
Journal of Intelligent & Fuzzy Systems 32 (2017) 643–660
DOI:10.3233/JIFS-152544
IOS Press

643

A modified profust-performance-reliability
algorithm and its application to dynamic
systems

Zhiyao Zhao∗, Quan Quan and Kai-Yuan Cai
School of Automation Science and Electrical Engineering, BeiHang University, Beijing, China

Abstract. In the field of system health monitoring, system performance degradation or fault occurrence will decrease the
system reliability to some degree. However, traditional reliability analysis is of limited usefulness in evaluating the reliability of
an individual product under dynamic operating and environmental conditions. In this case, research on performance reliability
as well as real-time reliability has attracted extensive attentions. Considering the characteristics of fuzzy reliability theory,
a performance reliability based on profust reliability theory has its advantage on tracking system’s continuous degradation.
On the basis of our previous work, this paper proposes a modified profust-performance-reliability (PPR) algorithm as a
supplement to the profust reliability based approach to prognostics and health management. In the modified PPR algorithm,
the item of transition probability among system’s multi-states is replaced with the real-time distribution of system’s health
status, which achieves an easier implementation of PPR’s calculation in practice with higher real-time capability and accuracy.
Then, its application in the performance evaluation and prediction of dynamic systems are comprehensively proposed. Finally,
a simulation of a quadrotor with partial loss of actuator effectiveness is presented to validate the availability and effectiveness
of the proposed method.
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1. Introduction

System health monitoring (SHM) has been highly
concerned in the system engineering field, where
information extracted from SHM can be used to
understand the system behavior and improve the
system utilization based on optimal component
replacement and maintenance strategies [1]. In the
field of SHM, the system degradation is identified by
comparing the system’s real-time performance with
its normal operational performance [2], and system
degradation or fault occurrence will lead to a decrease
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of the system reliability. Thus, it is reasonable to
relate the system reliability with its performance.

In the performance reliability research, the system
degradation is firstly modeled based on the infor-
mation extracted from some system or component
variables which are highly correlated with the system
performance [3–5]. Then, the performance reliabil-
ity is defined and calculated with the distribution
of system variables at a specific time index during
the operation life. Reference [6] comprehensively
reviewed the existing performance reliability anal-
ysis methods, which were classified into two types
in terms of system degradation modeling method:
the time series analysis [3, 4] and the regression
analysis [7]. Besides the two methods above, some
efforts have been made in the performance reliability
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research based on the stochastic process analysis and
the filtering-based method [6–12]. In the stochastic
process analysis, the system degradation path is mod-
eled as a stochastic process, such as the Markov chain
[8, 9], or the Wiener process [10, 11]. Then, the per-
formance reliability is calculated using the Bayes’
theorem. For the filtering-based method, a system
model containing system performance variables is
always firstly obtained. Then, Kalman filtering [4]
or particle filtering [6, 12] is employed to estimate
and predict the distribution of performance variables,
and the performance reliability is calculated on this
basis. In [6], a modified particle filtering algorithm
was proposed to estimate the system fault in a non-
linear model of a three-vessel water tank system.
Then, the exponential smoothing method was effec-
tively used to achieve fault prediction, and system’s
performance reliability was calculated according to
the fault prediction results by using the Monte Carlo
strategy.

By reviewing the research above, a system or
product is always considered to be failed when the
corresponding performance variable reaches a pre-
determined and fixed threshold, and the performance
reliability is defined on the binary failure threshold.
Actually, a system evolving from normal to fail-
ure goes through a series of degradation states. It
is inappropriate to characterize the system degra-
dation with a fixed failure threshold. According to
this, reference [13] defined the performance relia-
bility based on an adaptive failure threshold and the
distribution of performance degradation data. Com-
paring with a fixed failure threshold, an adaptive
one is relatively flexible. Nevertheless, a definition
of performance reliability based on a binary failure
threshold is still of limited usefulness in character-
izing the system continuous degradation to some
degree, especially for a complex system which can
work in a degraded condition. As a part of fuzzy
reliability theory [14–21], profust reliability theory
extends the traditional binary state space {0, 1} to
the fuzzy state space [0, 1], and models fuzzy state
transitions for a component or system representing
various degrees of success and failure. Therefore, a
performance reliability definition based on profust
reliability theory has its advantage on tracking con-
tinuous degradation for a system or product. On the
basis of [14, 15], a novel profust reliability algo-
rithm was proposed in our previous paper [22], which
can be viewed as a definition of performance reli-
ability based on profust reliability theory, namely
profust-performance-reliability (PPR) here. In [22],

the implementation process of the system health
evaluation and prediction was comprehensively pre-
sented by using the PPR as a health indicator, where
transition probabilities among fuzzy system states
acted as an essential role in the definition of PPR.
For the PPR’s calculation, the transition probabil-
ity among system’s multi-states was dynamically
acquired in the PPR evaluation process based on
statistical results rather than a predetermined and
fixed value. This was more suitable in the real-
time performance evaluation, but still inaccurate and
insufficient to reflect the system degradation with-
out abundant data samples. Furthermore, the PPR
prediction process was based on the update of tran-
sition probabilities, which was somewhat complex
to implement and time-consuming. This leads to
an inconvenience of real-time SHM in engineering
applications. Also, it should be noted that the PPR
evaluation and prediction presented in [22] was a
pure data-driven method, which may decrease the
evaluation and prediction accuracy without taking the
system model information into consideration.

For such a purpose, this paper proposes a modified
PPR algorithm, where the item of transition proba-
bility among system’s multi-states is replaced with
the real-time distribution of system’s health status.
Then, the application of the proposed algorithm in the
performance evaluation and prediction of dynamic
systems is comprehensively proposed. For a dynamic
system, the performance reliability has its ability to
describe the system performance, whereas it is dif-
ficult to define and also difficult to calculate. In this
paper, the performance reliability of the dynamic sys-
tem is defined on the performance reliability of its
system-state-variables (SSVs), where a single SSV’s
performance reliability is calculated by the proposed
PPR algorithm. In detail, for the system performance
evaluation, Extended Kalman filtering (EKF) is firstly
employed to estimate the real-time distribution of
SSVs with a dynamic system model, where both
the mean values and error variances of SSVs are
obtained. Then, the real-time health status distribu-
tion of each SSV is obtained based on the estimated
SSV’s distribution and its health status classification.
On this basis, the performance reliability of each SSV
is calculated with the modified PPR algorithm in real
time, and the performance reliability of a dynamic
system is evaluated by the results of each SSV’s
PPR. For the process of system performance predic-
tion, an exponential smoothing method is employed
to predict the distribution of SSVs, and a similar PPR
calculation process is performed.
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In order to validate the availability and effec-
tiveness of the proposed method, a simulation of a
quadrotor with partial loss of actuator effectiveness is
presented. A quadrotor is a multirotor helicopter that
is lifted and propelled by four rotors. It is classified as
rotorcraft, as opposed to fixed-wing aircraft, because
their lift is generated by a set of rotors (vertically
oriented propellers). By changing the speed of each
rotor it is possible to specifically generate a desired
total thrust; to locate for the center of thrust both
laterally and longitudinally; and to create a desired
total torque, or turning force. Recently, more and
more quadrotors are adopted in both military and civil
applications such as search and rescue, border patrol,
military surveillance and agricultural production. A
fault or failure in any part of the quadrotor may lead
to catastrophic disasters. Therefore, in order to ensure
safety, it is necessary for a quadrotor to have a perfor-
mance evaluation and prediction module so that it can
automatically change the control strategy and mission
planning after detecting a performance anomaly.

This paper makes three major contributions. First,
this paper proposes a modified system performance
evaluation and prediction method based on profust
reliability theory, which is a supplement to the profust
reliability based approach to Prognostics and Health
Management (PHM) presented in [22]. Compared to
our previous work [22], the modified PPR algorithm
is easier to implement with a higher real-time capa-
bility and accuracy in practice. Secondly, this paper
applies the modified PPR-based PHM approach to
practical dynamic systems, where the comprehensive
process of the system performance evaluation and
prediction method is put forward. This work char-
acterizes the performance of a dynamic system and
its SSVs with a unified health indicator, namely PPR.
Thirdly, the modified PPR-based system performance
evaluation and prediction method takes model infor-
mation of the studied objective into account, which
is an improvement of a pure data-driven method pre-
sented in [22].

The remainder of this paper is organized as fol-
lows. Section 2 proposes the theory of the modified
PPR algorithm. Section 3 presents the whole imple-
mentation process of the performance evaluation and
prediction of dynamic systems. Section 4 uses a case
of quadrotor with partial loss of actuator effective-
ness to simulate the proposed algorithm presented in
Section 2 and the implementation process presented
in Section 3, where simulation results are given and
discussed. Section 5 gives a conclusion, and indicates
future development of the proposed method.

2. Theory of modified PPR algorithm

For a discrete domain U = {S1, S2, · · · Sn}. In the
domain U, fuzzy success states are defined as

S = {Si, μS (Si) ; Si ∈ U} ,
and fuzzy failure states are defined as

F = {Si, μF (Si) ; Si ∈ U} .
Without loss of generality, it is usually considered
that

μS (Si) = 1 − μF (Si) , Si ∈ U.

where μS (Si) and μF (Si) are success and failure
membership functions of fuzzy state, respectively.
Let UT = {

mij, i, j = 1, · · · , n}, where mij repre-
sents the transition from state Si to state Sj . In the
domain UT , a transition from a fuzzy success state to
a fuzzy failure state is defined as [14]

TSF = {
mij, μTSF

(
mij

)
; Si, Sj ∈ U} .

Here, TSF is viewed as a fuzzy event, and its
corresponding membership function μTSF

(
mij

)
is

determined as [14]

μTSF
(
mij

)
=
{
βF |S

(
Sj
)− βF |S (Si)

0

if βF |S
(
Sj
)
> βF |S (Si)

otherwise
,

where

βF |S (Si) = μF (Si)

μS (Si) + μF (Si)
, Si ∈ U.

For Si, Sj ∈ U, the profust interval reliability over a
time interval [t0, t] is defined as [14]

R (t0, t)

= P {TSF does not occur during [t0, t]}
= 1 − P {TSF occurs during [t0, t]}

= 1 −
n∑
i=1

n∑
j=1

μTSF
(
mij

) · pij (t0, t) .

where pij (t0, t) is transition probability from state Si
to state Sj over an time interval [t0, t]. The profust
reliability is defined as [14]

R (t) = R (0, t) .

For the purpose of real-time performance monitor-
ing, reference [22] proposed a new profust reliability
definition. Define fuzzy events A is {TSF does not
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occur during time interval [t0, t]}, and B is {The sys-
tem performance is in fuzzy success state at initial
time t0}.Then, For Si, Sj ∈ U, and a time interval
[t0, t], the profust reliability R (t) is defined as (1) at
the bottom of the page [22]. In (1),ϕSi (t0) is the health
state probability of state Si at time t0. Here, the time
interval [t0, t] can be viewed as a sliding calculation
interval during the real-time reliability calculation.

Remark 1. The physical meaning of the profust reli-
ability at time t is the probability that no further
health status deterioration occurs during a time inter-
val [t0, t]. Thus, the profust reliability R (t) defined
by (1) has its ability to accurately track the perfor-
mance variation, which can be viewed as a definition
of the performance reliability (i.e., the concept of PPR
in this paper). However, in [22], the transition prob-
ability pij (t0, t) is dynamically acquired based on
statistical results, which is inaccurate and insufficient
to reflect the performance degradation without abun-
dant data samples. Furthermore, the PPR’s prediction
is based on the update of the transition probability
pij (t0, t), which is somewhat complex to implement
in practice. To improve PPR’s calculation accuracy
and reduce algorithm complexity, a modified PPR
algorithm based on (1) is proposed in the following.

Before developing further, an assumption is intro-
duced. Without loss of generality, let μF (Sn) ≤
μF (Sn−1) ≤ · · · ≤ μF (S2) ≤ μF (S1).

Assumption 1. For the transition probability
pij (t0, t) , it satisfies that

pij (t0, t) = 0, if j > i

where i, j ∈ {1, 2, · · · , n}.
Remark 2. Assumption 1 implies that system state
transitions will not occur from a worse state to a better
state during its whole lifecycle without maintenance
actions. Under this assumption, a theorem is stated to
present the modified PPR algorithm in the following.

Theorem 1. Under Assumption 1, suppose that the
system performance is in state Si at time t0 with the
probability ϕSi (t0), where

⎧⎨
⎩

ϕSi (t0) ≥ 0 Si ∈ U
n∑
i=1
ϕSi (t0) = 1

.

Then, the PPR is calculated as (2) at the bottom of
the page.

Proof. See the Appendix A.

Remark 3. Equation (2) is a modified version of (1),
where the item of transition probability among sys-
tem’s multi-states in (1) is replaced with the real-time
distribution of system’s health status in (2). Com-
pared with the previous algorithm, the modified one
improves the PPR calculation accuracy by avoiding
the statistical calculation of transition probabilities.
Furthermore, the PPR prediction is easier to be imple-
mented in practice by the modified PPR algorithm.

During the process of real-time PPR calculation,
the system performance might be in a fully success-
ful status, or operate in a degraded level at the start
point t0 of the calculation interval. Theorem 1 covers
all situations that might appear at the beginning of the
evaluation interval. Based on Theorem 1, two corol-
laries are further obtained.

Corollary 1. Under Assumption 1, suppose that the
system performance is in state Sn at time t0,

ϕSi (t0) =
{

0

1

i = 1, 2, · · · , n− 1

i = n
.

Then, the PPR is

R (t) = μS (Sn) ·
[

1 −
(
n−1∑
j=1
μTSF

(
mnj

) · ϕSj (t)

)]
.

R (t) = P (A | B) · P (B) = 1 − P
(
A | B) · P (B) − P

(
B
)

= 1 −
[
n∑
i=1

n∑
j=1
μTSF

(
mij

) · pij (t0, t)

]
·
[
n∑
i=1
μS (Si) · ϕSi (t0)

]
−

n∑
i=1
μF (Si) · ϕSi (t0) . (1)

R (t) = 1 −
{

n∑
i=2
ϕSi (t0) ·

[
i−1∑
j=1
μTSF

(
mij

) · ϕSj (t)

]}
·
[
n∑
i=1
μS (Si) · ϕSi (t0)

]
−

n∑
i=1
μF (Si) · ϕSi (t0) . (2)
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Furthermore, if μF (Sn) = 0, the PPR is

R (t) =
n∑
j=1
μS

(
Sj
)
ϕSj (t) . (3)

proof. See the Appendix B.

Remark 4. The premise of Corollary 1 is that the
system performance must be fully healthy at time t0,
and then the PPR can be only calculated with the
distribution of system’s health status at time t.

Corollary 2. Under Assumption 1, suppose that the
system performance is in a specific state Sq at time t0
for certain,

ϕSi (t0) =
{

0

1

i = 1, 2, · · · , n, i /= q

i = q
,

and the system performance is in a specific state Sj
at time t for certain,

ϕSi (t) =
{

0

1

i = 1, 2, · · · , n, i /= j

i = j
.

Then, the PPR is

R (t) = μS
(
Sq
) · (1 − μTSF

(
mqj

))
. (4)

Proof. See the Appendix C.

Remark 5. Corollary 2 satisfies the situation that the
system status is definitely determined during the PPR
calculation process. Both the two corollaries are the
simplification of Theorem 1, and any of them can be
selected to perform the PPR calculation according to
practical engineering demands.

3. Performance evaluation and prediction
of dynamic system

For the purpose of performing the modified PPR
algorithm on engineering applications, a process of
performance evaluation and prediction for dynamic
systems is comprehensively presented.

3.1. Problem formulation

The following nonlinear discrete time dynamic
system is considered in this part,

{
x (tk) = F (x (tk−1) ,u (tk−1)) + w (tk)

y (tk) = h (x (tk)) + v (tk)
, (5)

where x ∈ R
N×1 is the vector of SSVs; F (x (tk−1) ,

u (tk−1)) and h (x (tk)) are nonlinear functions; w (tk)
and v (tk) are the system noise and measurement
noise, respectively.

Assumption 2. The system noise w (tk) and measure-
ment noise v (tk) satisfy that{
w (tk) ∼ N (

0,Qw

)
, v (tk) ∼ N (

0,Qv

)
,∀k

cov
[
w (tk) , v

(
tj
)]=E [w (tk) vT

(
tj
)] = 0,∀k, j ,

where Qw and Qv are the covariance matrices.

Remark 6. Various dynamic systems in practice can
be represented in the form of (5). Thus, the perfor-
mance evaluation and prediction method based on (5)
is without loss of generality.

Considering the tight connection between the sys-
tem performance and the system reliability, the main
objective of this part is to evaluate and predict the
performance reliability of dynamic systems based on
the modified PPR algorithm as shown in Section 2. In
practice, the performance of a dynamic system will
be reflected in the variation of SSVs. Therefore, a
definition of the performance reliability of dynamic
systems should be given on this basis. In this paper,
for system (5), the performance reliability at time tk
is defined as

Rsys (tk)

= �
(
Rx1 (tk) , · · · , Rxi (tk) , · · · , RxN (tk)

)
, (6)

where xi is the ith element of x; Rxi (tk) is the per-
formance reliability of the SSV xi at time tk; � is
a known function reflecting the relation between the
system performance and the performance of SSVs. In
practice, � can be determined according to practical
engineering demands.

Remark 7. Equation (6) indicates that the perfor-
mance reliability of a dynamic system is calculated
with the performance reliability of each SSV. For a
specific component xm in x, we can define its perfor-
mance reliability with the PPR concept, and calculate
its PPR by Theorem 1 as shown in (7) at the bottom
of the next page.

The PPR of other SSVs in x can be also calcu-
lated according to Theorem 1, which has a similar
form as presented in (7). It indicates that the SSV’s
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performance at a specific time index can be evaluated
by its health status variation in a time interval.

So far, the main task in this part is to calculate
the PPR of each SSV. In (7), PPR is mainly defined
with the real-time health status distribution, which
cannot be directly acquired from the unknown value
of a SSV. Thus, the main difficulty in this process
is how to obtain the real-time distribution of the
SSV, and further the real-time distribution of SSV’s
health status. In this paper, EKF and the exponential
smoothing method are employed to estimate and pre-
dict the real-time distribution of SSVs, respectively,
where both the mean values and error variances of
SSVs are obtained. Then, the real-time health sta-
tus distribution of each SSV is obtained based on
the obtained SSV’s distribution and its health status
classification.

3.2. Performance evaluation of dynamic systems

To evaluate the performance of the dynamic sys-
tem presented in (5), following steps are required as
shown in Fig. 1.

In the presented procedure, the PPR of each SSV
is firstly calculated, and then the performance of the
dynamic system is evaluated according to (6). For the
process of PPR calculation of a single SSV, EKF is
firstly employed to estimate the real-time distribution
of the SSV, where both the mean value and error vari-
ance of the SSV are obtained. Then, considering the
true but unknown value of the SSV at a specific time
index conforms to a normal distribution, the real-time
health status distribution of the SSV can be obtained
based on the estimation results of the SSV and its
health status classification. On this basis, the PPR of
the studied SSV is calculated in real time with the pro-
posed PPR algorithm presented in Section 2. Here, a
specific SSV xm ∈ x is illustrated here to present the
process of calculating the PPR of a single SSV.

3.2.1. Real-time distribution estimation of SSV
In order to acquire the estimate of the system state

vector x of (5), EKF is implemented here. Equation
(8) gives the main steps of EKF,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂ (tk | tk−1) = F (x̂ (tk−1 | tk−1) ,u (tk−1))

� (tk | tk−1) = Ak−1� (tk−1 | tk−1) AT
k−1 + Qw

K (tk) = � (tk | tk−1) CTk

· [Ck� (tk | tk−1) CTk + Qv

]−1

x̂ (tk | tk) = x̂ (tk | tk−1) + K (tk)

· [y (tk) − h (x̂ (tk | tk−1))
]

� (tk | tk) = [I − K (tk) Ck] � (tk | tk−1)

,

(8)
where � is the error covariance matrix; K is the
Kalman gain; Ak−1 and Ck are the linearized matrices
computed as⎧⎨

⎩
Ak−1 = ∂F

∂x

∣∣∣x̂(tk−1|tk−1),u(tk−1)

Ck = ∂h
∂x

∣∣∣x̂(tk |tk−1)
.

According to the results of EKF, it is obtained that⎧⎪⎪⎨
⎪⎪⎩
E [x (tk)] = x̂ (tk | tk)
E
{[

x (tk) − x̂ (tk | tk)
] [

x (tk) − x̂ (tk | tk)
]T}

= � (tk | tk)
.

Under Assumption 2, it can be derived from [23] that

x (tk) ∼ N (x̂ (tk | tk) ,� (tk | tk)) . (9)

Then, for the studied SSV xm,

xm (tk) ∼ N (
x̂m (tk | tk) , �(m,m) (tk | tk)

)
, (10)

where �(m,m) (tk | tk) is the mth diagonal element of
� (tk | tk) .

3.2.2. Health status classification of SSV
Suppose xm ∈ [a, b], the health status of SSV can

be classified into discrete health states according to
the value of xm,

Si = {xm | ai < xm ≤ ai−1} , (11)

where

ai = a+ (i− 1) · δ, i = 2, 3, · · · , n, δ = b− a

n− 1
,

(12)

Rxm (tk) = 1 −
{

n∑
i=2
ϕxm,Si (t0) ·

[
i−1∑
j=1
μTSF

(
mij

) · ϕxm,Sj (tk)

]}
·
[
n∑
i=1
μS (Si) · ϕxm,Si (t0)

]

−
n∑
i=1
μF (Si) · ϕxm,Si (t0) . (7)
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Fig. 1. Procedure of the system performance evaluation.

and

S1 = {xm | xm /∈ [a, b]} . (13)

Remark 8. The emphasis of the health status clas-
sification is to satisfy μF (Sn) ≤ μF (Sn−1) ≤ · · · ≤
μF (S2) ≤ μF (S1). Thus, the classification principle
above may need to adjust according to SSV’s real
data and the selected membership function.

3.2.3. Real-time health status distribution
calculation of SSV

From the former two steps, the real-time distri-
bution of xm (tk), and its health status classification
are obtained. On this basis, its real-time health status
distribution is obtained in the following.

For i = 2, 3, · · · , n, combining (10), (11), and
(12), Equation (14) at the bottom of the page can
be obtained, where � is denoted as the cumulative
distribution function of standard normal distribution
[24]. For the case i = 1,

ϕxm,S1 (tk)

= P {xm (tk | tk) /∈ [a, b]}
= 1 − P {a ≤ xm (tk | tk) ≤ b}
= 1 −G

(
b, a, x̂m (tk | tk) ,

√
�(m,m) (tk | tk)

)
.

To sum up, Equation (15) at the bottom of the page
can be obtained.

3.2.4. PPR calculation of SSV
Following the above steps, Equation (2) can be

directly employed to calculate the PPR of xm. Note
that the PPR of other SSVs can be also calculated
following the above steps.

Remark 9. Equation (2) in Theorem 1 can be used
for the PPR evaluation of a single SSV. In particular,
there exist two noteworthy cases. For one thing, if the
SSV’s performance can be definitely determined to
be fully successful at the start time t0 of the evalua-
tion interval, Equation (2) can be replace with (3) in
Corollary 1 to the calculate PPR for simplicity. For
another, if �(m,m) (tk | tk) in (10) is small enough,
it can be approximately considered that xm (tk)

.=
x̂m (tk | tk), which means that the SSV’s health status
can be definitely determined without importing prob-
ability distribution. In this situation, Equation (2) can
be replaced with (4) in Corollary 2 for simplicity.

3.2.5. System performance reliability calculation
Following the PPR algorithm of a single SSV, the

PPR calculation results of all SSVs in (5) are obtained
in real time as

ϕxm,Si (tk) = P {ai < xm (tk | tk) ≤ ai−1}

= P

{
ai − x̂m (tk | tk)√
�(m,m) (tk | tk)

<
xm (tk | tk) − x̂m (tk | tk)√

�(m,m) (tk | tk)
≤ ai−1 − x̂m (tk | tk)√

�(m,m) (tk | tk)

}

= �

(
ai−1 − x̂m (tk | tk)√
�(m,m) (tk | tk)

)
−�

(
ai − x̂m (tk | tk)√
�(m,m) (tk | tk)

)

� G
(
ai−1, ai, x̂m (tk | tk) ,

√
�(m,m) (tk | tk)

)
, (14)

ϕxm,Si (tk) =
{

1 −G
(
b, a, x̂m (tk | tk) ,

√
�(m,m) (tk | tk)

)
i = 1

G
(
ai−1, ai, x̂m (tk | tk) ,

√
�(m,m) (tk | tk)

)
i = 2, 3, · · · , n . (15)
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Table 1
Procedure of the system performance evaluation

Step 1. For a single SSV xm, estimate its distribution by EKF according to (8), where the mean and error variance are obtained. For the
time t0 and tk , it is obtained that xm (t0) ∼ N

(
x̂m (t0) , �(m,m) (t0)

)
, xm (tk) ∼ N

(
x̂m (tk) , �(m,m) (tk)

)
.

Step 2. Classify the health status of xm in terms of its value according to (11–13). Then, n health states of the SSV xm are acquired as
U = {S1, S2, · · · Sn}.

Step 3. Based on the two former steps, calculate the health status distribution at time t0 and tk according to (15), written as ϕxm,Si (t0)
and ϕxm,Si (tk).

Step 4. Calculate the PPR of xm at time tk by Theorem 1, or Corollaries 1&2.
Step 5. Repeating steps 1-4, calculate the PPR of each SSV at time tk as

{
Rx1 (tk) , · · · , Rxm (tk) · · · , RxN (tk)

}
.

Step 6. Based on results from step 5, calculate the system performance reliability Rsys (tk) by (6).

{
Rx1 (tk) , · · · , Rxm (tk) , · · · , RxN (tk)

}
.

Then, the system performance reliability is calculated
according to (6).

For a specific evaluation interval [t0, tk], the pro-
cedure of the system performance evaluation at time
tk of the dynamic system (5) with performing the
modified PPR algorithm is summarized as shown in
Table 1.

3.3. Performance prediction of dynamic systems

The process of the system performance prediction
is similar to the evaluation process presented above.
The PPR of each SSV is firstly predicted, and then the
system performance is determined with the predicted
value of the system performance reliability.

Here, the SSV xm is further cited as an example. In
order to predict the PPR of xm at a future time index
tk+l, the distribution of xm should be firstly predicted
as

x̂m (tk+l) ∼ N (
x̂m (tk+l | tk) , �̂(m,m) (tk+l | tk)

)
,

(16)
where l is the prediction step. Then, the classification
of the health status and its distribution calculation are
similarly performed as that in the performance eval-
uation process. Finally, the PPR of xm at time tk+l is
predicted in (17) at the bottom of the page, where the
probability component ϕxm,Si (·) is obtained by (15).

By following the above steps, for the system (5),
the PPR prediction result of all SSVs can be obtained.

Then, the system performance reliability at time tk+l
is predicted as shown in (18) at the bottom of the next
page.

3.3.1. Real-time prediction method of SSV’s
distribution

In the PPR prediction process of a single SSV, the
most critical part is to accurately predict the distri-
bution of the SSV. Here, multiple methods can be
employed to predict the distribution of the SSV as
stated in (16). The Holt-Winters double exponential
smoothing [3] is implemented here as an alternative
method to perform short-term prediction. For the SSV
xm, given the results from EKF in (9), the smoothed
value of SSV is computed as{

uk = αx̂m (tk | tk) + (1 − α) (uk−1 + vk−1)

vk = β (uk − uk−1) + (1 − β) vk−1
,

(19)
where α, β ∈ (0, 1) are the smoothing parameters.
The initial values of uk, vk are

u1 = x̂m (t1 | t1) , u2 = x̂m (t2 | t2) ,

and

v2 = u2 − u1.

On the basis of (19), the predicted value of xm is
computed as

x̂m (tk+l | tk) = uk + vk · l.

R̂xm (tk+l | tk)

= 1 −
{

n∑
i=2
ϕxm,Si (tk) ·

[
i−1∑
j=1
μTSF

(
mij

) · ϕ̂xm,Sj (tk+l)

]}
·
[
n∑
i=1
μS (Si) · ϕ̂xm,Si (tk)

]
(17)

−
n∑
i=1
μF (Si) · ϕ̂xm,Si (tk) ,
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Table 2
Procedure of the system performance prediction

Step 1. For a single SSV xm, the estimated distribution of at time tk has already obtained by EKF. For the time tk+l, predict the
distribution x̂m (tk+l) by methods such as the exponential smoothing method.

Step 2. The health status classification of xm remains same as performed in the evaluation process.
Step 3. The health status distribution ϕxm,Si (tk) of xm at time tk is already obtained in the evaluation process. Also, based on the two

former steps, calculate the predicted health status distribution ϕ̂xm,Si (tk+l) of xm at time tk+l.
Step 4. Calculate the predicted PPR of xm at time tk+l by Theorem 1, or Corollaries 1&2.
Step 5. Repeating steps 1-4, predict the PPR of each SSV at time tk+l as

{
R̂x1 (tk+l | tk) , · · · , R̂xm (tk+l | tk) · · · , R̂xN (tk+l | tk)

}
.

Step 6. Based on results from step 5, calculate the system performance reliability R̂sys (tk+l | tk) by (18).

According to [3], the l-step prediction error variances
of the proposed method can be estimated as

σ̂2 (l) = [1 + α2 (l− 1)

(1 + lβ + lβ2 (2l− 1) /6)] · s2 (1) ,

where s2 (1) is the mean square error of 1-step pre-
diction. Thus, Equation (16) becomes

x̂m (tk+l) ∼ N
(
uk + vk · l, σ̂2 (l)

)
.

Then, Equation (17) can be directly used to achieve
PPR prediction, where

ϕxm,Sj (tk+l)

=
{

1 −G (b, a, uk + vk · l, σ̂ (l)) j = 1

G
(
aj−1, aj, uk + vk · l, σ̂ (l)

)
j = 2, · · · , n .

For a specific prediction interval
[
tk, tk+l

]
, the pro-

cedure of the system performance prediction at time
tk+l with performing the modified PPR algorithm is
summarized as shown in Table 2.

Remark 10. The presented PPR-based performance
prediction method is a general framework, where the
Holt-Winters double exponential smoothing is just an
alternative method to perform short-term prediction
of the SSV’s distribution. In practice, other effec-
tive prediction methods can be employed to serve
for the PPR-based system performance prediction
framework.

4. Simulation

In this section, a simulation of a quadrotor with
partial loss of actuator effectiveness is presented
to validate the availability and effectiveness of the

proposed PPR-based performance evaluation and
prediction method.

4.1. Quadrotor model

Scholars have studied the dynamics of quadrotor
[25–29]. Equation (20) presents a general dynamic
model:

ẋ = vx

ẏ = vy

ż = vz

v̇x = uz (cosφ sin θ cosψ + sin φ sinψ) /m

v̇y = uz (cosφ sin θ sinψ − sin φ cosψ) /m

v̇z = uz cosφ cos θ/m− g

φ̇ = p+ tan θ (r cosφ + q sin φ)

θ̇ = q cosφ − r sin φ

ψ̇ = sec θ (r cosφ + q sin φ)

ṗ = (
Jy − Jz

)
rq/Jx + uφ/Jx

q̇ = (Jz − Jx)pr/Jy + uθ/Jy

ṙ = (
Jx − Jy

)
pq/Jz + uψ/Jz︸ ︷︷ ︸
Ẋ = Fq (X,u)

(20)

where x, y, z are the position components in the
earth-fixed frame; vx, vy, vz are the velocity com-
ponents in the earth-fixed frame; φ, θ, ψ are the
angles of roll, pitch, and yaw, respectively; p, q, r
are the angular velocity of φ, θ, ψ; Jx, Jy, Jz are the
moments of inertia along x, y, z directions, respec-
tively; uz is the total lift generated by rotors, and
uφ, uθ, uψ are the torques along the directions of
the φ, θ, ψ angles, respectively. The control input
u = [

uz, uφ, uθ, uψ
]T is transferred by the lift of four

rotors f = [
f1, f2, f3, f4

]T , satisfying

R̂sys (tk+l | tk) = �
(
R̂x1 (tk+l | tk) , · · · , R̂xm (tk+l | tk) , · · · , R̂xN (tk+l | tk)

)
. (18)
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u = Hf , (21)

where the transfer matrix H (also known as control
effectiveness matrix) is

H =

⎡
⎢⎢⎢⎣

η1 η2 η3 η4

0 η2d2 0 −η4d4

η1d1 0 −η3d3 0

−η1λ1 η2λ2 −η3λ3 η4λ4

⎤
⎥⎥⎥⎦ , (22)

where di is the distance from the center of the ith
rotor to the center of mass; λi is the ratio between the
torque and the lift of the ith rotor; the parameter ηi ∈
[0, 1] represents the effectiveness of the ith rotor (as
well as the control effectiveness of the ith actuator).
The value ηi = 1 means the ith rotor is in a normal
condition; The value ηi = 0 means a complete loss
of effectiveness of the ith rotor.

To obtain the discrete dynamic model of the pre-
sented quadrotor, Equation (20) is discretized through
the Euler method [30]. Considering the system noise
and measurement noise, the discrete model is written
as⎧⎪⎨
⎪⎩

X (tk) = X (tk−1) + TFq (X (tk−1) ,u (tk−1))

+�w (tk)

Y (tk) = X (tk) + v (tk)

,

where the noise driven matrix � = diag{0, 0,
0, 1, 1, 1, 0, 0, 0, 1, 1, 1}. Here, all the SSVs of the
quadrotor are directly measured.

The parameters of the studied quadrotor is shown
in Table 3.

In this simulation, the quadrotor is required to per-
form a persistent surveillance mission. It is desired
that the quadrotor hovers at a height of 10m, while
the attitude angles remains stable.

4.2. Quadrotor’s performance evaluation
and prediction

In the studied hovering maneuver, the roll, pitch,
yaw angle, and the position component in z-direction

Table 3
Quadrotor model parameters

m 1.535 kg
Jx, Jy, Jz 0.0411, 0.0478, 0.0599 kg ·m2

g 9.8 m/s2

L1, L2, L3, L4 0.28 m
λ1, λ2, λ3, λ4 1
Qw,Qv 5 × 10−5I12
T 0.1 s

can totally reflect the quadrotor’s performance. In
this case, according to (6), the quadrotor’s per-
formance reliability is given with two alternative
forms as

Rsys1 = Rφ · Rθ · Rψ · Rz (23)

and

Rsys2 = wφRφ + wθRθ + wψRψ + wzRz, (24)

where Rφ,Rθ, Rψ,Rz are the PPR of φ, θ, ψ, z,
respectively; wφ,wθ,wψ,wz are the corresponding
weights fulfilling the condition that�w = 1. In prac-
tice, the weights should be determined according
to historical data analysis, and engineering require-
ments. Note that both Rsys1 and Rsys2 can represent
quadrotor’s performance reliability. Equation (23)
assumes that the SSVs have a serial relation to
reflect the quadrotor’s performance. It deems that
a single SSV’s performance can totally influence
the quadrotor’s performance. For (24), the quadro-
tor’s performance is calculated with the weighted
sum of SSV’s performance. This means that a sin-
gle SSV’s performance can influence the quadrotor’s
performance with a certain weight. For simplicity, let
wφ = wθ = wz = 0.3, and wψ = 0.1 in this simula-
tion. This is becauseφ, θ, z are more important thanψ
to characterize the system performance for a hovering
quadrotor.

Considering the hovering characteristics, trape-
zoidal membership functions are selected as the
fuzzy success function of the SSVs. The functions
of μS (φ) , μS (θ) , μS (ψ) , μS (z), and the corre-
sponding health status classification are presented in
Appendix D.

For the performance evaluation and prediction of
the quadrotor, three scenarios are presented here to
validate the effectiveness of the proposed PPR-based
method, including a fault-free scenario, a fixed-fault
scenario, and a gradual-degradation scenario. In all
the scenarios, the simulation step T is set to be 0.1s,
and the total simulation time is 80s.

4.2.1. Fault-free scenario
In this part, the rotors of quadrotors are completely

healthy. Thus, in (22), we have

η1 (tk) = η2 (tk)=η3 (tk)

= η4 (tk) = 1, tk ∈ [0, 80] .

Figure 2 shows the variations of the SSVsφ, θ, ψ, z
estimated by EKF. With performing the proposed
PPR-based algorithm, the system performance is
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Fig. 2. Variations of φ, θ, ψ, z in fault-free scenario. It is demonstrated that the value of [φ, θ, ψ, z]T is relatively stable and fluctuates around
the value [0, 0, 0, 10]T in a small range, which satisfies the requirement of hovering maneuver.
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Fig. 3. PPR evaluation result in fault-free scenario. The calculated PPRs of φ, θ, ψ, z are steadily equal to 1, and the PPR of the quadrotor
is also equal to 1.

evaluated per 0.2 second ([t0, tk] in Theorem 1) as
depicted in Fig. 3.

4.2.2. Fixed-fault scenario
In this part, the two of four rotors of quadrotors

confront to fixed partial loss of effectiveness. In (22),
for tk ∈ [0, 30], let

η1 (tk) = η2 (tk) = η3 (tk) = η4 (tk) = 1

and for tk ∈ (30, 80], let

η1 (tk) = η4 (tk) = 1

η2 (tk) = η3 (tk) = 0.85

Such kind of fault may happen due to severe
weather conditions damaging the rotors or physical
collision with obstacles [25].

Under this scenario, Fig. 4 shows the variations
of the SSVs φ, θ, ψ, z estimated by EKF. With
performing the proposed PPR-based algorithm, the
system performance is also evaluated per 0.2 sec-
ond as depicted in Fig. 5. It should be noted that
the PPRs of θ and ψ keep at 1. That is because
although there also exists deviation of the varia-
tion of θ and ψ, the deviation is tolerant according
to the configuration of the employed membership
functions. If it is required to improve sensitivity
to the emerged fault, thresholds of membership
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Fig. 4. Variations of φ, θ, ψ, z in fixed-fault scenario. It is shown that the value of [φ, θ, ψ, z]T is relatively stable during the interval [0, 30].
After that, a certain deviation of φ, θ, ψ, z is occurred due to fixed partial loss of actuator effectiveness.
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Fig. 5. PPR evaluation result in fixed-fault scenario. The calculated PPRs of φ, z are suddenly decreased at t = 30s, and the quadrotor’s
performance also deteriorates as indicated by the quadrotor’s PPR.

functions might be adjusted according to engineering
requirements.

4.2.3. Gradual-degradation scenario
In this part, the two of four rotors of quadrotors

confront to gradual-degradation of effectiveness. In
(22), this phenomenon is addressed as follows:

η1 (tk) = η4 (tk) = 1, tk ∈ [0, 80] ,

η2 (tk) =
{

1 tk ∈ [0, 10]

η2 (tk−T ) − 5 × 10−4 tk ∈ (10, 80]
,

η3 (tk) =
{

1 tk ∈ [0, 10]

η3 (tk−T ) − 5 × 10−4 tk ∈ (10, 80]
.

Such kind of gradual-degradation may be caused
by continuous wear or corrosion in the lifecycle,
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Fig. 6. Variations of φ, θ, ψ, z in gradual-degradation scenario. It is shown that the value of [φ, θ, ψ, z]T is relatively stable during the interval
[0, 10]. After that, a gradual deviation of φ, θ, ψ, z is occurred due to gradual-degradation of actuator effectiveness.
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Fig. 7. PPR evaluation result in gradual-degradation scenario. The calculated PPRs of φ, θ, ψ, z decrease with different degree. Correspond-
ingly, the PPR of the quadrotor gradually decreases, which indicates the performance degradation of quadrotor.

which is independent of fault occurrence. Actually,
this part can be viewed as a simulation of accelerated
aging experiment of quadrotors.

Under this scenario, Fig. 6 shows the variations of
the SSVs φ, θ, ψ, z estimated by EKF. Furthermore,
the calculated PPRs of φ, θ, ψ, z, and the quadrotor
are depicted in Fig. 7.

In order to validate the proposed PPR-based perfor-
mance prediction method, a 10-step SSVs’ prediction
is implemented by the Holt-Winters double exponen-

tial smoothing method. Then, the PPR is predicted
in short-term based on the predicted distribution of
SSVs. Figure 8 shows the 10-step prediction result
of the SSVs φ, θ, ψ, z, and the corresponding PPR
prediction result is depicted in Fig. 9. Note that a few
data points that have not converged at the initial stage
of prediction process are ignored here.

Remark 11. In reliability theory, the reliability curve
of a product with no maintenance activities should
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Fig. 8. 10-step prediction of φ, θ, ψ, z in gradual-degradation scenario. The blue solid line depicts the result of the PPR evaluation process,
and the red dotted line depicts the result of the PPR prediction process.
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Fig. 9. 10-step PPR prediction in gradual-degradation scenario. The blue solid line depicts the result of the PPR evaluation process, and the
red dotted line depicts the result of the PPR prediction process.

be monotonically non-increasing. However, in Figs.
5 and 7, the PPR curve has a non-increasing trend
but with small fluctuations. That is because there
exist system noise and measurement noise in the
dynamic system, and these uncertainties will be
brought into the variations of SSVs. The PPR pre-
sented in this paper aims to accurately reflect the
real-time system performance based on real-time
measuring data of the SSVs, which is different from
the traditional reliability concept. Thus, it is rea-

sonable that the PPR curve fluctuates in a small
range.

Remark 12. As shown in Fig. 7, the PPR calcu-
lation results of Rsys1 and Rsys2 are different. This
is caused by the different definitions of quadrotor’s
performance reliability presented in (23) and (24).
Actually, both the results of Rsys1 and Rsys2 are able
to characterize the performance of the quadrotor,
acting as a reference for operation decision-making
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and fault tolerant control under different mission
requirements.

4.3. Summary

A simulation of quadrotor with partial loss of
actuator effectiveness is presented to validate the
availability and effectiveness of the proposed PPR-
based performance evaluation and prediction method.
In this simulation, a quadrotor’s dynamic model is
firstly presented. Then, the PPR-based system per-
formance evaluation method is implemented under
a fault-free scenario, a fixed-fault scenario, and
a gradual-degradation scenario, respectively. Fur-
thermore, the system performance is predicted in
short-term under the gradual-degradation. The simu-
lation results show that the system performance can
be effectively evaluated by the proposed PPR-based
algorithm. Meanwhile, the proposed PPR-based sys-
tem performance prediction method is also easy to
implement and effective with a high accuracy.

5. Conclusion

This paper proposes a modified PPR algorithm,
which is then applied to the performance evaluation
and prediction of dynamic systems. The simulation
results show that the PPR is effectively evaluated to
characterize the system performance, and the PPR
prediction is also effectively achieved with tolerant
errors. The advantages of the PPR based performance
evaluation and prediction method presented in this
paper are summarized in four aspects. First of all,
the PPR has an ability to monitor real-time perfor-
mance, and the modified PPR algorithm presented
in this paper is convenient to implement in practice
with higher real-time capability. Secondly, the SSV’s
real-time distribution obtained by EKF is used in PPR
calculation rather than a single value, which reduces
the uncertainties caused by system noise, observa-
tion noise and external disturbance. Thirdly, during
the performance evaluation of dynamic systems by
the proposed PPR algorithm, the system perfor-
mance is determined on an integration of all SSVs’
performance, which obtains a more comprehensive
evaluation result. Finally, the modified PPR-based
performance evaluation and prediction method is
applied to a quadrotor in the simulation part. Actu-
ally, the proposed method can be also applied to other
dynamic systems following the procedures presented
in this paper. This indicates that the proposed PPR

algorithm has some degree of flexibility and robust-
ness in performance evaluation and prediction. In
future research, different prediction methods of SSVs
distributions will be incorporated into the proposed
PPR framework to satisfy system performance pre-
diction under other fault patterns. Furthermore, the
proposed method will be applied to the performance
evaluation of other dynamic systems.
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Appendix

A. Proof of Theorem 1

In order to prove Theorem 1, the key is to deduce
the relationships among the transition probability
pij (t0, t), the state probability ϕSi (t0) at time t0, and
the state probability ϕSi (tk) at time tk. Then, the item
of transition probability can be replaced with the dis-
tribution of system’s health status.

Suppose that the system performance is in a spe-
cific state Sq ∈ U at time t0. Then, for P

(
A | B),

firstly consider a special case that Sj can only move
to Sj−1 without passing via any intermediate state
[14]. Then, it is obtained that

P
(
A | B) =

q−1∑
j=1
μTSF

(
m(j+1)j

) · p(j+1)j (t0, t) .

Since the system performance is in Sq at time t0, the
system stays in Sj at time t implies thatmq(q−1), · · · ,
m(j+1)j have already occurred during the time inter-
val [t0, t]. So,

p(j+1)j (t0, t) =
j∑
i=1
ϕSj (t) .

Further, note that if μF (Si) < μF (Sh) < μF
(
Sj
)
,

μTSF
(
mij

) = μTSF (mih) + μTSF
(
mhj

)
.

Then, Equation (25) at the bottom of the page can be
obtained.

Equation (25) can be also applied to a general case
[14]. According to Assumption 1, suppose that Sj
can move to multiple worse states (not only to Sj−1)
directly without passing via any intermediate state.
Here, all the transition paths from Sq to S1 can be enu-
merated. Suppose that there are M such paths. Note
that the special case discussed above corresponds to
M = 1. In this way,

P
(
A | B) =

q−1∑
j=1

[
μTSF

(
m(j+1)j

) ·
(

j∑
i=1
ϕSj (t)

)]

=
q−1∑
j=1

{[
μTSF

(
mqj

)− μTSF
(
mq(j+1)

)] ·
(

j∑
i=1
ϕSj (t)

)}
=
q−1∑
j=1
μTSF

(
mqj

) · ϕSj (t) . (25)
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pij (t0, t)

=
M∑
r=1
P
{
mij occurs during [t0, t] via path r

}
=

M∑
r=1
p

(r)
ij (t0, t) .

Suppose that there are Nr states in the rth path:
S
l
(r)
Nr

, S
l
(r)
Nr−1

, · · · , S
l
(r)
1

, where

l
(r)
Nr

= q, l
(r)
1 = 1.

Using the results when M = 1, Equation (26) at the
bottom of the page can be obtained where

ϕS
j(r)

(t)

{
/= 0

= 0

if Sj is contained in the rth path

otherwise
.

So,

P
(
A | B) =

M∑
r=1

q−1∑
j=1
μTSF

(
mqj

) · ϕS
j(r)

(t)

=
q−1∑
j=1

M∑
r=1
μTSF

(
mqj

) · ϕS
j(r)

(t)

=
q−1∑
j=1
μTSF

(
mqj

) · ϕSj (t) . (27)

Since the system performance is in a random state Si
at time t0 with the probability of ϕSi (t0), where⎧⎨

⎩
ϕSi (t0) ≥ 0 Si ∈ U
n∑
i=1
ϕSi (t0) = 1

.

Nevertheless, when the system performance is in state
S1 at time t0, it is obtained that P

(
A | B) = 0 due to

μTSF
(
m1j

) = 0. Then, for other system states Si ∈
U, it can be derived from (27) that

P
(
A | B) =

n∑
i=2
ϕSi (t0) ·

[
i−1∑
j=1
μTSF

(
mij

) · ϕSj (t)

]
.

(28)
Then, substituting (28) into (1), it is obtained that

R (t)

= 1 −
{

n∑
i=2
ϕSi (t0) ·

[
i−1∑
j=1
μTSF

(
mij

) · ϕSj (t)

]}

·
[
n∑
i=1
μS (Si) · ϕSi (t0)

]
−

n∑
i=1
μF (Si) · ϕSi (t0) .

5.1. Proof of Corollary 1

Since the system performance is in state Sn at time
t0, it is obtained that

P (B) =
n∑
i=1
μS (Si) · ϕSi (t0) = μS (Sn) ,

and

P
(
B
) =

n∑
i=1
μF (Si) · ϕSi (t0) = μF (Sn) .

For P
(
A | B), consider the system performance is in

state Sn at time t0,

ϕSi (t0) =
{

0

1

i = 1, 2, · · · , n− 1

i = n
. (29)

Then, combining (28) and (29), it yields

P
(
A | B) =

n−1∑
j=1
μTSF

(
mnj

) · ϕSj (t) .

Then

R (t) = 1 − P
(
A | B) · P (B) − P

(
B
)

= 1 −
(
n−1∑
j=1
μTSF

(
mnj

) · ϕSj (t)

)

· μS (Sn) − μF (Sn) .

P
(
A | B) =

M∑
r=1

q∑
i=1

q∑
j=1
μTSF

(
mij

) · p(r)
ij (t0, t) =

M∑
r=1

Nr−1∑
j=1

[
μTSF

(
m
l
(r)
j+1l

(r)
j

)
·
(

j∑
i=1
ϕS

l
(r)
j

(t)

)]

=
M∑
r=1

Nr−1∑
j=1

{[
μTSF

(
m
l
(r)
Nr
l
(r)
j

)
− μTSF

(
m
l
(r)
Nr
l
(r)
j+1

)]
·
(

j∑
i=1
ϕS

l
(r)
j

(t)

)}

=
M∑
r=1

Nr−1∑
j=1

μTSF

(
m
l
(r)
Nr
l
(r)
j

)
· ϕS

l
(r)
j

(t) =
M∑
r=1

q−1∑
j=1
μTSF

(
mqj

) · ϕS
j(r)

(t) , (26)
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Suppose μF (Sn) = 0. Then

R (t) = 1 −
n−1∑
j=1
μTSF

(
mnj

) · ϕSj (t)

= 1 −
n−1∑
j=1

(
μF

(
Sj
)− μF (Sn)

) · ϕSj (t)

= 1 −
n−1∑
j=1
μF

(
Sj
)
ϕSj (t)

= 1 −
n∑
j=1
μF

(
Sj
)
ϕSj (t)

=
n∑
j=1
μS

(
Sj
)
ϕSj (t) .

5.2. Proof of Corollary 2

Considering the system performance is in state Sq
at time t0, it is obtained that

P (B) =
n∑
i=1
μS (Si) · ϕSi (t0) = μS

(
Sq
)
,

and

P
(
B
) =

n∑
i=1
μF (Si) · ϕSi (t0) = μF

(
Sq
)
.

Then, for (28), it is obtained that

P
(
A | B) =

q−1∑
j=1
μTSF

(
mqj

) · ϕSj (tk)

= μTSF
(
mqj

)
.

Then

R (t) = 1 − P
(
A | B) · P (B) − P

(
B
)

= 1 − μTSF
(
mqj

) · μS
(
Sq
)− μF

(
Sq
)

= μS
(
Sq
) · (1 − μTSF

(
mqj

))
.

5.3. Membership functions used in the simulation

For the SSVφ ∈ [−π, π], we have the membership
function of fuzzy success state as

μS (φ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ+0.1
0.05 φ ∈ (−0.1,−0.05]

1 φ ∈ (−0.05, 0.05]
φ−0.1
−0.05 φ ∈ (0.05, 0.1]

0 φ ∈ (−π,−0.1] ∪ (0.1, π)

,

and the membership function of fuzzy failure state is
given as

μF (φ) = 1 − μS (φ) .

In order to satisfy the condition μF (Sn) ≤
μF (Sn−1) ≤ · · · ≤ μF (S2) ≤ μF (S1) in Section 2,
the step of health status classification of φ is
performed as

Si =
{

φ | ai ≤ |φ| < ai−1;

φ ∈ (−0.1, 0.1) , i = 1, , 2, · · · , n

}
,

and

S1 = {φ | 0.1 ≤ |φ| ≤ π} ,
where

δ = 0.1

n− 1
, n = 100, ai = 0.1 − (i− 1) δ,

i = 1, · · · , n.
For the SSVs θ and ψ, the fuzzy success/failure

membership functions and the corresponding health
status classification are identical to the form of φ. For
the SSV z, the membership function of fuzzy success
state is given as

μS (z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z−9.8
0.15 z ∈ (9.8, 9.95]

1 z ∈ (9.95, 10.05]
z−10.2
−0.15 z ∈ (10.05, 10.2]

0 z ∈ [0, 9.8] ∪ (10.2,+∞)

,

and the membership function of fuzzy failure state is
given as

μF (z) = 1 − μS (z) .

The step of health status classification of z is per-
formed as

Si =
{

z | ai ≤ |z− 10| < ai−1;

z ∈ (9.8, 10.2) , i = 2, 3, · · · , n

}
,

and

S1 = {z | |z− 10| ≥ 0.2, z ≥ 0} ,
where

δ = 0.2

n− 1
, n = 100,

ai = 0.2 − (i− 1) δ, i = 1, · · · , n.
Note that the membership function and the thresh-

olds are determined on the basis of real flight data, and
information of similar multicopters. Also, in practice,
the thresholds are always adjusted according to the
mission requirement and expert experience.


