−1b,

which is minimum phase. Thus, up can be designed as

up (s) = G−1
yu (s) (r − dnew) (s) ,

which can drive yp − r → 0. Then, Problem 1 is solved.
Furthermore, according to (45), redefined input v in
(50) is designed as vs(t, up) = L−1(C−1 (s) G−1

yu (s) (r

− dnew) (s)), where C (s) = 0.5
s+0.5 by the definition (44).
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1810 Q. Quan et al.

Figure 6. Output of the two-cart system in Case 2.

To realise the control, vs(t, up) is approximated to be

vs(t, up) = L−1(Q (s) C−1 (s) G−1
yu (s) (r − dnew) (s)).

(53)

where Q (s) is a fifth-order low-pass filter to make the com-
pensator physically realisable (the order of the denominator
is greater than or equal to that of numerator). For simplicity,
Q (s) is chosen here to be Q (s) = 1∏k=5

k=1( 1
10k

s+1) . The Prob-

lem 2 is solved. Therefore, according to (46) and (47), the
controller for the two-cart system is designed as follows:

˙̂xnew = A(θ̂ )x̂new + bu, x̂new (0) = 0, d̂new = y − cT x̂new,

ż = −0.5z + 0.5σa(vs(t, up)), u = z, (54)

where vs(t, up) is given by (53) and here a is chosen to
be 1.

To shown the effectiveness, the proposed controller (54)
is applied to three cases:

Case 1: θ̂ = θ,

Case 2: θ̂ = [ 1 1 1 0.9 1.5 1 ]T ,

Case 3: θ = θ̂ = [ 1 1 1 0.9 1.5 1 ]T .

Case 1 implies that the parameters are known exactly.
Case 2 implies that the parameters are unknown. While,
Case 3 implies that the parameters are changed to be a
specified one. The simulations are shown in Figures 5–7.
The proposed controller achieves good tracking accuracy.
Moreover, it is seen that the response in Cases 2–3 is faster
than that in Case 1. And, the tracking accuracy in Cases
1 and 3 is better than in Case 2. So, Case 2 is a tradeoff
between Case 1 and Case 3.

Remark 9: The simulations show that the proposed con-
troller can handle the case that parameter estimates are
different from the true parameters. Moreover, the response
is similar to that of the model for the estimated param-
eters. This implies that the proposed controller, in fact,
achieves results similar to those for model reference adap-
tive control. However, unlike model reference adaptive con-
trol, unknown parameters are not estimated and changed
directly.

Remark 10: If the considered system is parameterised
with many uncertain parameters, then an adaptive control
often needs a corresponding number of estimators, namely
integrators. This will cause the parameters to converge
to true values at a very slow rate or not to converge to
true values without persistent excitation. However, in the

D
ow

nl
oa

de
d 

by
 [

B
ei

ha
ng

 U
ni

ve
rs

ity
] 

at
 1

9:
36

 2
8 

D
ec

em
be

r 
20

14
 



International Journal of Systems Science 1811

Figure 7. Output of the two-cart system in Case 3.

proposed control, five uncertain parameters and distur-
bances are lumped into the disturbance dnew, which can
be estimated directly.

6. Conclusions

Output tracking control for a class of uncertain systems
subject to unmodelled dynamics and time delay at the input
is considered. Our main contribution lies in the presenta-
tion of a new decomposition scheme, called additive state
decomposition, which not only transforms the uncertain
system to an uncertainty-free system but also simplifies
the controller design. The proposed control scheme has the
following two salient features. Firstly, it can handle both
mismatching uncertainties and disturbances. Moreover, it
can achieve good tracking performance without exact pa-
rameters. Secondly, it considers many types of uncertainties
together. In the presence of these uncertainties, the closed-
loop system is still stable when incorporating the proposed
controller. Three benchmark examples are given to show
the effectiveness of the proposed control scheme.
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Notes

1. In this paper, we have replaced the term ‘additive decomposi-
tion’ in Quan and Cai (2009) with the more descriptive term
‘additive state decomposition’.

2. Refer to (Khalil 2002, p. 144) for the definition.
3. Since the initial values xnew (0) , x̂new (0) are both assigned by

the designer, they are all determinate. So, we have x̃new (0) =
0.

4. B (δ) � {x ∈R | |x|≤δ } ; the notation x (t)→B (δ) means
miny∈B(δ)‖x (t) − y‖ → 0; B (δ1) + B (δ2) � {x + y| x ∈
B (δ1) , y ∈ B (δ2)}.
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