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A practical vision-based method is proposed to measure single axis rotation angles. Compared with
existing anglemeasurementmethods, the proposedmethod is more practical because of the simple equip-
ment required and an easy installation. Furthermore, unlike most existing methods, the proposed
method does not require the rotation axis information at all. The information is calibrated by two-view
geometry of the single axis motion. Then, on the basis of the calibration results, an angle estimation
algorithm with point matching is proposed. Experiments on synthetic and real images show that the
proposed method is robust with respect to image noises and occlusion. A measurement accuracy of less
than 0.1° is obtained in real experiments only using a provided camera and a normal printed checkboard.
Moreover, a single axis rotation angle measurement MATLAB toolbox is developed, which is available
online (http://quanquan.buaa.edu.cn/Anglemeasurementtoolbox.html). © 2015 Optical Society of
America
OCIS codes: (150.1488) Calibration; (150.1135) Algorithms; (350.4600) Optical engineering;

(330.7325) Visual optics, metrology.
http://dx.doi.org/10.1364/AO.54.000425

1. Introduction

Measuring angles of a rotation device is a regular
and important activity in various engineering
fields. Existing rotation angle measurement meth-
ods are mainly classified into three categories:
mechanical methods, electromagnetic methods, and
optical methods. Mechanical methods use a multi-
gear disk on the rotation axis to measure angles
[1]. Electromagnetic methods adopt electromagnetic
angle indexing technologies to obtain angles. Optical
methods have a great variety, including the fiber
method [2], the optical internationalization method

[3], the laser interference method [4], the ring laser
method [5], the vision-based angle measurement
method [6,7], and so forth. These three types of meth-
ods have different characters and are suitable for
different applications.

In industrial areas, it is very necessary to test and
correct mounted angle measurement sensors, and
sometimes this work should be done in working field.
To achieve this requires measuring rotation angles
with simple equipment that is easy to carry and
install. Generally, it is not allowed to dismantle rota-
tion devices for convenience, and in most situations
the rotation axis is invisible or difficult to obtain ac-
curately. For instance, aircraft maintainers are often
required to test and correct angle measurement sen-
sors of aircraft rudders, as shown in Fig. 1, without

1559-128X/15/030425-11$15.00/0
© 2015 Optical Society of America

20 January 2015 / Vol. 54, No. 3 / APPLIED OPTICS 425

http://quanquan.buaa.edu.cn/Anglemeasurementtoolbox.html
http://quanquan.buaa.edu.cn/Anglemeasurementtoolbox.html
http://quanquan.buaa.edu.cn/Anglemeasurementtoolbox.html
http://quanquan.buaa.edu.cn/Anglemeasurementtoolbox.html
http://quanquan.buaa.edu.cn/Anglemeasurementtoolbox.html
http://dx.doi.org/10.1364/AO.54.000425


dismantling the rudders when working in the field.
These constraints make most of the existing methods
somewhat inapplicable or inconvenient. Mechanical
methods require modifying the original structure of
the rotation devices, while electromagnetic methods
need prior calibration and complex installation.
Optical methods excluding the vision-based method
often rely on some special and expensive equipment
such as lasers, prisms, or gratings, which are also dif-
ficult to install. These motivate us to propose a prac-
tical and convenient rotation angle measurement
method.

The vision-based method is very suitable for the
above situation due to its noncontact nature and
briefness. However, as far as the authors know,
existing vision-based methods are inapplicable when
no rotation axis information is available. In [6], in or-
der to obtain rotation angles, the proposed method is
confined to the case where the camera optical axis
and the rotation axis are both vertical to the refer-
ence target plane. In [7], the proposed method re-
quires information about the image position of the
intersection point of the target and the rotation axis.

A feasible way to obtain rotation axis information
is to estimate it from a rotation image sequence by
analyzing properties of the single axis rotation. This
is a special case of the general camera motion, which
is estimated by two distinct approaches including op-
tical flow methods and feature-based methods [8].
Optical flow methods recover three-dimensional
(3D) camera motions by analyzing the instantaneous
changes in brightness values of the image sequence.
Researchers have paid a lot of attention to estimat-
ing the camera motion from optical flow. Park et al.
[9] proposed a novel method to estimate camera
motion parameters from the linear composition of
several optical flow models. In [10,11], gradient-
based optical flow algorithms were improved by
using perspective information. Zhang et al. [12] pro-
posed a relatively accurate and robust direct method
for estimating the 3D camera motion without calcu-
lating the optical flow beforehand. In [13], the nor-
mal flow of an image sequence was introduced to
reduce the time consumption. Optical flow methods
have been widely used in natural scenes and are very
suitable for multi-rigid-body motions. However,
these methods always assume small camera motions
and are rather sensitive to illumination. In contrast,
feature-based methods with targets are much more

robust and accurate. Therefore, in order to achieve
robust results with high accuracy, the single axis
motion is estimated by feature-based methods. Lots
of such methods [14–17] have been developed to
calibrate camera motions with different kinds of
targets. In the proposed method, the most commonly
used camera motion estimation method in [17] is
adopted with a plane target (a checkboard or a spot
array). Based on the rotation axis information esti-
mated from the camera motion, rotation angles are
estimated.

Consequently, a two-step angle measurement
method is proposed including the calibration of sin-
gle axis motion and the rotation angle measurement.
The key idea of the first step is to obtain the relative
poses between the rotation axis and the camera by
calibration. Then in the second step, more effort is
focused on how to improve the accuracy and robust-
ness during the measurement.

The calibration of single axis motion is achieved by
using a conic model to fit the trajectory of a feature
point in many mature 3D object reconstruction sys-
tems [18,19]. However, the conic fitting is extremely
sensitive to noises especially in the case where the
trajectory is only generated by small-angle rotations
such as in aircraft rudder angle measurement. Even
if 80–100 deg of an arc of a 3D trajectory is captured,
its description as a curve is very unreliable for com-
puting parameters [20]. Therefore, the single axis
motion is calibrated through two-view geometry
[21]. Although it is common in 3D reconstruction,
as far as the authors know, few papers deal with
the rotation angle measurement problem with a
plane target using two-view geometry. Finally, in
order to refine calibration results, the bundle adjust-
ment is further employed.

Based on the calibration information, a robust and
accurate angle measurement algorithm with point
matching is proposed. Combining the calibration re-
sults, the algorithm can remove matching ambigu-
ities caused by occlusion. Thus, the proposed
method is applicable in occlusion situations. More-
over, thanks to the point detection algorithm of
checkboard [22], the calibration and measurement
are auto completed with satisfying speed and
robustness.

The contribution of this paper is providing a prac-
tical rotation angle measurement method and a
MATLAB toolbox online. It is mainly used to test
and correct angle measurement sensors. The practi-
cality lies in three aspects: (i) simple equipment,
namely only a camera with fixed focal length and
a plane target; (ii) no special installation and rotation
axis information requirements; and (iii) robustness
with respect to image noises and occlusion.

The remainder of this paper is organized as fol-
lows: Section 2 describes some preliminaries includ-
ing the coordinate transformation and the nonlinear
pinhole camera model. In Section 3, the two-view
geometry of single axis motion is stated as a theorem.
In Section 4, the calibration and angle measurement

Fig. 1. Aircraft tail with elevating rudder and yaw rudder.
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method are presented. Simulations and real experi-
ments are given in Section 5. Section 6 concludes the
paper with a short summary.

In this paper, the following notations are used. Zn
1

denotes the set of positive integers less than n;Rn is a
Euclidean space of dimension n. j · j denotes the
absolute value of a real number. ‖ · ‖ denotes the
Euclidean vector norm or induced matrix norm. In
is the identity matrix of order n. 0n1×n2

denotes a zero
vector or a zero matrix with dimension n1 × n2. M−1

denotes the inverse matrix of a square matrixM. The
symbol �·�×:R3 → R3×3 is defined as

" vx
vy
vz

#
×

�
2
4 0 −vz vy

vz 0 −vx
−vy vx 0

3
5: (1)

The cross product of two vectors v1, v2 ∈ R3 is de-
noted as v1 × v2 � �v1�×v2. The element of a matrix
S at the ith row and jth column is denoted as Si;j.
The symbol vec�S� is the column vector obtained
by stacking the second column of S under the first,
and then the third, and so on.

2. Preliminaries

In this section, preliminaries of the proposed vision-
based measurement method are introduced, includ-
ing the coordinate transformation and the nonlinear
camera model.

A. Coordinate Transformation

The rigid transformation between different coordi-
nate systems is expressed by a rotation matrix and
a translation vector. In this paper, the rotation
matrix and translation vector from Ob-xbybzb to
Oa-xayaza are denoted as Rab and Tab, and
�Rab; Tab� is called the transformation matrix of the
two coordinate systems.

Theorem 1. The rotation matrix and the transla-
tion vector have the following properties: (i)Tab is the
coordinate of Ob in Oa-XaYaZa; (ii) Rba � RT

ab,
Tba � −RbaTab; and (iii) for three coordinate systems
Oa-XaYaZa, Ob-XbYbZb, and Oc-XcYcZc, the relation
among their rotation matrices and translation
vectors is

Rbc � RbaRac; Tbc � Rba�Tac − Tab�: (2)

B. Nonlinear Camera Model

A linear pinhole cameramodel performs the transfor-
mation from P in Ow-XwYwZw to the camera coordi-
nate system Oc-XcYcZc, then to the image points p in
Oi-XiYi, as shown in Fig. 2. The relation between a
world point �xw; yw; zw�T and its corresponding
normal image point �xn; yn�T is written as

λ

" xn
yn
1

#
� �Rcw; Tcw�

2
64
xw
yw
zw
1

3
75; (3)

where λ is a scale factor and �Rcw; Tcw� is the trans-
formation matrix from Ow-XwYwZw to Oc-XcYcZc.

In fact, the camera model does not strictly satisfy
the pinhole imaging model. There exist radial and
tangential distortions. For higher accuracy, a widely
used distortion model [17] is adopted in this paper. In
order to compensate for the deviation, the real
normalized image point �x0n; y0n�T is approximately
obtained from �xn; yn�T by the following formulas:

�
x0n � κxn � 2k3xnyn � k4�r2 � 2x2n�
y0n � κyn � 2k3xnyn � k4�r2 � 2y2n�

; �4�

where κ � 1� k1r2 � k2r4 � k5r6, r2 � x2n � y2n, and
k1, k2, k3, k4, k5 are distortion parameters. Then,
the real image point �u; v�T is obtained from"u

v
1

#
� K

" x0n
y0n
1

#
; (5)

and

K �
" αx 0 u0

0 αy v0
0 0 1

#
; (6)

where αx and αy are the scale factors in image u and v
axes; �u0; v0�T are the coordinates of the princi-
pal point.

For convenience of description, the image point is
written as functions of involved parameters:

�
u � f u�pin; Rcw; Tcw; xw; yw; zw�
v � f v�pin; Rcw; Tcw; xw; yw; zw� ; �7�

Fig. 2. Linear pinhole camera model. Four coordinate systems
are involved: (i) the world coordinate system Ow-XwYwZw; (ii) the
camera coordinate system Oc-XcYcZc; (iii) the image coordinate
system Oi-XiYi; and (iv) the pixel coordinate system Op-uv. The
coordinate of Oi is �u0; v0� in Op-uv.
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where the intrinsic parameter vector pin �
�αx; αy; u0; v0; k1; k2; k3; k4; k5�T .

3. Two-View Geometry of Single Axis Motion

A single axis motion consists of a set of relative
motions between the scene and the camera, which
is described by rotations around a single axis. There
are many cases of this motion commonly occurring in
computer vision applications. The most common, and
the one that is used here, is the case of a static
camera viewing an object rotating around a single
axis. The two-view geometry of this case describes
the specific geometry relations of the camera, the
scene, and the single axis in two camera views. This
geometry is stated as the following theorem.

Theorem 2.As shown in Fig. 3, the origin pointOa
of Oa-XaYaZa is on the Xc axis of Oc-XcYcZc, and
Ob-XbYbZb is obtained by rotating Oa-XaYaZa
around the Zc axis by a rotation angle θ�θ ≠ 0�. If
the coordinate of Oa in Oc-XcYcZc is �t; 0; 0�T, then

1
t sin θ

E � −�r2�× � tan
θ

2
�r2rT3 � r3rT2 �; (8)

where E � �Tba�×Rba and Rac � �r1; r2; r3�,
r1; r2; r3 ∈ R3.

Proof. See Appendix A.
Next it will be seen thatRac, t and θ are determined

uniquely by E. Since �r2�T× � −�r2�×, it follows that

1
t sin θ

�ET − E� � 2�r2�×.

Furthermore, since ‖r2‖ � 1, then

r2 � vs
‖vs‖

; (9)

μ � t sin θ � ‖vs‖
2

; (10)

where vs � �S3;2; S1;3; S2;1�T and S � ET − E. From
Eq. (8), the following equation holds:

�
1
μ
E� �r2�×

�
r1 � tan

θ

2
�r2rT3 � r3rT2 �r1:

Consequently, �1μE� �r2�×�r1 � 0 for rT3 r1 � 0 and
rT2 r1 � 0. This implies that r1 is the solution of

�
1
μ
E� �r2�×

�
x � 0; subject to ‖x‖ � 1; (11)

which is the unit singular vector of 1
μE� �r2�× corre-

sponding to the smallest singular value.With r1, r2 in
hand, Rac � �r1; r2; r1 × r2� is obtained. Let us revisit
Eq. (8). The rotation angle θ is obtained as

θ � 2 arctan
�
ATB

ATA

�
; (12)

where A � vec�r2rT3 � r3rT2 � and B � vec�1μE� �r2�×�.
Finally, since θ is not zero, t is determined by

t � μ

sin θ
: (13)

The aforementioned description is summarized as
the following theorem.

Theorem 3. Suppose that the conditions of Result
1 hold and Rac � �r1; r2; r1 × r2�. Then, r1, r2, t and θ in
Eq. (8) are obtained according to Eqs. (9), (11), (13),
and (12), respectively.

4. Process of Angle Measurement

In this section, a practical method to measure rota-
tion angles is proposed. First, the angle measure-
ment problem is formulated in Section 4.A. Then
two steps of the proposed method are presented in
Sections 4.B and 4.C. In the first step, required infor-
mation including camera intrinsic parameters and
relative pose information is calibrated from a rota-
tion image sequence. In the second step, based on
the calibration results, an angle estimation algo-
rithm with point matching is proposed to remove
thematching ambiguity caused by occlusion. Figure 4
describes the process of angle measurement.

Fig. 3. Two-view geometry of single axis motion.

Fig. 4. Process of the proposed rotation angle measurement
method. Details of step 1 and step 2 are described in Sections 4.B
and 4.C, respectively.
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A. Problem Formulation

The world coordinate system is established as in
Fig. 5, where the rotation axis is aligned with the
Zw axis. The reference target coordinate system is de-
noted as Ot-XtYtZt with the world coordinate of its
origin point Ot being Twt � �t; 0; 0�T, t > 0. All target
points are in the XtOtYt plane, that is, the target co-
ordinates of all these points are in the form of
�xt; yt; 0�T . Furthermore, if �xw�θ�; yw�θ�; zw�θ��T is
the world coordinate of a target point �xt; yt; 0�T with
respect to a rotation angle θ, then it has the following
form:2
4 xw�θ�
yw�θ�
zw�θ�

3
5 �

2
4 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

3
5 Rwt

" xt
yt
0

#
� Twt

!
;

Let �Rcw; Tcw� denote the transformation matrix from
Ow-XwYwZw to the camera coordinate system
Oc-XcYcZc. Then, according to Eqs. (7), the image
point is written as

u ≜ gu�pin; pout; θ; xt; yt�
� f u�pin; Rcw; Tcw; xw�θ�; yw�θ�; zw�θ��; (14)

v ≜ gv�pin; pout; θ; xt; yt�
� f v�pin; Rcw; Tcw; xw�θ�; yw�θ�; zw�θ��: (15)

Here, the extrinsic parameter vector pout ∈ R10 has
the following form:

pout � ��vwt
rot�T; �vcwrot�T; t; TT

cw�T;
where vwt

rot ∈ R3 and vcwrot ∈ R3 are Rodrigues’s vectors
[23] corresponding to Rwt and Rcw.

The calibration of single axis motion in Section 4.B
aims to obtain the estimation of pin and pout from a
rotation image sequence, while the second step in
Section 4.C estimates the rotation angle θ of a certain
image.

B. Calibration of Single Axis Motion

In this section, a method based on two-view geometry
is proposed to estimate pin and pout from a rotation

image sequence. The image sequence consists of a
reference image and m images taken with respect
to different rotation angles θi; i � 1; � � � ;m. In order
to correspond detected interesting points and target
points easily, all interesting points in the image se-
quence should be detected out; that is, these images
for calibration must be taken without occlusion.

The calibration of single axis motion is a special
case of general camera calibration, on which many
algorithms have been proposed [14–17]. Carrying
out a general camera calibration on the image
sequence, we obtain the intrinsic parameter vector
pin and extrinsic parameters of the image sequence,
denoted as �Rcti ; Tcti �, i � 0; 1; � � � ;m, respectively.
Here �Rct0 ; Tct0 � is the transformation matrix from
the reference target coordinate system Ot-XtYtZt
toOc-XcYcZc, and �Rcti ; Tcti � is the transformationma-
trix from the target coordinate systemwith respect to
rotation angle θi to Oc-XcYcZc. Based on this infor-
mation and the two-view geometry of single axis
motion, extrinsic parameters including pout and rota-
tion angles θ1; � � � ; θm are estimated. The details are
given as follows.

1. Extrinsic Parameters Estimation
According to Theorem 1 (ii) and (iii), the transforma-
tion matrix �Rtit0 ; Ttit0 � from the ith target to the refer-
ence target is calculated by

Rtit0 � RT
cti
Rct0 and Ttit0 � RT

cti
�Tct0 − Tcti�: (16)

With Rtit0 and Ttit0 , Rcw; t and θi are obtained by
Theorem 3. Furthermore, once Rcw and t are deter-
mined, �Rwt; Twt� is obtained from

Rwt � RT
cwRct0 and Twt � RT

cwTct0 � �t;0; 0�T:
(17)

2. Bundle Adjustment
Parameters pout, θ1; � � � ; θm calculated above are re-
fined through the bundle adjustment, which gains
the maximum likelihood estimation of involved
parameters [24]. The optimal estimation of pin,
pout, θi, i � 1; 2; � � � ;m is obtained by nonlinear min-
imization of the sum of the squared distance between
reprojection points and detected corners. According
to Eqs. (14) and (15), for the i th target, the reprojec-
tion point �uj

i; v
j
i�T corresponding to the jth out of n

plane target points �xjt; yjt�T is written as

�
uj
i � gu�pin; pout; θi; x

j
t; y

j
t�

vji � gv�pin; pout; θi; x
j
t; y

j
t�
:

Thus, the optimization problem is formulated as

�p	
in; p

	
out; θ

	
1; � � � ; θ	m� � arg min

pin;pout;θ1;���;θm

Xm
i�0

Xn
j�1

Ei;j
r ;

Fig. 5. Projection model of the single axis motion. The rotation
axis is aligned with the Zw axis.Ob-XbYbZb is obtained by rotating
the reference target coordinate system Ot-XtYtZt by θ.
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where Ei;j
r � �ūj

i − uj
i�2 � �v̄ji − vji�2 and �ūj

i; v̄
j
i�T is the

coordinate of the detected corner corresponding to
�uj

i; v
j
i�T . The nonlinear optimization can be solved

by the Levenberg–Marquardt algorithm [25].

C. Rotation Angle Measurement

In this section, the camera takes an image of the
plane target rotating to a certain position. Unlike
the first step, the plane target can be occluded partly.
An angle estimation algorithm with point matching
is proposed. This algorithm consists of four steps:
possible matching selection, histogram voting, one-
to-one point matching, and nonlinear optimization.
The realization of this algorithm is shown as in
Algorithm 1.

Algorithm 1 Point Matching and Angle Estimation

Input: Calibration results p	
in, Rcw, t, Rwt, Twt, target points

�xit; yit�; i � 1;2; � � � ; n***,
detected interesting points �ūj

c; v̄
j
c�; j � 1; 2; � � � ; Nc, the grid

length d.
Output: Rotation angle θ	.
Initialize: τm � 0.1d, τα � 1°, Hk � 0, k � 1; � � � ; 361.
1. For i � 1 to n
2. For j � 1 to Nc

3. Calculate Ti;j � Sc�ūj
c; v̄

j
c; xit; y

i
t�;

4. If Ti;j ≤ τm
5. Calculate θi;j;
6. For k � 1 to 361
7. If k ∈ �θi;j − τα � 181°; θi;j � τα � 181°�
8. Hk � Hk � 1.
9. end
10. end
11. end
12. end
13. end
14. θ � �argmaxkfHkg − 181�°.
15. For j � 1 to Nc

16. Mj � argminl Tl;j, satisfy θi;j ∈ �θ − τα; θ� τα� and Tl;j ≤ τm.
17. end
18. Nonlinear optimization to refine θ.

1. Possible Matching Selection
Suppose that Nc interesting points are detected and
denoted as �ūj

c; v̄
j
c�T, j � 1; 2; � � � ; Nc. Here 0 < Nc ≤ n.

The purpose of this section is to find all possible
matching point pairs in

Ω � f�ūj
c; v̄

j
c�T↔�xit; yit�Tjj ∈ ZNc

1 ; i ∈ Zn
1g.

The trajectory of a target point is a circle at a plane
parallel to zw � 0. This property is used to judge
whether an interesting point �u; v�T and a target
point �xt; yt; 0�T are matched. Concretely, if �u; v�T
and �xt; yt; 0�T are matched, then the following
equation holds:

x̄2w � ȳ2w � x2w � y2w; zw � z̄w; (18)

where �xw; yw; zw�T is the world coordinate of
�xt; yt; 0�T , and �x̄w; ȳw; z̄w�T is the world coordinate

corresponding to �u; v�T. Since Rcw, t, Rwt, Twt are
already calibrated, �xw; yw; zw�T is obtained from

" xw
yw
zw

#
� Rwt

" xt
yt
0

#
� Twt;

and �x̄w; ȳw; z̄w�T is computed from

x̄w � ρrTn r1 � t; ȳw � ρrTn r2; z̄w � zw;

where rn � �xn; yn; 1�T, ρ � zw
rTn r3

, Rcw � �r1; r2; r3�, and
�xn; yn�T is the normalized projection point of
�u; v�T . Here, �xn; yn�T is obtained by solving Eqs. (4)
after �x0n; y0n�T is calculated by

" x0n
y0n
1

#
� K−1

"u
v
1

#
:

Therefore, for �u; v�T↔�xt; yt�T, a computable match-
ing score may be given as

Sc�u; v; xt; yt� �
������������������
x̄2w � ȳ2w

q
−

������������������
x2w � y2w

q
: (19)

This score implies that a possible correct matching
deserves a zero score. In consideration of noises,
a threshold τm is selected, which means if
Sc�u; v; xt; yt� ≤ τm, then �u; v�T and �xt; yt; 0�T are
said to be possibly matched. One can set
τm � 0.1d; here d is the minimum length of different
target points. The set of possible matching point
pairs with respect to this score is written as

Ω0 � f�ūj
c; v̄

j
c�T↔�xit; yit�T jSc�ūj

c; v̄
j
c; xit; y

i
t� ≤ τmg.

Generally, not all elements in Ω0 are correctly
matched. Image noises may introduce wrong match-
ings to it. Moreover, in some cases, such as the case
where two different target points have the same Zw
components, wrong matchings definitely exist. These
wrong matchings could be removed by analyzing the
distribution of possible rotation angles.

2. Histogram Voting
For every �ūj

c; v̄
j
c�T↔�xit; yit�T in Ω0, the rotation angle

θi;j is calculated by

2
4 x̄jw
ȳjw
z̄jw

3
5 �

2
4 cos θi;j − sin θi;j 0
sin θi;j cos θi;j 0

0 0 1

3
5
2
4 xiw
yiw
ziw

3
5; (20)

where �xiw; yiw; ziw� are the world coordinates of
�xit; yit; 0�T and �x̄jw; ȳjw; z̄jw�T are the world coordinates
corresponding to �ūj

c; v̄
j
c�T. Let Θ denotes the set of

rotation angles corresponding to elements in Ω0:

Θ � fθi;j ∈ �−180°; 180°�j�ūj
c; v̄

j
c�T↔�xit; yit�T ∈ Ω0g:
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Generally, most elements of Θ are distributed in the
vicinity of the real rotation angle if sufficient inter-
esting points are detected. Thus, the rotation angle
θ may be estimated roughly by analyzing the distri-
bution of Θ. In detail, a histogram H with 361 bins is
built, where the k th bin Hk contains the number of
elements in Θ∩��k − 181�° − τα; �k − 181�° � τα�. Here,
τα is a threshold for describing the distribution inter-
val of angles corresponding to correct matchings, and
a suitable value of it is 1°, just as we have done in our
experiment part. A sample histogram H is shown in
Fig. 6. If the calibration results are well estimated,
the histogram has a very narrow peak at the correct
rotation angle θ, that is,

θ � �argmax
k

fHkg − 181�°: (21)

The estimate θ in Eq. (21) has given a rough rotation
angle. For higher accuracy, the following matching
and nonlinear optimization are required.

3. One-to-One Point Matching
In Ω0, an interesting point may match with several
target points. Combining the information of rotation
angle θ, the one-to-one point matching Mj of �ūj

c; v̄
j
c�T

is defined as

Mj � arg min
i

Sc�ūj
c; v̄

j
c; xit; y

i
t�; subject to

θi;j ∈ �θ − τα; θ� τα� and Tl;j ≤ τm.

If no target point satisfies the constraint, then
Mj � 0, which happens when wrong corners are
detected.

4. Nonlinear Optimization
A nonlinear minimization of the sum of the squared
distance between reprojection points �uMj; vMj�T and
the corresponding detected corners �ūj

c; v̄
j
c�T is car-

ried out to refine the rotation angle. The optimization
problem is formulated as

θ	 � arg min
θ

XNc

j�1

δj��ūj
c − uMj�2 � �v̄jc − vMj�2�;

where δj � f1;0;
if Mj>0;
others: It can be solved by the

Levenberg–Marquardt algorithm [25].

5. Experiments

The proposed method is tested on both synthetic data
and real images with the checkboard [16], a specific
plane target widely used in camera calibration. First,
synthetic data is generated to evaluate the measure-
ment error of the proposed method in Section 5.A.
Then, in Section 5.B, real experiments with a printed
checkboard and a Basler camera are carried out on a
turntable to demonstrate the correctness of the
proposed method.

A. Synthetic Data

The simulation is carried out with a virtual camera,
whose image size is 640 pixels × 480 pixels. The
internal parameters of the camera are

αx � 800 pixels; αy � 800 pixels

u0 � 322 pixels; v0 � 243 pixels

k1 � 0; k2 � 0; � � � ; k5 � 0.

A checkboard with size of 6 × 8 and grid length d �
30 mm is chosen as the plane target. The relative
poses of the reference checkboard, the rotation axis,
and the camera are set as

vwt
rot � �−0.2917; 0.4050;−0.2588�T;

vcwrot � �−2.2163; 1.0434;−0.0574�T;
t � 200 mm; Tcw � �30; 540;−440�T mm:

Two thresholds are set as τm � 0.1d � 3 mm, τα � 1°
through the whole simulation. As described in
Section 4.B, the calibration image sequence requires
being taken without occlusion, which occurs when
the target is rotating in the range of (0°,90°) in the
simulation experimental setting. Suppose thatm an-
gles are randomly chosen in the interval (0°,90°) to
generate the image sequence for calibration. Gaus-
sian noises with zero mean and a standard deviation
of σ are added to projected image points.

The angle measurement error e�deg� is measured
by the maximum absolute value of rotation angle er-
rors. Concretely, 100 test angles uniformly distrib-
uted in (0°,90°) are chosen. Suppose that real test
angles and those estimated by the proposed method
are denoted as β	1; β

	
2; � � � ; β	100 and β1; β2; � � � ; β100,

respectively; then e is defined as

e � max
100

i�1
�jβ	i − βij�: (22)

The angle measurement error is mainly affected by
two factors: the number of calibration images m and
noise level σ. To measure their effects, for a certain
�m; σ�, 100 tests are carried out. The angle measure-
ment error with respect to �m; σ� is represented by
the mean μe and variance Σe of measurement errors
obtained by these 100 tests, which are calculated by
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Fig. 6. Sample histogram H from synthetic data. The rotation
angle of this example is 30°.
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μe �
1

100

X100
i�1

ei; Σe �
1
99

X100
i�1

�ei − μe�2; (23)

where ei is the angle measurement error of the ith
test. Figure 7 shows the error bar of measurement
errors varying with m�1; 2; 4; 6; 8; � � � ; 40� when
σ � 1. As shown in the figure, themeasurement error
decreases with the increase of m, and when m ≥ 10,
the reduction rate becomes rather small. Thus in the
following tests, m is set to be 10 to reduce time con-
sumption under the premise of ensuring accuracy.
Figure 8 shows the error bar of measurement errors
varying with σ�0; 0.2; 0.4; � � � ; 4� when m � 10. The
angle errors increase almost linearly with the in-
crease of the noise level. Even when σ � 4, a typical
large noise in practice, the proposed method can gain
correct results, which demonstrates its robustness
against noises.

To show the effectiveness of the proposed method
in precision angle measurement, the proposed
method is tested on synthetic data with σ �
0; 0.01; 0.02; � � � ; 0.1 and m � 10. In reality, these
noise levels are reachable [6]. The result is shown
in Fig. 9, which demonstrates the high accuracy with
low noise levels of the proposed method.

B. Real Images

Our real experiments are implemented on a con-
trolled mechanical turntable provided by [26] with
a Basler scA640-120gm/gc camera and a printed
target. A MATLAB angle measurement toolbox is
developed and is available online [27]. The turntable
has a measurement precision of 0.01°, a minimum
rotation angle of 0.09°, and a measurement range
of �−144°; 144°�. The resolution of the camera is

658 pixels × 492 pixels, and the effective focal length
is about 800 pixels. The plane target we used is a
checkboard with size 6 × 9 and grid length
d � 30 mm. Two thresholds τm and τα are set as
3 mm and 1°, respectively, in real experiments,
and interesting points are detected by Andreas’s
method [22]. Two different installations, as shown
in Fig. 10, are tested in real experiments.

1. Measurement Range
The theoretical angle measurement range is deter-
mined by whether interesting points could be ex-
tracted from images with respect to angles in the
interval. It changes with respect to the relative poses
of the camera, the plane target, and the rotation axis.
The theoretical ranges of Installation 1 and Installa-
tion 2 are �−90°; 90°� and �−180°; 180°�, respectively.
However, for Installation 1, the corner detection
would introduce very large noises in some special
camera views, such as shown in Fig. 11. To avoid this,
it is necessary to define a measurement range of a
certain installation. Let dmax and dmin denote the
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(a) Installation 1

(b) Installation 2

Fig. 10. Two different installations of the camera, the plane tar-
get, and the rotation axis. (a) Installation 1 with measurement
range of �−54°;54°� and (b) Installation 2 with measurement range
of �−180°;180°�
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longest and the shortest grid in an image, respec-
tively, as shown in Fig. 11. dmax and dmin can be cal-
culated by pixel coordinates of interesting points. If
dmax > 1.5dmin, then the image is not eligible. Accord-
ing to the principle, a judgement is carried out in the
proposed method before interesting points of an im-
age are used. One can roughly judge whether the in-
stallation is suitable by testing if images with respect
to the smallest and largest angles are eligible.
According to the above principle, the measurement
range of Installation 1 is roughly set as �−54°; 54°�
and that of Installation 2 is set as �−180°; 180°�.

2. Measurement Accuracy
To obtain the measurement accuracy of the proposed
method, measured rotation angles are compared
with rotation angles given by the turntable. The
angle errors e is written as

e � αt − αp; (24)

where αt is the angle given by the turntable, and αp is
the corresponding calculated angle. Angle errors
of the two installations are shown in Fig. 12. Since
the measurement range of the turntable is
�−144°; 144°�, only angles in the interval are mea-
sured for Installation 2. As shown, the angle errors
of both installation are pretty close to the angles
given by the turntable. A measurement accuracy of
less than 0.1° is achieved using simple devices.

3. Execution Time
The computational performance is evaluated on
MATLAB 2012 on a personal computer with Intel
Xeon W3550 processor at 3.07 GHz. The execution
times of calibration, corner detection, and angle es-
timation are measured separately for both installa-
tions. Results are shown in Table 1. The execution
times of calibration for both installations are mea-
sured whenm � 16. For Installation 1, the execution
time is the mean time of 61 images without occlusion
in the range �−54°; 54°�, while for Installation 2, the
execution time is the mean time of 160 images with-
out occlusion in the range �−144°; 144°�. As shown in
Table 1, the performance is acceptable for the

purpose of testing and correcting angle measurement
sensors in the working field. Moreover, if the code is
programmed in C, the computational time can be
greatly reduced.

4. Measurement Resolution
The minimum resolution angle is the smallest angle
which could be perceived by the proposed method in
theory. It is related to the camera resolution, the rel-
ative poses of the camera with respect to the plane
target, and the accuracy of corner detection, which
makes it difficult to obtain an accurate value of
the minimum resolution. Therefore, instead of deter-
mining the theoretical resolution value, we estimate
it by comparing with the turntable. For Installation
2, we measure the minimum rotation angles of the
turntable using the proposed method. Results are
shown in Table 2. As shown, the proposed method
is able to realize tiny angles; specifically, the

maxd

mind

Fig. 11. Sample of bad situations. dmax denotes the longest grid of
the image while dmin denotes the shortest one.

-150 -100 -50 0 50 100 150
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

Rotation angle (deg)

A
ng

le
 e

rr
or

 (d
eg

)

-60 -40 -20 0 20 40 60
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Rotation angle (deg)

A
ng

le
 e

rr
or

 (
de

g)

(a) Installation 1
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Fig. 12. Angle errors of two different installations. (a) Angle
errors of 61 images without occlusion in the range �−54°; 54°�
for Installation 1; (b) angle errors of 160 images without occlusion
in the range �−144°; 144°� for Installation 2.

Table 1. Estimation Runtime

Step 1 Step 2

Calibration (s)
Corner

Detection (s)
Angle

Estimation (s)

Installation 1 40.85 0.7188 0.0642
Installation 2 30.98 0.5654 0.0659

Table 2. Angle Errors of Small Angles for Installation 2

αt�deg� e�deg� αt�deg� e�deg�
0.09 0.008 45.09 −0.019
0.18 0.017 45.18 −0.001
0.27 0.011 45.27 0.004
0.36 0.007 45.36 0.003
0.45 0.002 45.45 −0.006
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proposed method gains a minimum resolution angle
of less than 0.09°.

5. Occlusions
To demonstrate that the proposed method is suitable
in occlusion situations, images with occlusion are
tested for Installation 2. The angle errors are shown
in Table 3, and the matching results of a certain
image are shown in Fig. 13.

6. Conclusion

This paper proposed a practical method to measure
single axis rotation angles with conveniently acquir-
able equipment, such as a camera and a plane target.
The superiority of the proposed method over existing
angle measurement methods is that it has no special
installation and rotation axis information require-
ments. It is more suitable for testing and correcting
angle measurement sensors rather than as a sensor.
Thanks to the point detection algorithm of the check-
board, the calibration and measurement are auto
completed and pretty robust. The simulations illus-
trate the robustness of the proposed method with

respect to image noises. Then the real image experi-
ments achieve a measurement accuracy of less
than 0.1° with a camera and a printed checkboard.
Furthermore, the proposed method can be used to
measure angles as tiny as 0.09°. Experiments on im-
ages with occlusion show that the angle estimation
algorithm with point matching works well. Future
works will include the extension to measure three
axis rotations and an angle measurement toolbox
of C++ implementation.

Appendix A

Proof of Theorem 2: According to Theorem 1(i) of the
rotation matrix and the translation vector, �Rcb; Tcb�
is obtained directly by

Tcb � Rz�θ�Tca; Rcb � Rz�θ�Rca;

where

Rz�θ� �
2
4 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

3
5:

By applying Theorem 1(iii), the following equations
hold:

Rba � RacRz�−θ�RT
ac; Tba � RacRz�−θ�Tca − RacTca:

Putting Rac � �r1; r2; r3� and Tca � �t; 0; 0�T into the
above equations, one obtains

Rba � cos θr1rT1 − sin θr2rT1

� sin θr1rT2 � cos θr2rT2 � r3rT3 ;

Tba � −t��1 − cos θ�r1 � sin θr2�:

Noting

r1 × Rba � − sin θr3rT1 � cos θr3rT2 − r2rT3 ;

r2 × Rba � − cos θr3rT1 − sin θr3rT2 � r1rT3 :

It follows that

�Tba�×Rba � −t��1 − cos θ�r1 × Rba � sin θr2 ×Rba�
� −t�cos θ − 1��r3rT2 � r2rT3 �

� t sin θ�r1rT3 − r3rT1 �:

On the other hand, r2 satisfies

�r2�× � �r1 × r3�× � r1rT3 − r3rT1 :

Thus Eq. (8) holds.
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