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• A visual–inertial method to estimate velocity for multicopters.
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a b s t r a c t

Velocity estimation is essential formulticopters to guarantee flight stability andmaneuverability. For such
a purpose, this paper proposes a new method for multicopter velocity estimation based on visual and
inertial information in GPS-denied or confined environments. In this method, no map, artificial landmark
of the environment is required, and only the off-the-shelf onboard sensors in a multicopter including
a low-cost Inertial Measurement Unit (IMU), a downward-looking monocular camera and an ultrasonic
range finder facing downwards are exploited to constitute the vision motion constraint. This constraint
connectsmetric velocitywith the point correspondences between successive images inwhich an efficient
approach based onMean Shift (MS) algorithm is developed to detect outliers and select optimal matching
points. Then, it is theoretically verified that the estimation system is observable based on observability
analysis. Furthermore, combinedwith the visionmotion constraint and amulticopter dynamicmodel, the
metric velocity is estimated using a standard Linear Kalman Filter (LKF). Finally, the proposed method is
tested with a collection of synthetic data from simulation as well as flight experiments using real data
from DJI Matrice 100 and Guidance. The simulation and experimental results indicate that the proposed
method can accurately estimate the velocity of the multicopter in GPS-denied or confined environments.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, multicopters, a kind of unmanned aerial vehi-
cles (UAVs), have attracted increasing attention in the field of both
academic research and industrial applications. Since multicopters
are highly maneuverable and enable relatively safe and low-cost
experimentation in navigation,mapping, and control strategies [1],
they arewidely used in a range ofmission scenarios, such as search
and rescue [2], load transportation [3], aerial manipulation [4],
surveillance [5] and agricultural application [6]. However, there

✩ This work is supported by the National Key Project of Research and Develop-
ment Plan under Grant 2016YFC1402500.

* Corresponding author.
E-mail address: dengheng@buaa.edu.cn (H. Deng).

exist some scientific and technological challenges. Environment
sensing and autonomous navigation, which is crucial to guaran-
tee stability and safety for multicopters, remains an open and
challenging issue. As stated in [7], accurate state estimation is
always a fundamental necessity to implement fully autonomous
manipulation in complex environments. Besides, accurate velocity
estimation is required formulticopters since velocity feedbackwill
increase damping to improve the stability and in return make
multicopters more tractable.

As for velocity estimation of UAVs, a massive amount of re-
search at the beginning has focused on indoor research using
external motion capture systems such as Vicon [8,9] and outdoor
applications usingGPS signals [10–12]. However, these approaches
rely mainly on external positioning systems, restricting UAVs to
be used in a wide range of applications. While Vicon exhibits
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excellencywithmultiple high-resolution external cameras to track
the pose ofmulticopterswith submillimeter accuracy, it demands a
complicated installation and calibration process, and it is infeasible
for the vast outdoor environment. Besides, the operation range is
limited within the field of view of the vision system. GPS signals
may not be available or sufficiently reliable in some limited or con-
fined areas without high-quality satellite signals, such as forests
and buildings. Therefore, onboard sensing, especially the onboard
vision has been a promising sensormodality for small autonomous
multicopters since it does not require energy to interrogate the
environment, and it can provide rich information and span wide
field of view [13]. In general, visual–inertial fusion using onboard
vision is a widely-used approach to providemore accurate velocity
estimation formulticopters in limited environments [14,15]. Some
attempts are using artificial landmarks or user-specified points of
known position and appearance [16], but they can be reasonably
accurate only if the target is detected successfully and quickly.
Thus, they are limited to some scenarios with individual targets
and relies prettymuch on known features. As thework [17] shows,
the automatic landing of aMicro Aerial Vehicle (MAV) on amoving
vehicle was implemented with successful flight tests at up to 50
km/h. They fused togethermeasurements from theMAV’s onboard
integrated navigation system, from multiple cameras tracking a
visual fiducial marker and from the IMU and GPS data on the
ground vehicle.

While the methods above require some knowledge or mod-
ifications to the environment, it is a better choice to develop
a more general approach for the unknown scene. Simultaneous
Localization And Mapping (SLAM) is a conventional technique for
multicopter navigation in unknown environments. Weiss et al.
in [18] enabled the Micro Aerial Vehicle (MAV) to determine
its position autonomously and consequently stabilize itself. The
work has been viewed as the first implementation for a MAV
to navigate autonomously through an unknown environment, in
which amonocular camera is used as the only exteroceptive sensor
independent of any external aid like GPS or artificial landmarks.
Following these results, Weiss has made more subsequent im-
provements to deal with practical issues such as scale drift, time
delays, online estimation in [19,20]. Shen et al. in [21] proposed
a method to estimate the velocity through a SLAM algorithm and
an unscented Kalman filter which fused information from stereo
cameras and inertialmeasurements. However, the data association
and loop closure in SLAM required hundreds of points to be stored
demandingmore computational power and such processwas quite
complicated.

Compared to SLAM, optical flow is an alternative approach.
Herissé et al. in [22] proposed a system to implement hovering
and landing on a moving platform based on optical flow. However,
it only provided the scaled linear velocity. Parrot AR.Drone [23]
was the first commercial product to use an onboard downward-
looking monocular camera and an ultrasonic range finder to mea-
sure metric velocity to stabilize itself based on optical flow , but
the hardware design and software implementation were closed
source. Similarly, PX4FLOW [24] also used a monocular camera to
compute velocity with an ultrasonic sensor for scaling. However,
it could only deal with a small resolution of 64 × 64 pixels lim-
iting the measurement range and accuracy. Besides, the velocity
measurements are only available when the multicopter flies over
at most five meters above the ground and the ground is restricted
to be relatively flat as discussed in the literature [25]. Grabe et al.
in [26] proposed and experimentally verified an onboard velocity
estimation and closed-loop control using the observed optical flow
based on the continuous homography constraint. Homography,
which contains rich information between two successive images,
has been successfully applied to vision-based navigation missions.
Zhao et al. in [27] designed a homography-based vision-aided in-
ertial navigation system to provide drift-free velocity and attitude

estimation for UAV stabilization. The work in [28] claimed that
the attitude, velocity, and IMUmeasurement biases are observable
during a time interval based on the assumption that multiple
salient and repeatable feature points can be extracted andmatched
between two successive images according to their similarity. How-
ever, in practice, the matching points are usually contaminated by
outliers. Therefore, it is necessary to detect and reject outliers to
guarantee an accurate and robust estimation.

In contrast to existing visual estimation methods, we do not
require any prior knowledge of the scene, nor do we need any
external sensors like GPS or motion capture systems. It is assumed
that the states of the multicopter flying in GPS-denied or confined
spaces only come from the onboard sensors including an IMU,
an ultrasonic range finder and a downward-looking monocular
camerawithout any other exteroceptive sensor. For themonocular
vision system, there is not any map or artificial landmark in the
environment with the scene supposed as a flat plane. For the iner-
tial system, unknown constant biases corrupt the measurements
of the low-cost IMU so that they must be estimated and then
compensated online.

To this end, this paper proposes a new visual–inertial estima-
tion of metric velocity for multicopters based on vision motion
constraint. The constraint is related to the corresponding features
between two successive images and contains the velocity informa-
tion directly. The mismatching of the features may indeed cause
an error in the estimation. Therefore, an efficient approach based
on Mean Shift (MS) algorithm is developed to detect outliers and
select optimalmatching points. It is proved that only onematching
point is required to obtain the estimate based on observability
analysis. More specially, combined with the vision motion con-
straint, the metric velocity is estimated using a standard Linear
Kalman Filter (LKF) with a unique multicopter dynamic model. In
contrast to existing studies, the major contributions of this paper
are: (1) no need for any prior knowledge of the environment or any
external sensors with only one feature correspondence required,
(2) an efficient approach proposed based onMS algorithm to detect
outliers and select optimal matching points between two succes-
sive images, and (3) an observability analysis performed to verify
the feasibility of the proposed visual–inertial estimation.

The remainder of the paper is organized as follows. The problem
formulation is given in Section 2. Section 3 presents the design of
the proposed visual–inertial estimation system. In Section 4, vision
motion constraint and optimal matching points selection based on
MS algorithm are described and proved. In Section 5, the proposed
method is theoretically verified through observability analysis,
and then the procedure of discrete LKF is given. Section 6 shows
the simulation and experimental results to validate the proposed
estimation method and Section 7 gives the conclusions and future
research plan.

2. Problem formulation

2.1. Preliminaries

2.1.1. Notations and definitions
Note that the notations and definitions in this paper are con-

sistent with that in [29]. Let Rm×n denote a real matrix with m
rows and n columnswhileRn an n-dimensional real column vector.
Define AT and A−1 as transpose and inverse of the corresponding
matrix A, respectively. Let In denote an n-dimensional identity
matrix and 0m×n is a null matrix of dimension m × n. The symbol
e3 denotes a unit vector [0 0 1]T. For an arbitrary vector a =

[a1 a2 a3]T ∈ R3, define the corresponding skew symmetric
matrix

[a]× =

[ 0 −a3 a2
a3 0 −a1

−a2 a1 0

]
∈ R3×3



264 H. Deng et al. / Robotics and Autonomous Systems 107 (2018) 262–279

such that a×b = [a]×b stands for the cross productwith the vector
b = [b1 b2 b3]T ∈ R3.

As shown in Fig. 1, there are three coordinate frames defined
in the estimation system: Earth-Fixed Coordinate Frame (EFCF),
Aircraft-Body Coordinate Frame (ABCF), and Camera Coordinate
Frame (CCF). The EFCF {e} = {oexeyeze} denotes a local North-East-
Down (NED) frame with the coordinate origin oe located on the
ground plane or on the initial positionwhere themulticopter takes
off. Since the ground plane is assumed to be horizontal, the oexeye
plane coincides with the ground plane, and the third component
of any ground point remains zero. The ABCF {b} = {obxbybzb} is
a right-hand frame fixed to a multicopter with a height h above
the ground plane. The Center of Gravity (CoG) of the multicopter
is chosen as the origin ob of frame {b}. The IMU modules are
mounted in the CoG of the multicopter and the measurements
of IMU are w.r.t. frame {b}. A monocular camera is attached to
the bottom of the multicopter in a downward-looking direction
with a small offset to the CoG. We use Rc

b and Tc
ob to describe the

rotation and translation from frame {b} to frame {c} which can be
calibrated in advance. For any ground point p, denote ep and bp as
the coordinates of p in frame {e} and {b}, respectively. They satisfy

ep = Re
b ·

bp + Te
ob , (1)

where Re
b and Te

ob represent the rotation matrix and translation
vector from frame {b} to frame {e}, respectively.

Remark 1. In general, the monocular camera is not precisely
mounted in the CoG of the multicopter because of the limited
installation space and installation error. Thus, there are subsistent
rotation and translationmatrices between frame {c} and frame {b},
which can be roughly calibrated before real experiment. In this
paper, we account for the difference between the two frames and
unify themeasurements in the same frame such as the body frame.
However, without loss of generality, the camera frame is assumed
to be the same as the body frame in the derivation of the proposed
estimation method.

2.1.2. Inertial measurement model
Inertial measurements come from a three-axis accelerometer, a

three-axis gyroscope, and an ultrasonic range finder. Themeasure-
ment model of each sensor is separately built as follows.

Accelerometers are fixed to the ABCF, which can measure spe-
cific forces, i.e., the nongravitational acceleration along different
body axes. bam ∈ R3 denote the reading of accelerometers w.r.t.
the ABCF, and the accelerometer model is built as
bam =

ba + ba + na

ḃa = nba ,
(2)

where badenotes the true value of the specific force,ba is the bias of
acceleration, and noisesna,nba are often considered to beGaussian
White Noises (GWNs).

Gyroscopes measure angular velocity along different axes. bωm
∈ R3 denote the reading of gyroscopes w.r.t. the ABCF, and the
gyroscope model is built as
bωm =

bω + bg + ng

ḃg = nbg ,
(3)

where bω denotes the true value of angular velocity, bg is the
corresponding bias, and noises ng,nbg are often considered to be
GWNs.

Remark 2. In general, the gyroscopes are reasonably robust to
noise and adequately reliable so that the bias bg can be relatively
small. Furthermore, considering the de-biased angular velocity is

directly output by a nonlinear complementary filter for a mature
autopilot, the bias bg is measured and assumed to be known in this
paper.

The height of a multicopter h can be obtained by an ultrasonic
range finder and Euler angles that

h = dsonar cos θ cosφ, (4)

where dsonar ∈ R+ ∪ {0} is the measurement of ultrasonic range
finder, and the angles θ andφ are pitch and roll angles, respectively.

2.1.3. Multicopter dynamic model
For convenience, the multicopter is assumed as a rigid body

with constantmass andmoments of inertia. Note that forces acting
on themulticopter are the gravity and propeller thrust. Concretely,
the gravity acts along the positive direction of the oeze axis while
the propeller thrust acts along the negative direction of the obzb
axis. Thus, one has

ev̇ = ge3 −
f
m

Re
be3, (5)

where f ∈ R+ ∪ {0} denotes the total propeller thrust, and g ∈ R+

is the acceleration of gravity. Intuitively, the direction of the thrust
points upwards. And the rotation matrix Re

b is given by Box I.
Substituting the relationship ev = Re

b·
bv into Eq. (5) and taking

the derivative w.r.t. time on both sides, one has
bv̇ = −[

bωm − bg]× ·
bv +

(
Re
b

) Te3g − e3u,

where u = f /m is the acceleration generated by the propeller
thrust to balance out the gravity effect. Assume u = g − bu, where
bu denotes the thrust bias, and it is, in fact, the deviation from the
nominal command that should be generated to compensate for the
gravity. Then, the unique dynamicmodel of themulticopter can be
denoted as
bv̇ = −[

bωm − bg]× ·
bv +

(
Re
b

) Te3g − e3(g − bu)
ḃu = nu,

(6)

where nu is often considered as a GWN with variance Qu. From
Eq. (6), it is calculated that the estimated velocity bv is related to the
pitch angle θ , roll angle φ, and de-biased angular velocity bωm −bg
obtained from a complementary filter using IMU information.

2.1.4. Linear camera model
A simplified linear pinhole camera model is shown in Fig. 2.

The camera model projects a 3-dimensional ground point p =

[pxe pye pze ]Tin the EFCF to a 2-dimensional image point p̃ =

[u v]T in the CCF with a relationship as

s

[u
v

1

]
= K

[
Rc
e Tc

oe

]⎡⎢⎢⎣
pxe
pye
pze
1

⎤⎥⎥⎦ , (7)

where s ∈ R+ is a scaling factor representing the depth informa-
tion of the point p w.r.t. the CCF. Define K ∈ R3×3 as an intrinsic
cameramatrix related to the inner structure of the camera. Let p̄ =

[x y 1]T denote as the normalized homogeneous coordinate of
the image point [u v]T, then the normalized coordinate satisfies[x
y
1

]
= K−1

[u
v

1

]
. (8)
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Re
b =

[cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ
cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ

]
.

Box I.

Fig. 1. The definitions of coordinate frames.

Fig. 2. The linear pinhole camera model.

2.2. Objective

To clarify the objective, we make some assumptions as follows.

Assumption 1. Any point p is on the ground plane and satisfies eT3·
ep = 0, i.e., the third component of ep is zero.

Assumption 2. The multicopter height and inertial information
including acceleration and angular velocity are measured through
onboard sensors coupled with some biases and noises.

Towards the assumptions above, the objective is to accurately
determine the velocity of the multicopter w.r.t. the body frame

based on the fusion of IMU, monocular vision, and an ultra-
sonic range finder. We denote the estimated velocity as bv =

[vxb vyb vzb ]
T.

Remark 3. In fact, the major reason of Assumption 1 is that the
distance to the ground is considered to be approximately constant
combined with the ultrasonic range finder. In practice, there may
exist many scenarios which can be considered as flat planes. For
example, a scene is flat when a downward-looking camera is
mounted on a multicopter flying indoors. For the outdoor envi-
ronment, the multicopter always flies at a high altitude that the
camera scene can be assumed as a flat planewithGPS, and themost
commonapproachused for altitude estimation in outdoor environ-
ments is fusion of multiple sensors: GPS, barometric pressure sen-
sor, ultrasonic range finder, and possibly acceleration (as inM100).
GPS-only altitude is inaccurate unless differential/RTK GPS is used.
Besides, theGPS is not utilized in this paper, the altitude is obtained
by the ultrasonic range finder which has its effective range limited
to five meters at most. Therefore, the low-attitude environment
with flat ground is considered in the proposed method.

Remark4.Although sensor data contains noise,we canuse themas
inputs to the estimation algorithm. The height h can be measured
directly by an ultrasonic range finder when the multicopter flies
at a low altitude within the maximum effective range. Rotation
matrix and de-biased angular velocity can be acquired from the
IMU.

Remark 5. The camera is calibrated in advance so that the intrinsic
camera parameter can be utilized directly.

3. Design of the visual–inertial estimation system

The structure of the proposed velocity estimation system
is given in Fig. 3. The sensor measurements are merged by
an 8th-order LKF. The system states are one-dimension height,
3-dimension velocity w.r.t. the ABCF, 3-dimension acceleration
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Fig. 3. The structure of the velocity estimation system. The pitch angle θ , roll angle φ and de-biased angular velocity bωm − bg can be obtained by a complementary filter
using IMU data. This information can be utilized to compose a visual motion constraint and a multicopter dynamic model. Finally, the velocity can be estimated by an LKF
with the multicopter dynamic model based on feeds from the accelerometers, ultrasonic range finder, and monocular vision.

bias, and one-dimension thrust bias. It should be noted that the
gyroscopemeasurements enter the LKF through the processmodel
which propagates the system states while the measurements of
the monocular vision, ultrasonic range finder, and accelerometers
enter the LKF through the measurement model which updates the
system states.

The estimation system consists of two primary sensors: a low-
cost IMU (a three-axis accelerometer and a three-axis gyroscope)
and a monocular camera. The IMUmeasures the specific force (the
acceleration eliminating gravity) and angular velocity of themulti-
copter. Considering the inaccurate measurements of the low-cost
IMU, it is assumed that the IMU measurements are corrupted by
GWNs and constant (or slowly time-varying) biases. A commonly-
used method to estimate the biases is to average the reading of
these sensors for a short time while the multicopter remains static
on the ground before taking off. Different from this method, in
this paper, it is assumed that the biases may vary each time the
IMU is initialized so that they need to be estimated online. The
monocular camera is looking downwards to capture images of the
ground scene. The vision measurements, namely the vision mo-
tion constraint, relate the image pixel information with the space
motion of the multicopter based on matching points between two
successive images. In our method, the Speed Up Robust Features
(SURF) [30] are detected and extracted, and the scale-invariant
features are matched based on optical flow and pyramid principle.
Similarly, the vision measurements are assumed to be corrupted
by GWNs. Furthermore, the depth information is essential for the
metric measurement of the velocity due to the scale ambiguity
of monocular vision, and the ultrasonic range finder can directly
obtain the depth with small noise.

4. Monocular vision measurements

In this section, we analyze the measurement of the monocular
vision. The onboard monocular camera is directly looking down-
wards to capture images of the ground scene. There exists a vision
motion constraint between matching features of two successive
images.

4.1. Vision motion constraint

As illustrated in Fig. 4, Define∆t as the sampling time interval,
and let tk and tk−1 = tk −∆t be the current and the last sampling
time instant, respectively. Given two images captured at time
tk and tk−1, the corresponding rotation matrices (note that the

rotation is from frame {b} to frame {e}) and height information are
denoted as Rk, hk > 0 and Rk−1, hk−1 > 0. Denote coordinates
of the CoG of the multicopter in the EFCF as Tk, Tk−1 expressed in
the two successive images. Thus, the vision motion constraint is
expressed as a theorem in the following.

Theorem 1 (Vision Motion Constraint). In the planar ground surface,
given two successive images captured at time tk−1 and tk, the normal-
ized coordinates of corresponding point correspondences are denoted
as

p̄k−1 = [xk−1 yk−1 1]T

p̄k = [xk yk 1]T
.

Combined with corresponding rotation matrices and heights denoted
as Rk−1, hk−1 and Rk, hk, the vision motion constraint relating the
estimated velocity w.r.t. the body frame to the image pixel information
is given by

bv̂k = −
hk−1p̄k−1

∆teT3Rk−1p̄k−1
+

hk(I3 + [
bωk−1]×∆t)p̄k

∆teT3Rkp̄k
. (9)

Proof of Theorem 1 is given in Appendix A. In our method, it is
assumed that feature points can be easily extracted from succes-
sive images and then the potential inner-frame correspondences
can be established. Based on each available point correspondence,
Eq. (9) is utilized to estimate the velocity. However, theremay exist
some mismatching pairs because of outliers and noises in image
data, thus leading to wrong velocity estimates. As illustrated in
Fig. 5(a), feature points are established between two successive
images. It is shown thatmost feature points are tracked accurately,
but there also exist some mismatching points. To visualize the
velocity results based on Eq. (9), we plot the horizontal velocities as
shown in Fig. 5(b).We can observe that not all the correspondences
are good enough to compute velocity, but in general, the velocity
measurements will concentrate near the true value as the black
circle indicates. Therefore, an approach based on theMS algorithm
is designed to select optimalmatching points between two succes-
sive images in the following.

Remark 6. Since the time interval is short, i.e., ∆t = 0.05 s in
the experiments, the estimated velocity is assumed to be constant
during the time interval [tk − 1, tk].
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Fig. 4. An illustration of the necessary quantities on the derivation of vision motion constraint.

Fig. 5. (a) Results of feature detection and matching; (b) Velocities computed by
Theorem 1.

4.2. Mean shift (MS) algorithm

MS algorithm is a simple nonparametric iterative technique for
estimating density gradient which was proposed by Fukunaga in
1975 [31] and largely overlooked till Cheng provided an appropri-
ate generalization 20 years later [32]. Since then, theMS algorithm
has become popular with successful applications ranging from
image segmentation to object tracking and clustering [33,34]. It is
a stable iterative method to locate the maxima of a local density
function given a collection of discretely sampled data [35].

Given n sampled data
{
ξi

}
i=1,2,...,n in the d-dimensional space

Rd, the multivariate kernel density estimate with only one search
window radius r (also the bandwidth parameter), computed in the
point ξ ∈ Rd is given by

f̂r (ξ) =
cr,d
nrd

n∑
i=1

exp(−
1
2
∥
ξ − ξi

r
∥
2), (10)

where cr,d is a normalization constant. Then, the gradient of the
kernel density estimate is established as

∇ f̂r (ξ) = −
cr,d

nrd+2

n∑
i=1

(
ξ − ξi

)
exp(−

1
2
∥
ξ − ξi

r
∥
2). (11)

Based on Eq. (11), when the gradient of the kernel density
estimate equals zero, i.e., ∇ f̂r (ξ∗) = 0d×1, then ξ∗ is the maxima of
the estimated probability density function regardless of the value
of the constant cr,d and

ξ∗
=

∑n
i=1 ξi exp(−

1
2∥

ξ∗
−ξi
r ∥

2)∑n
i=1 exp(−

1
2∥

ξ∗
−ξi
r ∥2)

. (12)

Furthermore, for iterative operation, the MS algorithm starts
from one of the data points and iteratively update the location of
the point until a maxima, namely the optimal value is reached.
Thus, the optimal value among sampled data

{
ξi

}
i=1,2,...,n in the
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Fig. 6. Number of inliers detected w.r.t. different bandwidth r when the iteration
precision ε is set to 0.01.

Table 1
Procedure of optimal matching points selection based on MS algorithm.

1. Initialization: the bandwidth r; the initial value y0; the iterative
precision ε

2. Data acquisition: obtain the set of velocities computed from potential
matching points, denoted as ξi, i = 1, 2, . . . , n

3. Compute y1 based on Eq. (13), j = 1
4. Main loop:

while ∥yj − yj−1∥ > ε

j = j + 1
Compute yj based on equation (13)
end

5. v = yj
6. Select the optimal matching points with velocity vi which satisfy

∥vi − v∥ < r/3
7. Return v, vi

jth iteration yj can be simplified as

yj =

∑n
i=1 ξi exp(−

1
2∥

yj−1−ξi
r ∥

2)∑n
i=1 exp(−

1
2∥

yj−1−ξi
r ∥2)

. (13)

It should be noted that there is a sufficient condition for the
convergence of the MS algorithm to guarantee the existence of the
maxima. The conclusion and corresponding proof are summarized
in [36]. When the mean shift is small enough, i.e., ∥yj − yj−1∥ < ε,
the iteration is terminated. The procedure of the optimal matching
points selection based on MS algorithm is depicted in Table 1.

During the Initialization process in Table 1, some parameters
need to be determined. The iterative process will become fast
and accurate if the initial value y0 is set near the neighbor of
the optimal value. Considering the time interval between two
successive images is short, the last estimated state is chosen as
the current initial value. Towards the choice of the bandwidth r
and the iterative precision ε, we need to analyze their effect on
the estimation because their values are related to the accuracy and
efficiency of the MS algorithm.

For such a purpose,we conduct some experiments inwhich two
successive images captured by the downward-looking monocular
camera are utilized. Then, we follow the procedure of the optimal
matching points selection in Table 1 to compare the number of
inliers detected before and after using the MS algorithm with a
different choice of parameters.

In the experiments, we first calculate the number of inliers
detected with respect to different bandwidth r when the iteration

Fig. 7. Number of inliers detected w.r.t. different iteration precision ε when the
bandwidth r is set to 0.3.

precision ε is set to 0.01. As depicted in Fig. 6, the solid black
line indicates the number of inliers detected without using the
MS algorithm while the other curves show the results after the
process ofMS algorithm. It is shown that someoutliers are detected
and rejected with the bandwidth controlling the searching range.
When the bandwidth is small, e.g., r = 0.05 and almost all points
are identified as outliers, resulting in few inliers detected. The
number of inliers detected becomes greater with the bandwidth
increasing. However, if the bandwidth is chosen as large as 0.5, the
number of inliers detected almost remains unchanged and the MS
algorithm takes little effect. Thus, the bandwidth value is selected
as 0.3 in this paper.

Similarly, the results w.r.t different iteration precision ε when
the bandwidth r is set to 0.3 are depicted in Fig. 7. It shows that
the number of inliers detected remains the same with different
iteration precision, and the results are reasonable because the pre-
cision only affects the number of iterations it takes the algorithm to
converge. Therefore, in this paper, the bandwidth and the iteration
precision are set as r = 0.3, ε = 0.01.

Based on the procedure in Table 1with the presupposed param-
eters, we can calculate the histogram distribution of the estimated
velocity. Fig. 8 shows the comparison to the resulting histogram
of horizontal velocity before and after using MS algorithm. It is
assumed that the velocity follows the Gaussian distribution. The
true value is vxb = −0.3266 m/s, vyb = 1.0884 m/s. We also
compute the mean and the variance for comparison. Results indi-
cate that the distribution curves have become thinnerwith smaller
variance after utilizing the MS algorithm and the mean remains
almost unchanged. Thus, some outliers have been detected and
rejected based on the proposed MS algorithm.

Remark 7. The vision motion constraint above only holds on the
assumption that there exist some point correspondences between
successive images. However, theremay be few features that can be
extracted and matched for some conditions with simple texture
or the camera scene moves quickly as shown in Fig. 9. Thus, a
complementary method may be considered to compensate for the
insufficient of the vision motion constraint. Based on the work
in [37], the brightness change constraint could be utilized to esti-
mate the velocity when there are few point correspondences with
known depth.
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Fig. 8. Comparison to the histogram of horizontal velocity estimated before and after MS algorithm with the parameters r = 0.3 and ε = 0.01.

5. Observability analysis and Kalman filter

In this section, we will perform the observability analysis to
the proposed visual–inertial estimation system. The purpose is to
identify the observable quantities and theoretically verify whether
the proposed system satisfies all the requirements. First, we need
to obtain the process model and the measurement model of the
estimation system. Then, a theorem to analyze the observability of
the estimation system is proposed. Finally, we present the detailed
procedure of the LKF and give some practical issues.

5.1. Process model

Define x = [h bv ba bu]T ∈ R8 as the system states, based
on the analysis in Section 2 , the process model of the proposed
estimation system is built as

ẋ = Ax + u + w, (14)

where

x =

⎡⎢⎣ h
bv
ba
bu

⎤⎥⎦ ,A =

⎡⎢⎣ 0 −eT3R
e
b 01×3 0

03×1 −[
bωm − bg]× 03×3 e3

03×1 03×3 03×3 03×1
0 01×3 01×3 0

⎤⎥⎦ ,
u =

⎡⎢⎣ 0
(Re

b)
Te3g − e3g
03×1
0

⎤⎥⎦ ,w =

⎡⎢⎣ 0
03×1
nba
nu

⎤⎥⎦ .
5.2. Measurement model

The measurement of the filter comes from accelerometers, an
ultrasonic range finder, and monocular vision. The measurement
model of each sensor is separately built as follows.

As for the height measurement, based on Eq. (4), the measure-
ment of an ultrasonic range finder is defined as

zh = dsonar cosφ cos θ,

and then the measurement model is built as

zh = Chx + nh, (15)

where the measurement matrix is

Ch =
[
1 01×3 01×3 0

]
.

As for the acceleration measurement, based on Eq. (2), define
the accelerometer measurement as

za =
bam + e3g,

then, combined with themulticopter dynamic model (6), the mea-
surement model of accelerometers is built as

za = Cax + na, (16)

where the accelerometer measurement matrix is

Ca =
[
03×1 −[

bωm − bg]× I3 e3
]
.

As for the vision measurement, after obtaining M optimal
matching points based on the MS algorithm, denoted as

p̄i,k−1 ↔ p̄i,k, i = 1, 2, . . . ,M, (17)

therewill be an estimated velocity corresponding to eachmatching
point based on vision motion constraint (9). We will choose the
mean of the M velocities as vision measurement to speed up the
filter. Thus, the measured velocity bvm can be described as

bvm =
1
M

(
M∑
i=1

hk(I3 + [
bωk−1]×∆t)p̄i,k

∆teT3Rkp̄i,k

−

M∑
i=1

hk−1p̄i,k−1

∆teT3Rk−1p̄i,k−1
). (18)

For simplicity, the measured velocity bvm in Eq. (18) is directly
defined as the vision measurement zvis. Thus, the vision measure-
ment model can be described as

zvis = Cvisx + nvis, (19)
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Fig. 9. Samples of captured images with few matching points. The small read circles and yellow crosses represent the matching points between successive images.

where nvis ∈ R3 is the vision measurement noise. Hence, the
expression of Cvis is built as

Cvis =
[
03×1 I3 03×3 03×1

]
.

To sum up, we can conclude the measurement model of the
estimation system as

z = Cx + v, (20)

where

z =

[ zh
za
zvis

]
, v =

[ nh
na
nvis

]

C ≜

[ Ch
Ca
Cvis

]
=

⎡⎣ 1 01×3 01×3 0
03×1 −

[bωm − bg
]
×

I3 e3
03×1 I3 03×3 03×1

⎤⎦ .
5.3. Observability analysis

Up to now, the process model and measurement model are
built and they are linear. In this section, we derive the observ-
ability analysis of the proposed estimation system. The purpose
is to identify the observable quantities and theoretically verify if
the proposed estimation system can fulfill all the requirements.
Since the process and measurement models are time-variant, the
standard observability rank method is not suitable. For simplicity,
we assume the flight condition of the multicopter as follows.

Assumption 3. Themulticopter is in hovering condition or straight
and steady flight with small angle and zero angular velocity, thus
the multicopter states are approximately given by

φ = θ = 0
bω = 03×1.

(21)

Remark 8. Assumption 3 confines the flight condition of the
multicopter irrespective of big maneuvering situation with large

angle attitude, which leads to a convenient understanding of the
observability analysis. Besides, the value of the yaw angle has no
influence on the observability analysis since it is not related to the
velocity w.r.t. the body frame. Thus, only the roll angle φ and pitch
angle θ are assumed to be zero.

According to Assumption 3, the process model (14) and mea-
surement model (20) can be simplified. First, we consider two
conditions: one with vision measurement and the other without
visionmeasurement. Both conditions are common in practice since
the vision measurement is badly influenced by illumination, and
the only difference between them is the measurement matrix C.

For the condition with vision measurement, substituting the
assumption (21) into the process model (14) and measurement
model (20) gives the simplified model (A, C1) as

ẋ =

⎡⎢⎣ 0 −eT3 01×3 0
03×1 03×3 03×3 e3
03×1 03×3 03×3 03×1
0 01×3 01×3 0

⎤⎥⎦
  

A

x +

⎡⎢⎣ 0
(Re

b)
Te3g − e3g
03×1
0

⎤⎥⎦
  

u

+

⎡⎢⎣ 0
03×1
nba
nu

⎤⎥⎦
  

w

z =

[ zh
za
zvis

]
=

[ 1 01×3 01×3 0
03×1 03×3 I3 e3
03×1 I3 03×3 03×1

]
  

C1

x

+

[ nh
na
nvis

]
  

v

.

(22)

While for the condition without visionmeasurement, similarly,
we have the simplified model (A, C2) as
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Table 2
Procedure of the linear Kalman filter.

1. Initialization: the initial state x0 and the initial error covariance P0
2. For k = 0, set P0|0 = P0, x̂0|0 = x0
3. State estimate propagation: x̂k|k−1 = Fk−1x̂k−1|k−1 + Gk−1
4. Error covariance propagation: Pk|k−1 = Fk−1Pk−1|k−1Fk−1 + Qk−1

5. Kalman gain matrix: Kk = Pk|k−1CT
k

(
CkPk|k−1CT

k + Rk
)−1

6. State estimate update: x̂k|k = x̂k|k−1 + Kk
(
zk − ẑk|k−1

)
. where

ẑk|k−1 = Ckx̂k|k−1
7. Error covariance update: Pk|k = (In − KkCk) Pk|k−1
8. k = k + 1, Go back to Step 3

ẋ =

⎡⎢⎣ 0 −eT3 01×3 0
03×1 03×3 03×3 e3
03×1 03×3 03×3 03×1
0 01×3 01×3 0

⎤⎥⎦
  

A

x +

⎡⎢⎣ 0
(Re

b)
Te3g − e3g
03×1
0

⎤⎥⎦
  

u

+

⎡⎢⎣ 0
03×1
nba
nu

⎤⎥⎦
  

w

z =

[
zh
za

]
=

[
1 01×3 01×3 0

03×1 03×3 I3 e3

]
  

C2

x

+

[ nh
na
nvis

]
  

v

.

(23)

Then, a theorem to analyze the observability of linear estima-
tion systemunder the two conditions above is proposed as follows.

Theorem 2 (Observability Analysis).When the multicopter is in hov-
ering condition or straight and steady flight with a small angle and
zero angular velocity, the observability analysis is divided into two
conditions. When there is at least one visual feature correspondence
detected, the simplified system (22) is observable; When there is not
any vision measurement, the simplified system (23) is unobservable,
and the two unobservable quantities are horizontal velocities.

Proof of Theorem 2 is given in Appendix B. When there are
visionmeasurements, the conclusion that the system is observable
is reasonable since at least one feature correspondence can directly
calculate the estimated velocity based on the vision motion con-
straint (9). On the other hand, for the terrible conditionwithout any
vision measurement where only the height and acceleration mea-
surements are available, it is proved that the horizontal velocities
are unobservable, which may be inconsistent with the common
sense that the velocity is just the integral of the acceleration.
However, it should be noted that the velocity can be obtained by
integrating the accelerationwhen the initial velocity is known, and
the integral error will be accumulated leading the increasing error
of the velocity estimate. Thus, the velocity can be propagated by
integrating the acceleration based on the last estimated states just
during a short time interval. If the condition without any vision
measurement lasts a long time interval, the estimated error will
increase.

5.4. Kalman filter

Since the system is linear so that a standard LKF is to be applied
to fuse the measurements of IMU, vision, and ultrasonic range
finder. First, we need to get the discrete form of the process model

and measurement model. The discrete form of the process model
is built as

xk = Fk−1xk−1 + Gk−1 + wk−1, wk−1 ∼ N (08×1,Qk−1)

where

Fk−1 =

⎡⎢⎢⎢⎣
1 −eT3R

e
b∆t 01×3 −

∆t2

2
eT3R

e
be3

03×1 I3 − [
bωm − bg]×∆t 03×3 e3∆t

03×1 03×3 I3 03×1
0 01×3 01×3 1

⎤⎥⎥⎥⎦

Gk−1 =

⎡⎢⎢⎢⎣
−
∆t2

2
eT3R

e
b((R

e
b)

Te3g − e3g)

((Re
b)

Te3g − e3g)∆t
03×1
0

⎤⎥⎥⎥⎦ .
The discrete form of the measurement model is built as

zk = Ckxk + vk, vk ∼ N (07×1,Rk) (24)

where

zk =

[ zh
za
zvis

]
, vk =

[ nh
na
nvis

]

Ck =

⎡⎣ 1 01×3 01×3 0
03×1 −

[bωm − bg
]
×

I3 e3
03×1 I3 03×3 03×1

⎤⎦ .
The details of the implementation of the LKF are depicted as in
Table 2.

Besides, there are some practical issues to be noticed. First,
the initial value of the system state is chosen as x0 =

[dsonar cos θ cosφ bvvis 03×1 0]T where the initial height is
obtained by the ultrasonic range finder, the initial velocity is given
through the vision motion constraint, and the other initial values
can be set to zero. Second, there exist in fact two update rates in the
filter. The update rate of IMU measurement is usually higher than
that of vision or heightmeasurement. Besides, theirmeasurements
are not synchronous. To solve this problem, we choose the update
rate of IMU as the primary rate of the filter, and then define a flag
signal to indicate whether vision or height measurements have
arrived. The state update process starts whenever the vision or
height information comes. Finally, sensor failure or abnormality
may occur during flight because of changing lighting conditions or
insufficient features of the ground scene. Motivated by this, in this
paper, we can make a judgment on whether the measured value
is within a normal range by comparing the innovation covariance
matrix estimated via the Kalman filter. Define the difference be-
tween measurement zk and prediction ẑk/k−1 as the innovation,
i.e., εk = zk − ẑk/k−1. So the innovation can be considered as a
Gaussian white noise with covariance CkPk/k−1CT

k + Rk. Thus

εTk (CkPk/k−1CT
k + Rk)−1εk ∼ χ2(p),

where p is the dimension of εk. We can detect the abnormal data
by considering a threshold value σ . If the discrepancy exceeds the
threshold, i.e., εTk (CkPk/k−1CT

k + Rk)−1εk > σ holds, it is considered
that this measurement is abnormal and should be abandoned.

6. Simulation and experimentation

6.1. Simulation experiment with synthetic data

This section presents comprehensive simulation results in
which all the experimental data is generated synthetically to val-
idate the effectiveness of the proposed visual–inertial estimation
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system. The simulation setup process and corresponding results
are presented.

6.1.1. Simulation setup
We utilized the Robotics Toolbox (RT)1 for MATLAB by Peter

Croke to generate sensor data for a quadcopter with user defined
translational and rotational motion. RT provides a collection of
functions that support fundamental algorithms in robotics like the
representations of orientation in SO (3), kinematics, dynamics, and
trajectory generation, covering areas in model robotics, mobile
ground robots as well as flying robots, i.e., quadcopter. RT has a
history of about twenty years and the latest release of the toolbox
is the tenth version with some changes and extensions to support
the second edition of the well-known book [38].

In the toolbox, there is a closed-loop Simulink model of the
typical quadcopter. The vehicle takes off and flies in a circle at a
constant height. As shown in Fig. 10, the simulation adopts a quad-
copter model and an inner-and-outer flight controller, in which
the outer loop controls the position while the inner loop regulates
the velocity and attitude. Given the reference trajectory and yaw
angle, the Simulinkmodel can compute the true 12-element states
including the position, velocity, orientation, and orientation rate.
The orientation and its rate are represented regarding yaw–pitch–
roll angles according to the ‘‘ZYX’’ rotation sequences. Note that
position and attitude are in the EFCF and the rates are presented
in the ABCF. Thus the velocity information can be chosen as the
ground truth in the simulation.

A single image with resolution of 752 × 480 pixels is taken
from a flat scene with enough features, by setting an appropriate
intrinsic matrix of the downward-looking camera, a large number
of synthetic images are generated corresponding to the position
and attitude of the quadcopter, using perspective projectivemodel.
During the process, GWN and constant biases are added to the
true translational and rotational states to obtain the simulated
measurements of sensors.

We adopt Computer Vision System Toolbox in the simulation
to realize the vision process. The procedure to choose optimal
matching points between two successive images is as follows: (1)
Obtaining two successive images (MATLAB function imread); (2)
Extracting speeded up robust features in each image (MATLAB
function detectSURFFeatures and extractFeatures); (3)Matching fea-
ture points of the two images (MATLAB function matchFeatures),
during this stage, we can use the function showMatchedFeatures
to visualize the matching points in the image; (4) Calculating the
corresponding velocity using the matching points according to
the vision motion constraint; (5) Employing the MS algorithm to
choose the optimal velocity and matching points iteratively. After
obtaining the optimal matching points, the proposed estimation
system can be executed using an LKF as discussed before.

6.1.2. Simulation results
The reference trajectory in the simulation is a horizontal circu-

lar motion with constant height and yaw angle given by

x∗
= 3 sin (0.2t)

y∗
= 3 cos (0.2t)

z∗
= −4

ψ∗
= 0

Fig. 11 shows samples from the generated images. It is clear
that almost all points are matched accurately. And more accurate
matching points will give more accurate velocity estimation. The
simulation results are presented in Fig. 12. The true quadcopter
states are indicated by solid green lines, the states estimated using
our method are shown as red dotted lines while cyan dashed lines

1 http://petercorke.com/wordpress/toolboxes/robotics-toolbox.

Table 3
RMS results in simulation.

RMS vxb (m/s) vyb (m/s) pxb (m) pyb (m)

IMU-only 1.2483 1.1776 20.9462 16.4961
Vision-only 0.0830 0.0677 0.0642 0.0654
Visual–inertial 0.0478 0.04355 0.0194 0.0239

Table 4
Main specifications of the quadcopter M100.

Specifications Quadcopter M100

Diagonal wheelbase 650 mm
Weight (with TB47D battery) 2355 g
Maximum takeoff weight 3600 g
Flight endurance 22 min
Maximum velocity (No GPS) 22 m/s
DJI intelligent Flight battery LiPo 6S

plot the IMU-only estimation. Fig. 12(a) is a snapshot during flight
by the quadcopter simulation, and themarker on the ground plane
is a projection of the quadcopter’s centroid. The 2D trajectory of
the quadcopter is depicted in Fig. 12(b), and it is evident that the
distance will drift quite fast using IMU-only estimation, and the
visual–inertial estimation has a good performance. As shown in
Fig. 12(c), our proposed method can get a smooth and accurate
velocity estimation. Also, Fig. 12(d) shows the change of number
of matching points after using the MS algorithm, and it is shown
that the number has decreased and the proposed optimalmatching
points algorithm is efficient. Note that there exist some instances
when there are no matching points, but it has a little effect on
the fusion results since the height and IMU information will take
effect for a short time. Furthermore, the observations above are
consistent with the observability analysis in Section 5. At last, we
have computed the Root Mean Square (RMS) of the velocity and
position estimate taking IMU-only, Vision-only, andVisual–inertial
fusion into account. The corresponding results are summarized in
Table 3.

6.2. Flight experiment with real data

After validating the proposed method on synthetic data, the
testing is performed on flight experiment with real data. In this
section, experimental results are presented to verify the effective-
ness of the visual–inertial estimation system.

6.2.1. Experimental platform
The experimental flight platform is a commercial DJI Matrice

100 (M100) autonomous quadcopter from DJI (Da-Jiang Innova-
tions Science and Technology Co., Ltd.) company. The off-the-shelf
quadcopter is shown in Fig. 13. Themain specifications of theM100
are listed in Table 4. M100 is a stable, flexible, and powerful de-
velopment platform designed specially for various complex tasks
for research, business or fun. All the computation is performed on
the high-performance onboard embedded system (DJI Manifold),
which contains an NVIDIA Tegra K1’s 4-Plus-1 Quad-core ARM
Cortex-A15 Processor. For the sake of safety, the function of the
GPS-compass module is enabled to be forbidden when flying at a
low altitude in no-fly zones.

M100 is also equipped with the DJI Guidance module, a rev-
olutionary visual sensing system with a powerful processor, five
integrated stereo cameras, and ultrasonic range finders. The Guid-
ance module seamlessly integrates with the inertial sensors to
provide accurate position, velocity, and obstacle measurements
for M100 using a fusion of onboard sensors [39]. Note that only
the downward-looking vision sensors (a camera and an ultrasonic
range finder) of theGuidance are utilized in the experiment instead
of other four directional sensors. Using the quadcopter platform,

http://petercorke.com/wordpress/toolboxes/robotics-toolbox
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Fig. 10. Block diagram of the simulation.

Fig. 11. Samples of the generated images in the simulation. The small red circles and yellow crosses represent the matching points between two images.

we can directly obtain IMU, height and image information. Besides,
the Guidance can provide velocity using stereo vision algorithm as
ground truth. We have already performed calibration in advance
to obtain intrinsic camera matrix.

6.2.2. Experimental results
The flight experiments are conducted above a flat ground scene

with colorful texture outdoors as shown in Fig. 14. The point
correspondences between two successive images can be easily
detected.

During the flight, the quadcopter is guided by a remote con-
troller to fly in a square trajectory. The downward-looking camera
captures the ground scene image at a fixed frequency of 20 Hz
while the IMU and ultrasonic range finder also run at the same
rate. It should be noted that the IMU data is synchronized with
images inside the Guidance. The velocity can be estimated online
using our proposed algorithm while the Guidance itself can give
the ground truth at 10 Hz using stereo visual odometer. Also, we
can record all the published sensor data through theManifold to be
dealt with offline using MATLAB. Also, the results of conventional

method using optical flow and ultrasonic range finder are com-
pared with that of the proposed method. The experimental flight
results are depicted in Fig. 15. We have the following conclusions
from the experimental results: (1) The proposed visual–inertial
estimation can provide an accurate velocityw.r.t. the ABCF; (2) The
position calculated by the estimated velocity is relatively accurate
and drifts slowly such that multicopters can perform a short-
term local navigation when the GPS signals are not available; (3)
The proposed mean shift algorithm can detect the mismatching
points and improve the accuracy of the estimation system; (4) The
proposed method would outperform the optical flow method. Be-
sides, the observations above are consistent with the observability
analysis and simulation results. The processing time of the main
functions is shown in Table 5, and it is clear that the image pro-
cessing costs most of the total time. The efficiency of the proposed
method can be improved by speeding up the image processing
using GPU acceleration. However, in this paper, all the available
data is recorded through ROS and all the processing of algorithms
is run in MATLAB to demonstrate the effective of the proposed
method. Furthermore, more experimental results are available at
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Fig. 12. Simulation results using the proposed method.

  

Fig. 13. The DJI Matrice 100 quadcopter.
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Fig. 14. The ground scene in the flight experiment. The size of the image captured is 320 × 240 pixels.

Table 5
Processing time of the main function using the MATLAB time.

Function Total time (s) Execute count (n) Average time (ms)

Feature detection 21.729 1758 12.3
Feature extraction 58.671 1758 33.4
Feature matching 10.130 879 11.5
Mean shift 2.4184 879 2.75
Velocity by vision 0.864 879 0.983
LKF 0.125 879 0.142

‘‘https://youtu.be/4J7sfCm_o0Y’’ and our Reliable Flight Control
group website ‘‘http://rfly.buaa.edu.cn’’.

To further validate the effectiveness of the proposed method at
larger velocity, more flight tests have been conducted in outside
environment. The multicopter files freely by a remote controller,
and the experimental results are depicted in Fig. 16. Results show
that the proposed estimation still takes effect at larger speed nearly
up to 4m/s, but there could be some peaks at some time instances.
Especially, it is observed that the estimation may become inac-
curate when the speed is raised up. The inaccuracy is reasonable
because the image quality becomes blurred and matching points
are not easy to be extracted. It is noted that our proposed method
relies much on accurate and enough point correspondences
between successive images. Besides, the experiments are con-
ductedwithout GPS signals, and only the attitude control using the
remote controller is available. Thus, the attitude of theUAV is easily
affected by external winds and the attitude may change a lot and
therefore influences the accuracy of the ultrasonic range finder.
The readings of the ultrasonic range finder may subject to zero
if the measured distance is beyond the maximum effective range
or there is no returned sound to be received when the attitude
of the multicopter is large. Due to the unreliability and noises
in the distance measurements, the height data is filtered in our
method. Moreover, the supplementary experimental results of the
proposed method at high speeds are available at: ‘‘https://youtu.
be/OEvp4P-MyrE ’’.

7. Conclusions

This paper proposed a new visual–inertial method based on
vision motion constraint to provide accurate velocity information
merging themeasurements from amonocular camera, an IMU, and
an ultrasonic range finder, combined with a unique multicopter
dynamic model. An efficient approach based on MS algorithm was
developed to detect outliers and select optimal matching points
between successive images. Observability analysis has shown that
the proposed estimation system is observable with at least one

feature correspondence detected when the multicopter is in hov-
ering condition or straight and steady flight. Comprehensive sim-
ulation and experimental results have verified that the proposed
estimationmethodworks well in GPS-denied or confined environ-
ments with good texture or enough features. In our method, all
we need is the onboard sensing without the aid of any external
localization system, any artificial features, or any prior knowledge
of the environment. Furthermore, the proposed method is valid
with only one matching point detected. Even for the worst case
without any feature detected, it will take effect during a short time
interval. However, there exist some limitations in the estimation.
First, it is known that there are few features for the poor-textured
environment so the proposed method may not be effective in that
case. Second, the ground is assumed to be flat which is a strong
assumption, and it is also observed that the proposedmethod takes
effect at a low altitude and slow velocity. Third, measurement
delays are ignored for simplicity in our method. Last, we assume
the system is nearly linear, but in fact, it is nonlinear if we choose
the attitude as the unknown state. In future research, we will
account for a situation where there are fewer features or the scene
is not flat. Also, we need to study the characteristic of sensors
further and handle time delays. Besides, we may try to consider
the nonlinearity and utilize the extended Kalman filter or particle
filter instead of the standard LKF. If possible, the estimated velocity
can be employed in closed loop system.

Appendix A. Proof of Theorem 1

Based on the linear camera model (7) and (8), one has

sp̄ = Rc
b

(
Rb
e ·

ep + Tb
oe

)
+ Tc

ob . (A.1)

According to Remark 1, the body frame and the camera frame
are assumed to be the same in the derivation, thus one has

Rc
b = I3, Tc

ob = 03. (A.2)

Substituting Eq. (A.2) into Eq. (A.1) gives

sp̄ = Rb
e ·

ep + Tb
oe . (A.3)

https://youtu.be/4J7sfCm_o0Y
http://rfly.buaa.edu.cn
https://youtu.be/OEvp4P-MyrE
https://youtu.be/OEvp4P-MyrE
https://youtu.be/OEvp4P-MyrE
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Fig. 15. Results of flight experiment outdoors.

Also, we have the relationship as

Rb
e =

(
Re
b

)T
, Tb

oe = −
(
Re
b

)TTe
ob . (A.4)

Based on Eqs. (A.3) and (A.4), we have

sp̄ = (Re
b)

T (ep − Te
ob

)
. (A.5)

According to Assumption 1, combined with Eqs. (1), (4) and
(A.5), one has

pzb = −
dsonar cos θ cosφ
eT3R

e
b[x y 1]T

. (A.6)

Based on Eq. (A.5), one has

pk−1
zb Rk−1p̄k−1 + Tk−1 = pkzbRkp̄k + Tk. (A.7)
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Fig. 16. Results of flight experiment outdoors at greater velocity.

According to Eq. (A.6), one has

pk−1
zb = −

hk−1

eT3Rk−1p̄k−1

pkzb = −
hk

eT3Rkp̄k
.

(A.8)

Thus, from Eqs. (A.7) and (A.8), one has

evk =
Tk − Tk−1

∆t
=

pk−1
zb Rk−1p̄k−1 − pkzbRkp̄k

∆t
. (A.9)

Recalling to the relationship Ṙ = R[ω]×, we have

Rk − Rk−1 = Rk−1[
bωk−1]×∆t. (A.10)

Bymultiplying Eq. (A.10) by RT
k−1 on both sides and rearranging

it, one has

RT
k−1Rk = I3 + [

bωk−1]×∆t. (A.11)

Combined with Eqs. (A.9) and (A.11), Transforming the velocity
to the ABCF results in
bv̂k = RT

k−1 ·
evk

=
pk−1
zb p̄k−1 − pkzbR

T
k−1Rkp̄k

∆t

=
pk−1
zb p̄k−1 − pkzb (I3 + [

bωk−1]×∆t)p̄k

∆t

. (A.12)

Combining Eqs. (A.8) and (A.12), we get the same expression of
velocity as Theorem 1 illustrated.

Appendix B. Proof of Theorem 2

Since the simplified system (22) and (23) are time-invariant, we
need to check the rank of the observability matrix

O (A, C) = [CT (CA)T · · ·
(
CA7)T]T. (B.1)

If the observability is of full rank, i.e., rankO (A, C) = 8, the
system is observable. First, consider the conditionwith visionmea-
surement, the system is simplified to system (22), and the observ-
ability matrix of the simplified system (22) according to Eq. (B.1)
is

O (A, C1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
10×8

. (B.2)

The zero rows of O (A, C1) are omitted since they do not con-
tribute to the rank of O (A, C1). By examine the last four rows,
there are two independent rows, thus, the rank ofO (A, C1) is eight.
Hence, the system is observable, i.e., the velocity can be observable
fusing the information of acceleration, height and vision measure-
ment.

Similarly, consider the condition without vision measurement,
the system is simplified to system (23), and the observability



278 H. Deng et al. / Robotics and Autonomous Systems 107 (2018) 262–279

matrix of the simplified system (23) according to Eq. (B.1) is

O (A, C2) =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎦
6×8

. (B.3)

It is calculated that the rank of O (A, C2) is six, thus the system
is unobservable, there are two unobservable quantities. In order to
identify them, we need to obtain the null space of O (A, C) that

Null (O (A, C2)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 −1

−1 0
0 0
0 0
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
8×2

. (B.4)

The null space of the observability matrix suggests that the two
unobservable quantities are the horizontal velocities vxb , vyb . The
vertical velocity can be obtained by the difference of two height
measurements.
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