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ABSTRACT
This paper proposes a fixed-time differentiator running in parallel with a feedback linearisation-based con-
troller, which allows quadrotors to track a given trajectory. The fixed-time differentiator estimates outputs’
derivatives in a predefined convergence time, largely compensating for initial condition problems and solv-
ing the delay problem. Combined with a state reconstruction step, a whole observer–estimator–controller
scheme can be constructed for quadrotors to solve the trajectory tracking problem. Also, an Linear Matrix
Inequality (LMI) optimisation-based algorithm to tune parameters of the differentiator is developed here.
The high performance of the proposed model is illustrated by numerical simulations.

1. Introduction
Compared with fixed-wing aircrafts and helicopters, quadro-
tors are easier to use in the case of specific tasks with good
performance and a high level of autonomy, see Austin (2010)
and Quan (2017). A quadrotor is a nonlinear under-actuated
dynamic systemwith four control inputs and six degrees of free-
dom, as is explained inMahony, Kumar, andCorke (2012), Balas
(2007), and Quan (2017). Therefore, the control problem of tra-
jectory tracking for a quadrotor is highly demanding not only
for the nonlinearity but also for the stability, the robustness, and
dynamic properties.

In order to guarantee the agility and the controllability
of quadrotors, the flight control system should be able to
track given trajectories with high accuracy. Numerous kinds of
research have been conducted to study tracking control prob-
lem of quadrotors. Bouabdallah (2006) applied some generally
used control methods to quadrotors, such as the Propotional-
Integral-Derivative (PID) technique, the Linear-Quadratic Reg-
ulator (LQR) control method, etc. Then, Bouabdallah and Sieg-
wart (2007) proposed a combination of PID and back-stepping
approach for attitude, altitude, andposition control, respectively,
aiming to solve tracking control problem of quadrotors. In the
paper of Adigbli, Grand, Mouret, and Doncieux (2007), three
control approaches – back-stepping controller, sliding mode
controller, and feedback controller – were designed for quadro-
tor to track set-points. Also, their performances were com-
pared. A discrete PID controller for quadrotors was developed
by Khan and Kadri (2014), permitting the quadrotor to move in
space. And the performance of such a design was validated by a
hardware-in-loop simulations.

Most of these studies employ a hierarchical control scheme
consisting of attitude control, altitude control, and position con-
trol to realise an autonomous trajectory tracking, as is shown in
Figure 1. Since the quadrotor dynamic system is nonlinear and
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under-actuated, the central issue of the trajectory tracking con-
trol problem is the decoupling problem.

However, the hierarchical control scheme is based on an
approximate linearmodel, which decouples the control problem
by approximation around given set-points. This approximation
results in limitations for the pitch and roll angles of quadro-
tors. To avoid problems caused by the small-angle approxima-
tion, researchers proposed numerous advanced control meth-
ods, such as the feedback linearisation method analysed in the
book of Isidori (1989), the fixed-time stabilisation studied by
Polyakov (2012), etc. The feedback linearisation method is an
exact linearisation from the point of view of global input–output
linearisation, see Nijmeijer and van der Schaft (1990). The feed-
back linearisation-based controller can render the quadrotor
dynamic system linear and controllable. Moreover, in the paper
ofMistler, Benallegue, andM’Sirdi (2001), simulationswere also
carried out to confirm the stability and the robustness of the
vehicle in the presence of environmental disturbances and para-
metric uncertainties. However, this approach requires full infor-
mation of the system states, including the third derivatives of
the output signals. Thus, an efficient differentiator design for the
output signals becomes indispensable.

The real-time differentiation has always been an interesting
and highly demanding problem, regarding the combination
between robustness and exactness with respect to disturbances
and measurement noises. Various kinds of research have been
conducted to design a robust exact differentiator for both linear
and nonlinear systems. In the paper of Cruz-Zavala, Moreno,
and Fridman (2010), a super-twisting algorithm-based uniform
robust exact differentiator was studied, which provides exact
derivatives of the input in a finite convergence time. Another
commonly used approach is the high-order sliding mode
differentiator , see Levant (1998), etc. The high-order sliding
mode differentiator is a classical approach for its insensitivity
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Figure . A hierarchical control scheme for autonomous trajectory tracking.

to unknown inputs and its finite-time convergence1 property,
as in Levant (2003). The convergence time of this type of differ-
entiators varies with different initial conditions. Slow response
times, however, may lead to severe problems in practical appli-
cations. Therefore, more and more researchers began to focus
on fixed-time differentiators2, of which the convergence time is
bounded by a fixed value independent of initial conditions, see
Polyakov, Efimov, and Perruquetti (2015a). Moreover, hybrid
fixed-time differentiators have also become a focus recently.
Angulo, Moreno, and Fridman (2013) propose an arbitrary-
order differentiator which provides the uniform convergence
property within a finite settling time. This kind of differentiator
design guarantees the exactness of the derivatives’ estimation
in a finite time and the independence to various initial differ-
entiation errors. Similarly, in the paper of Rio and Teel (2016),
a hybrid fixed-time observer for single output linear system
was studied, which also combines the exactness property after
a fixed time and the uniform convergence property.

As the feedback linearisation approach transforms the non-
linear quadrotor dynamic system into a linear form where the
controller requires the third derivatives of the system states,
it is instrumental to introduce a real-time differentiator as an
observer and an estimator in the control loop. A high-order
sliding mode differentiator is an appropriate approach for its
insensitivity to disturbances and finite-time transient. In the
paper of Benallegue, Mokhtari, and Fridman (2007), a high-
order sliding mode observer was designed for quadrotors which
provides satisfying control performance in the case of exter-
nal disturbances and parametric uncertainties. To guarantee
a faster response time with respect to significant deviations
from equilibrium, a fixed-time differentiator is more suitable
for practical applications, such as the quadrotor dynamics. A
primary difficulty of the fixed-time differentiator applications
is the parameter tuning problem, which is directly related to
the fixed settling time. In the paper of Basin, Yu, and Shtessel
(2016), non-recursive higher order sliding mode differentiators
with finite and fixed convergence time were studied. The set-
tling time, however, is implicit and the time estimation is slightly
complicated.

The main contribution of this paper is to apply a fixed-
time differentiator for quadrotor model to estimate out-
puts’ derivatives, running in parallel with a dynamic feed-
back linearisation-based controller. The convergence time
of differentiators is bounded by a fixed value independent
of the initial differentiation error. Furthermore, using an
LMI optimisation-based parameter tuning algorithm, the gain
matrix of differentiators as well as the convergence time

can be quickly settled. A control strategy comparison to the
commonly used PID technique has been given to illustrate
the performance of the feedback linearisation-based controller.
Numerical simulations have been conducted at the end to
present the computation of the whole observer–estimator–
controller model and the effectiveness of the proposed scheme
for trajectory tracking problems of quadrotors.

The remainder of this paper is organised as follows.
Section 2 introduces the quadrotor dynamics. In Section 3, the
dynamic feedback control approach is presented based on the
nonlinear model of the vehicle. Feedback linearisation-based
controllers are determined in a disturbance-free case as well as
in the presence of unknown but bounded aerodynamic distur-
bances and measurement noises. Section 4 focuses on the fixed-
time differentiator design in the two cases. Then, numerical sim-
ulations are carried out to illustrate the efficiency of the whole
observer–estimator–controller scheme.

2. Quadrotor dynamics
The quadrotor is a nonlinear under-actuated dynamic system
with four inputs and six degrees of freedom. It is composed
of four individual rotors and a rigid cross airframe. Different
motions are accomplished by changing the angular speed of pro-
pellers, which further change the thrust and moments.

In order to derive kinematic and dynamic equations of the
quadrotor, two frames of reference should be introduced first.
The inertial frame is associated with the ground, as is shown in
Figure 2, with gravity pointing in the negative z direction.3 The
vector P = [X Y Z ]T denotes the position of the centre of mass
of the vehicle. And the vectorV = [Vx Vy Vz ]T denotes the lin-
ear velocity of the vehicle. The body fixed frame is associated
with the vehicle and defined by the orientation of the quadrotor.

Here, Euler angles� = [ψ θ φ ]T are used tomodel the atti-
tude of the quadrotor. These angles are denoted by yaw angle ψ

(−π � ψ < π), pitch angle θ (−π
2 < θ < π

2 ), and roll angle
φ (−π

2 < θ < π
2 ), respectively. And the vector ω = [ p q r ]T

denotes the angular velocity, which is derivative of Euler angles
with respect to time, expressed in the body frame. The rotation
order from the inertial frame to the body frame is the yaw angle
ψ about the z, then the pitch angle θ about y, and the roll angle
φ about x. Thus, the rotation matrix is as follows4:

R =
⎡
⎣CψCθ CψSθSφ − SψCψ CψSθCφ + SφSψ
CθSψ SψSθSφ +CψCφ SψSθCφ −CψSφ
−Sθ CθSφ CφCθ

⎤
⎦
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Figure . A dynamic scheme of the quadrotor.

J denotes the inertia matrix:

J =
⎡
⎣Ix 0 0
0 Iy 0
0 0 Iz

⎤
⎦

The rigid body equations of motion are

Ṗ = V

mV̇ =
∑

Fext

�̇ = Wω

Jω̇ = −ω × (Jω) +
∑

τext

(1)

where

W =
⎡
⎣0 SφSeθ CφSeθ
0 Cφ −Sφ
1 SφTθ CφTθ

⎤
⎦

Let m denote the mass of the quadrotor, l is the character-
istic distance of the vehicle, and g is the gravity constant. u =[
u1 u2 u3 u4

]T is control input, with u1 = F1 + F2 + F3 + F4, u2 =
l(F4 − F2), u3 = l(F3 − F1), u4 = c(F1 − F2 + F3 − F4), where F1,
F2, F3, F4 are thrusts of each rotor, and c is the force-to-moment
scaling factor.

Let Fx, Fy, and Fz denote the resulting aerodynamic forces
acting on the vehicle in the direction x, y, z respectively.
Similarly, Mp, Mq and Mr denote the resulting aerodynamic
moments. �Fext and �τ ext represent, respectively, the external
forces and torques:

∑
Fext =

⎡
⎣Fx − (CψSθCφ + SφSψ)u1
Fy − (SψSθCφ −CψSφ)u1

Fz + mg −CφCθu1

⎤
⎦ ,

∑
τext =

⎡
⎣Mp + u2l
Mq + u3l
Mr + u4l

⎤
⎦

Remark 2.1: In fact, the aerodynamic forces andmoments have
not been taken into account in various kinds of literature, i.e.
Fx = Fy = Fz = Mp = Mq = Mr = 0. To be more realistic,
this paper regards those forces and moments as unknown, but
bounded disturbances, which will be analysed in Section 3.2.2.

3. Feedback linearisation
As mentioned in the introduction, the feedback linearisation is
a common method used in nonlinear system control of the fol-
lowing form:

ẋ = f (x) + g(x)u
y = h(x)

where x ∈ R
n is the state vector, y ∈ R

m is the output vector, and
u ∈ R

p is the input vector. The objective of this approach is to
design a suitable control input with u = α(x) + β(x)v that ren-
ders a linear input–output map between the new control input v
and the system output y.

The essence of the feedback linearisation is a transforma-
tion from the original nonlinear system to an equivalent linear
system by a change of variables and a proper control input. To
ensure that the transformed system is equivalent to the original
one, the transformation must be a diffeomorphism. That is, the
transformation should not only be invertible, i.e. bijective, but
both the transformation and its inverse are smooth enough so
that the differentiability in the original coordinate system can
be preserved in the new coordinate system.

3.1 Reformulation of quadrotors’ dynamics
The quadrotors’ dynamics have been given in Section 2. As we
can notice from the second equation of system (1), linear accel-
erations Ẍ , Ÿ , and Z̈ are affected only by the control input u1,
which may make this control problem unsolvable. A practical
approach is to introduce a chain of double integrators to delay
the appearance of u1 in derivatives of X, Y, and Z, which is the
so-called dynamic feedback control law, as is proved in Mistler
et al. (2001).

2856 B.-H. DU ET AL.



Introduce a chain of integrators to the dynamic system and
define a new control input ū instead of u:

u1 = ζ ; ζ̇ = η ; η̇ = ū1
u2 = ū2; u3 = ū3; u4 = ū4

The system state x = [XYZψ θ φ Vx Vy Vz ζ η p q r]T, and
the output y = [ y1 y2 y3 y4 ]T = Cx = [X Y Z ψ ]T with C =
[ I4 04×8 ]. Let ν = [ ν1 ν2 ν3 ν4 ]T be a bounded measure-
ment noise and d̄ denote a bounded aerodynamic dis-
turbance. The quadrotor dynamics can be reformulated as
follows:

ẋ = f (x) +
4∑

i=1

gi(x)ūi + d̄

y = h(x) = Cx + ν

(2)

where

f (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Vx
Vy
Vz

Sφ
Cθ
q + Cφ

Cθ
r

Cφq − Sφr
p+ qTθSφ + rCφTθ

− 1
m (CφCψSθ + SφSψ)ζ

− 1
m (CφSψSθ − SφCψ)ζ

g − 1
m (CθCφ)ζ

η

0
(Iy−Iz )

Ix
qr

(Iz−Ix )
Iy

pr
(Ix−Iy )

Iz
pq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

g1(x) = [0 0 0 0 0 0 0 0 0 0 1 0 0 0]T

g2(x) =
[
0 0 0 0 0 0 0 0 0 0 0 d

Ix
0 0

]T

g3(x) =
[
0 0 0 0 0 0 0 0 0 0 0 0 d

Iy
0
]T

g4(x) =
[
0 0 0 0 0 0 0 0 0 0 1 0 0 d

Iz

]T

d̄(t ) =
[
0 0 0 0 0 0 Fx

m
Fy
m

Fz
m 0 0 Mp

Ix
Mq

Iy
Mr
Iz

]T

3.2 Feedback linearisation-based controller
In this section, we first investigate the dynamics (2) of
quadrotors without disturbance d̄ or measurement noise ν,
and then discuss the robustness for the obtained results
when exogenous disturbance and measurement noise are
involved.

.. An ideal situation without disturbance or noise
In the disturbance- and noise-free case, the dynamic system (2)
can be simplified as follows:

ẋ = f (x) +
4∑

i=1

gi(x)ūi

y = h(x) = Cx

(3)

For the given outputs of system (3), it is easy to verify that its
relative degree5

[
r1 r2 r3 r4

]
is given by

r1 = r2 = r3 = 4 ; r4 = 2

As we can notice, the dimension of system (3) is equal to 14,
and its relative degrees satisfy

4∑
i=1

ri = n = 14

According to Isidori (1989), the above equality implies that sys-
tem (3) can be fully linearisedwithout internal dynamics (i.e. the
zero dynamics of the transformed system has zero dimension)
by using the following diffeomorphism:

z = �(x)

=
[
h1, L f h1, . . . , L3f h1, . . . , h3, L f h3, . . . , L3f h3, h4, L f h4

]T
(4)

yielding

ż = Az + B(b(z) + �(z)ū)

y = Cz
(5)

where b(z) and �(z) are determined by Lie derivative6:

�(z) =

⎡
⎢⎢⎣
Lg1L

r1−1
f h1 · · · Lg4L

r1−1
f h1

...
. . .

...
Lg1L

r4−1
f h4 · · · Lg4L

r4−1
f h4

⎤
⎥⎥⎦

|x=�−1 (z)

b(z) =

⎡
⎢⎣
Lr1f h1
...

Lr4f h4

⎤
⎥⎦

|x=�−1 (z)

(6)

and

A =

⎡
⎢⎢⎣
A1 0 0 0
0 A1 0 0
0 0 A1 0
0 0 0 A2

⎤
⎥⎥⎦ B =

⎡
⎢⎢⎣
B1
B2
B3
B4

⎤
⎥⎥⎦

C =

⎡
⎢⎢⎣
C1 0 0 0
0 C1 0 0
0 0 C1 0
0 0 0 C2

⎤
⎥⎥⎦
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with

A1 =

⎡
⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ A2 =

[
0 1
0 0

]

B1 =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎤
⎥⎥⎦ B2 =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

⎤
⎥⎥⎦

B3 =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

⎤
⎥⎥⎦ B4 =

[
0 0 0 0
0 0 0 1

]

C1 = [
1 0 0 0

]
C2 = [

1 0
]

It can be checked that the matrix �(z) defined in (6) is non-
singular everywhere7 in the zone ζ � 0, −π

2 < φ < π
2 and

−π
2 < θ < π

2 , which means that technically, there is no more
limitation for the pitch and roll angles.

The dynamic feedback approach transforms the original 12-
dimensional system (1) into a 14-dimensional system (5) by
introducing a chain of integrators. Thus, the goal is to design
a proper controller to stabilise the outputs of the system (5).

Since �(z) is non-singular, by applying the following control
law:

ū = α(z) + β(z)v (7)

where α(z) and β(z) are given by

α(z) = −�−1(z)b(z)
β(z) = �−1(z)

then system (5) can be rewritten as

ż = Az + Bv

y = Cz
(8)

for which different types of controllers can be easily designed.

.. In the presence of external disturbance and
measurement noise
This subsection analyses the disturbed dynamics of quadrotors.

By applying the same diffeomorphism (4), the system (2) can
be transformed into

ż = Az + B(b(z) + �(z)ū) + d(t )
y = Cz + ν(t )

(9)

where A, B, C, b(z), and �(z) are the same as those defined in
Subsection 3.2.1, and

d(t ) = ∂�(x)
∂x |x=�−1 (z)

d̄(t ) (10)

As d̄(t ) and �(x) is a diffeomorphism, d(t) is also bounded.
In the bounded disturbance case, the objective is to design a

proper controller such that the quadrotor can practically track
the desired trajectory, i.e. converge into an acceptable neigh-
bourhood of the desired trajectory.

In the next section, a fixed-time differentiator will be
designed for each subsystem in order to estimate z of the dis-
turbed system (9) with bounded errors and to reconstruct nec-
essary information for the controller. The efficiency of this con-
trol strategy has been proved by a simulation comparison with
the PID control strategy in the subsequent section.

4. Fixed-time differentiators with parameter tuning
algorithm
Real-time differentiation with convergence time constraints is a
widely studied approach based on weighted homogeneity and
implicit Lyapunov function, see Polyakov et al. (2015a). Due to
the adjustability of the convergence time and the insensitivity
to unknown inputs, the fixed-time differentiator is more attrac-
tive to be developed. Parameter tuning of the fixed-time differ-
entiator, however, is still the toughest problem for implementa-
tion. In the paper of Lopez-Ramirez, Polyakov, Efimov, and Per-
ruquetti (2016), an iteration algorithm with high efficiency has
been proposed to tune the gainmatrix of observation by using an
LMI optimisationmethod. In the case of the quadrotor model, a
simplified LMI-based parameter tuning algorithm can be devel-
oped for the fixed-time differentiators of each subsystem. The
predefined fixed convergence time can be quickly settled via this
algorithm.

4.1 Fixed-time differentiators
As presented in the previous section, the system has been trans-
formed into four linear subsystems of z1, z2, z3, and z4, which
correspond to the four channelsX,Y,Z, andψ respectively. Each
subsystem consists of one output signal and its derivatives. Thus,
four fixed-time differentiators should be designed separately to
observe the states of each subsystem. The fixed-time differen-
tiator design and algorithms are identical for X, Y, Z, and are
also similar for ψ , due to the similarity of these subsystems, as
in (5). So in this section, both the theoretical method and com-
putational approach are presented only for the first subsystem
of z1.

Consider the subsystem of z1 = [X Ẋ Ẍ ˙Ẍ ]T :

ż1 = A1z1 + B1(b(z) + �(z)ū) + d1(t )
y1 = C1z1 + ν1

(11)

whereA1, B1 andC1 are the first matrix blocks ofA, B,C defined
in (5), and d1(t) is the first 4 rows of d(t) defined in (10).

The observer of this subsystem is in this form:

˙̂z1 = A1ẑ1 + B1
(
b(ẑ) + �(ẑ)ū

) + G(y1 −C1ẑ1) (12)

where

G(σ ) =
(
1
2
(Dr̃(|σ |−1) + Dr̃(|σ |))L

)
σ

2858 B.-H. DU ET AL.



withL the gainmatrix to be tuned, andDr̃ the diagonal dilatation
matrix in the form (m = 4 for the subsystem (11)):

Dr̃(σ ) =

⎡
⎢⎢⎣

σ r̃1 0 . . . 0
0 σ r̃2 . . . 0

. . . . . . . . . . . .

0 0 . . . σ r̃m

⎤
⎥⎥⎦

with r̃ = [ μ

1+(m−1)μ
2μ

1+(m−1)μ . . .
mμ

1+(m−1)μ ]T .
The error equation for e1 = �(z1 − ẑ1) has the following

form:

ė1 =
(
A1 + 1

2
{Dr̃(||C1e1 + ν1||−1)

+ Dr̃(||C1e1 + ν1||)}LC̃1

)
e1 + �ξ1 (13)

where �ξ1 = B1(b(z) − b(ẑ) + (�(z) − �(ẑ))ū) + d1(t ) is
bounded. It should be noted that in the disturbance-free case
the error equation of the fixed-time differentiator (12) is a
system homogeneous in the bi-limit for �ξ 1 = 0, ν1 = 0 (see
Andrieu, Praly, & Astolfi, 2008 for more details about local
homogeneity).

Let us denote

ri = (−1)ir̃ +
[
1 + (−1)i+1μ

1 + (m − 1)μ

]
(1, . . . , 1)T

Hi = diag((ri)1, (ri)2, . . . , (ri)m)

�̄i(λ, γ ) = λ

2

{
Dr̃

(
γ i−1

λ

)
+ Dr̃

(
λ

γ i−2

)
− 2Im

}

λ > 0, γ > 0, i = 1, 2

withm= 4, r̃ = [ μ

1+3μ
2μ

1+3μ
3μ

1+3μ
4μ

1+3μ ]T , then ri andHi (i� {1, 2})
can be determined:

r1 =
(
1 + μ

1 + 3μ

) [
1 1 1 1

]T − r̃;

r2 =
(
1 − μ

1 + 3μ

) [
1 1 1 1

]T + r̃

Hi = diag(ri)

Theorem 4.1 (Lopez-Ramirez et al., 2016): Let ν1 = 0, �ξ 1 =
0 of the first subsystem in system (5) and for some μ � (0, 1), α >

0 the system of matrix inequalities

P > 0 , Zi > 0 , for i = 1, 2.[
PA1 + A1P + C̃TY +YTC̃ + α(P + PHi + HiP) P

P −Zi

]
≤ 0

(14)
[
αIk Y
YT P

]
≥ 0 (15)

PHi + HiP > 0 , P ≥ δC̃TC̃C̃TC̃ , 0 < δ < 1 (16)

�̄i(λ, γ )Zi�̄i(λ, γ ) ≤ P , ∀λ ∈ (0, δ− 1
2 ] , ∀γ ∈ (0, 1]

(17)

be feasible with P, Z1,Z2 ∈ R
n×n, Y ∈ R

n1×n, then the error
Equation (13) with L = YP−1 is globally fixed-time stable with
Tmax ≤ 21+(m−1)μ

αμ
.

This theorem ensures the stability of the observer and pro-
vides a possibility to adjust convergence time independently of
initial conditions. In particular, α is the parameter for tuning
of Tmax . To avoid some unstable behaviour of the closed-loop
system during the convergence phase some output based (e.g.
PI controller) can be utilised on the time interval [0, Tmax ]. The
proof of Theorem 4.1 is based on the weighted homogeneity and
the implicit Lyapunov function method, as in Polyakov, Efimov,
and Perruquetti (2015b).

As mentioned LMIs should be checked for all λ ∈ [0, δ− 1
2 ],

the inequality (17) is too complicated to implement in practice.
In order to simplify this inequality, a proposition is taken as:

Proposition 4.1 (Lopez-Ramirez et al., 2016): Let 0 = λ0 <

λ1 < . . . < λN1 = δ− 1
2 and 0 = γ0 < γ1 < . . . < γN2 = 1 for

some fixed δ � (0, 1). If the matrices Si, Zi, Ri, Mi, Ui ∈ R
n×n

and the number β > 0 satisfy the following LMIs,

Si > 0, Zi > 0, Ri > 0, Mi > 0, Ui > 0
SiHr̃ + Hr̃Si > 0 (18)

⎡
⎣ 2Zi − ZiHr̃ − Hr̃Zi 2Zi + ZiHr̃ − Hr̃Zi 2Zi − Hr̃Zi
2Zi − ZiHr̃ + Hr̃Zi 2Zi + ZiHr̃ + Hr̃Zi + Si 2Zi + Hr̃Zi

2Zi − ZiHr̃ 2Zi + ZiHr̃ 2Zi + Ri

⎤
⎦ ≥ 0

(19)

[
ZiHr̃ + Hr̃Zi − βZi Hr̃Zi − βZi

ZiHr̃ − βZi Mi − βZi

]
≥ 0 (20)

[
2Mi + (−1)i(Hr̃Mi + MiHr̃) 2Mi + (−1)iHr̃Mi

2Mi + (−1)iMiHr̃ Ui

]
≥ 0 (21)

�̄i(λ j, γs)Zi�̄i(λ j, γs) + (λ j − λ j−1)Ri

+ λ j − λ j−1

4
Dr̃

(
λ j

γ i−2
s

)
SiDr̃

(
λ j

γ i−2
s

)

+ γ β
s − γ

β
s−1

βγ
β
s

(�̄i(λ j, 0)Mi�̄i(λ j, 0) + (λ j − λ j−1)Ui) ≤ P

i = 1, 2, j = 1, 2, . . . ,N1, s = 1, 2, . . . ,N2 (22)

then the inequality (17) holds.

This proposition provides sufficient feasibility of the inequal-
ity (17), which allows developing an iteration parameter tuning
algorithm with fixed δ and μ. Based on the theorem and the
proposition, a simple computational algorithm to tune the gain
matrix L for a quadrotor is developed in this paper, which largely
reduces the computational complexity.

The basic idea of the algorithm is straightforward, which is
based on the smoothness of the function � with respect to λ:
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to execute the LMI optimisation with a small size of grid con-
structed over λ ∈ [0, δ− 1

2 ] and γ � (0, 1), and then to check the
obtained solution with the tightest parametricmatrix condition.
It can be mathematically proved that when μ tends to be small
enough, and α tends to be large enough, the optimisation with
the parametric conditions mentioned above is nearly feasible.

First, use a small number of λ and γ to execute the optimi-
sation with the LMI conditions (14) − (16) and (18) − (22). As
the inequality (17) is a tighter condition than the inequalities in
the Proposition 4.1, then the obtained results are required to be
examined by the inequality (17) with a more compact grid of λ
and γ . If the inequality (17) is satisfied, then the obtainedmatrix
L is applicable for the fixed-time differentiators. If not, it is nec-
essary to re-execute the first step with a larger size grid of λ and
γ . By means of this algorithm, the computation complexity can
be largely reduced. And the desired convergence time can also
be clearly settled by adjusting the two parameters α and μ.

Algorithm 1 Parameter tuning algorithm for fixed-time differ-
entiators
Require: α, μ
Ensure: the optimal gain matrix L

function DifferentiatorParameter(α, μ)
N ← 10
whileCond ! = right do

L ← LMIoptimisation(N, α, μ)
M ← 10 · N
Cond ← LMIcheck(M, α, μ)
N ← N + 10

end while
return L

end function

function LMIoptimisation(N, α, μ)
L ← LMIs ((14), (15), (16), (18), (19), (20), (21), (22))
return L

end function

function LMIcheck(M, α, μ)
Cond ← LMIs ((17))
returnCond

end function

As the fixed-time differentiator designs for X, Y, and Z are
identical, the gain matrix L is also the same for these three sub-
systems. In terms of theψ estimation, another two-dimensional
gain matrix should be computed with the same algorithm.

Corollary 4.1 (Lopez-Ramirez, Polyakov, Efimov, & Perru-
quetti, 2018): Let conditions of Theorem 4.1 hold, but ν1 � 0 and
�ξ 1 � 0. Then, the observer error dynamics (13) is input-to-state
stable with respect to �ξ 1 and ν1.

For more details about input-to-state stability , readers can
refer to Sontag andWang (1996). Robustness analysis of homo-
geneous (in the bi-limit) systems is presented in Andrieu et al.
(2008). In our case, it implies that ‖z(t ) − ẑ(t )‖ ≤ γ (c) for t �
Tmax , where c � max {‖ν‖, ‖�ξ‖} and γ : [0, +�) → [0, +�)

is a continuous strictly monotone function such that γ (0) = 0,
γ (s) > 0 if s > 0.

4.2 State reconstruction
Fixed-time differentiators presented above work as an observer
for the output signal

[
X Y Z ψ

]
and its derivatives. However,

the observed values do not involve all variables of the original
system. In order to obtain the full state information, the missed
variables θ , φ, p, q, and r should be reconstructed from observed
values and nonlinear dynamic system (2). So, θ̂ and φ̂ can be
deduced as follows:

φ̂ = arcsin(
−m(

¨̂XSψ − ¨̂YCψ)

ζ
)

θ̂ = 1
Cφ̂

arcsin(
−m(

¨̂XCψ + ¨̂YSψ)

ζ
)

From the third equation of system (1), we know that the vari-
ables

[
p̂ q̂ r̂

]
can be determined from angular velocity via the

transformationmatrixW. Therefore, ˙̂
φ and ˙̂

θ should be deduced
first.

˙̂
θ = − 1

Cθ̂Cφ̂2ζ
{ṁ ¨̂X (Sφ̂Sθ̂Sψ +CψCφ̂)

+ m̈ ˙̂Y (Cφ̂Sψ − Sφ̂CψSθ̂ ) + ˙̂
ψζCφ̂Sφ̂Cθ̂2 − ζSθ̂}

˙̂
φ = 1

ζCφ̂
{−ṁ ¨̂XSψ + ṁ ¨̂YCψ + ψζCφ̂Sθ̂ + ζSφ̂}

Then, the variables
[
p̂ q̂ r̂

]
can be calculated by the following

formula:

⎡
⎣ p̂
q̂
r̂

⎤
⎦ =

⎡
⎢⎣
1 T θ̂Sφ̂ T θ̂Cφ̂

0 Cφ̂ −Sφ̂
0 Sφ̂Seθ̂ Cφ̂Seθ̂

⎤
⎥⎦

−1
⎡
⎢⎢⎣

˙̂
φ
˙̂
θ
˙̂

ψ

⎤
⎥⎥⎦

By means of the state reconstruction step, the full system
states have been obtained based on the values estimated by the
fixed-timedifferentiators. All necessary information acquired by
the feedback linearisation-based controller is available for the
whole closed loop.

4.3 Outer-loop design
As we have mentioned previously, an outer-loop strategy can be
applied to the linear control system after the input–output feed-
back linearisation.

Different types of control laws can be used for the outer loop
of the system, whether linear or nonlinear controllers, such as
the polynomial controller, fixed-time controller, etc.

Following the formula (7), let us define the control u as

u = α(ẑ) + β(ẑ)v

2860 B.-H. DU ET AL.



Figure . Observer–controller closed-loop system.

with

v1 = X (4)
d − K4̇ë11 − K3ë11 − K2ė11 − K1e11

v2 = Y (4)
d − K4̇ë12 − K3ë12 − K2ė12 − K1e12

v3 = Z(4)
d − K4̇ë13 − K3ë13 − K2ė13 − K1e13

v4 = ψ̈d − K6ė2 − K5e2

where Xd, Yd, Zd, and ψd represent the desired reference sig-
nals, e11 = X̂ − Xd , e12 = Ŷ −Yd , e13 = Ẑ − Zd , e2 = ψ̂ − ψd
are the error signals, and Ki with i � [1, 6] are the coefficients
to be chosen to assign suitable eigenvalues. If ẑ = z then the
closed-loop system has form (8). This means that the equation
describing evolution of the tracking error is linear and glob-
ally asymptotically stable. Consequently, it is input-to-state sta-
ble with respect to additive bounded perturbations, due to state
estimation error ‖z − ẑ‖ ≤ γ (c) and the unknown exogenous
disturbance d̄ 	= 0. Therefore, the practical stability of the error
equation can be proved in the case of noised measurement and
exogenous disturbances. The detailed qualitative analysis of the
tracking error goes out of the scope of this paper and considered
as an important problem for future research.

The whole observer–estimator–controller closed-loop sys-
tem is presented in Figure 3. By introducing a chain of dou-
ble integrators, the feedback linearisation approach transforms
the dynamic system into four linear and controllable subsystems
which correspond to the four output signals X, Y, Z, andψ . The
original nonlinear system is transformed into a set of indepen-
dent channels. A fixed-time differentiator has been designed for
each channel to observe and to estimate the output signals and
its derivatives. Based on the values estimated by the fixed-time
differentiators, the full state information required by the con-
troller can be then deduced mathematically. Finally, a linear or
a nonlinear control law can be implemented to the outer loop
to render the system closed. The application of the fixed-time
differentiator allows to realise the separation principle in non-
linear system. Since it converges within a fixed time Tmax, the
whole system state is known for t � Tmax. Therefore, the con-
troller using the full state estimation of the system can be effec-
tively applied for t � Tmax.

5. Simulation study
In this section, some simulations have been conducted to illus-
trate the theoretically established model. Parameters of the

quadrotor model used here are:

m = 2 kg d = 0.1 m g = 9.81m/s2

Ix = Iy = Iz = 1.2416 N · m/rad/s2

In order to verify the effectiveness of the fixed-time differ-
entiators in the following study, the same trajectory has been
imposed for X, Y, Z, and ψ for all simulations, which is a con-
tinuous trajectory from 0 to 1 in 30 s.

5.1 Control strategy comparison
Before further presenting the whole observer–estimator–
controller model, a simple comparison between the feedback
linearisation-based control strategy and the PID control strategy
has been given.

The state vector is defined as x =
[p q rφ θ ψ Vx Vy Vz XYZ]T. The PID control approach is
applicable on a linear zone where the angles φ and θ are small
enough (<20°). In this linear zone, the rotation matrix R, the
matrixW, as well as the quadrotor dynamic functions (1) can be
simplified. Thus, a linearised dynamic system has been obtained
as follows:

⎡
⎣ẋ1
ẋ2
ẋ3

⎤
⎦ = J−1(τ −

⎡
⎣ 0 −x3 x2

x3 0 −x1
−x2 x1 0

⎤
⎦ J

⎡
⎣x1
x2
x3

⎤
⎦)

⎡
⎣ẋ4
ẋ5
ẋ6

⎤
⎦ =

⎡
⎣1 T (x5)S(x4) T (x5)C(x4)
0 C(x4) −S(x4)
0 S(x4)/C(x5) C(x4)/C(x5)

⎤
⎦

⎡
⎣x1
x2
x3

⎤
⎦

⎡
⎣ẋ7
ẋ8
ẋ9

⎤
⎦ =

⎡
⎣0
0
g

⎤
⎦ − f

m

⎡
⎣C(x6)S(x5)C(x4) + S(x4)S(x6)
S(x6)S(x5)C(x4) −C(x6)S(x4)

C(x4)C(x5)

⎤
⎦

⎡
⎣ẋ10
ẋ11
ẋ12

⎤
⎦ =

⎡
⎣x7
x8
x9

⎤
⎦

Ahierarchical PID control approach,mentioned in the intro-
duction, has been applied into this linearised system. Two PD
controllers have been used in the position controller to obtain Ẍ
and Ÿ , which further determine the desired angles φd and θd in
the attitude planner. A PD controller has been used in the alti-
tude controller for the channel of Z. Based on the angle errors
�φ, �θ and �ψ , another PID controller has been used in the
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Figure . Control strategies’ comparison.

attitude controller to guarantee an exponential stability and to
give the final commands to the dynamical system.

Simulation results of the PID control strategy and the feed-
back linearisation control strategy have been given in Figure 4.
It can be noticed that the feedback linearisation controller used
for the trajectory tracking problemconverges faster than the PID
controller. Andmore importantly, the trajectory ismore smooth
which will be more compatible with the fixed-time differentia-
tors.

5.2 Simulation study for the wholemodel
Simulation studies have been conducted in this part to illustrate
the performance of the whole observer–estimator–controller
model.

Computational process has been presented in detail in
the first part without considering the robustness of the
differentiator. And simulation results with measurement noises
and exogenous disturbance have also been presented to prove

the performance of such a kind of design for quadrotor trajec-
tory tracking problem.

.. Disturbance- and noise-free case
The gain matrix L of the fixed-time differentiator is tuned first
by setting μ = 0.02. According to the theorem, the maximum
convergence time Tmax can be predefined by choosing a suitable
convergence rate α. By setting α = 40, we can guarantee that the
observer is stable within Tmax = 2.65s.

As differentiator designs are exactly the same for the estima-
tion of X, Y, and Z, the compensation effect of initial differen-
tiation errors can be proved by setting different initial values
for these states. Figure 5 depicts estimation errors of the fixed-
time differentiators with respect to various initial differentiation
errors (zoomed in 5 s). Initial differentiation errors of X and Y
have been settled to 1m, while initial differentiation error of Z
has been settled to 0m, and that ofψ have been settled to 0.1 rad.
It can be noticed that it is not necessary to give the differen-
tiator the same initial values with the system initial conditions,
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Figure . Estimation errors with respect to various initial differentiation errors.

Figure . Output signals of the closed loop.
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Figure . Pitch and roll angles.

because the fixed-time differentiator can provide a global sta-
bility independent of the initial conditions. And the system will
stabilise after the predefined fixed convergence time Tmax. Fur-
thermore, thanks to the LMI-based parameter tuning algorithm,
we can easily obtain suitable parameters for differentiators and
the convergence time Tmax is also explicitly determined by the

two parameters μ and α, which largely reduces the complexity
of the simulation.

The effectiveness of the observer–estimator–controller
model is illustrated by the output signals X, Y, Z, and ψ , as is
shown in Figure 6. The dotted line is the predefined reference,
while the full line represents the result of the closed loop.

Figure . Errors with measurement noise.
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Figure . Simulation results of the channel Xwith measurement noise.

Figure . Simulation results of the channel Ywith measurement noise.
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Figure . Simulation results of the channel Zwith measurement noise.

Different initial values have been assigned to different control
channels in order to illustrate the performance of the proposed
method. It can be concluded that the proposed observer–
estimator–controller scheme has satisfying efficiency in terms

of accuracy and convergence speed with respect to different ini-
tial conditions. However, it appears that the fixed-time observer
is highly sensitive to the sampling time and value assignment of
μ and α. The delicateness should be taken into account.

Figure . Simulation results of the channelψ with measurement noise.
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Figure . Simulation results in the presence of an impulsive perturbation.

Moreover, the attitude of the quadrotor has also been exam-
ined. As it has been mentioned in the Introduction, the feed-
back linearisation is a linearisationmethod from a global input–
output point of view. Thus, the classical limitations of small
angles for pitch and roll angles have been removed. It is not
necessary to bound the pitch and roll angles in a small inter-
val. The pitch and roll angles should always stay in the zone of
−π

2 < φ < π
2 and −π

2 < θ < π
2 , which have been validated by

the simulation result shown in Figure 7.

.. Withmeasurement noise and external disturbance
Considering input signals of the differentiator with random
measurement noise of small amplitude (0.001), the simulation
results in the condition that initial observation errors equal zero
are given in Figure 8-12.

Then considering that an impulsive exogenous perturbation
occurs to the system, which can bemodelled as a short time con-
stant perturbation with a very high amplitude. Figure 13 shows
the simulation results in this condition.

In conclusion, the scheme proposed previously, a fixed-time
differentiator running in parallel with a feedback linearisation-
based controller, allows the quadrotor to track a given trajec-
tory. The fixed-time differentiator design guarantees a reliable
estimation of the outputs’ derivatives within a predefined con-
vergence time with respect to different initial differentiation
errors. Moreover, the LMI optimisation-based parameter tun-
ing algorithm provides the possibility to tune the settling time
in an explicit form and reduces the computational complexity

to obtain the parameters of the differentiator. The robustness of
the fixed-time differentiator has been proved in the condition
of measurement noise and an impulsive perturbation. The effi-
ciency of the presented method has been illustrated through the
simulation results.

6. Conclusion
This paper proposes an observer–estimator–controller scheme
for trajectory tracking control of the quadrotor: a fixed-time
differentiator running in parallel with a dynamic feedback
linearisation-based controller, where the gain matrix of the dif-
ferentiator is tuned systematically by anLMIoptimisation-based
algorithm.

The feedback linearisation controller efficiently overcomes
the nonlinearity and the decoupling problem of quadrotor
dynamics, and compensates the limitations of small angles for
the attitude of the quadrotor. The fixed-time differentiatorworks
as an observer and an estimator in the closed-loop system,which
provides exact estimated values regarding the requirement of
full state information and the successive derivatives of the out-
puts. The LMI optimisation-based parameter tuning algorithm
provides a more accessible and practical approach to settle the
convergence time explicitly and to obtain the gainmatrix, largely
reducing the computational complexity. As the convergence
time is bounded by a fixed value independent of initial dif-
ferentiation errors, the application of fixed-time differentiation
and stabilisation methods to quadrotors allows improving the
delay problem and compensate the initial differentiation errors.
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Simulation results demonstrate the high performance of the pro-
posed design for the quadrotor in autonomous flight. It can be
observed that the stabilisation of the whole system is bounded
in a satisfying settling time with respect to different initial con-
ditions. The robustness of the differentiator has been proved in
the case of noise effects and impulsive disturbances. Moreover,
the efficiency of the parameter tuning algorithm has also been
proved.

For future studies, a qualitative analysis of tracking errors in
the presence of additive bounded perturbations may be con-
ducted. Also, a nonlinear controller, such as a fixed-time con-
troller, is expected to replace the linear polynomial controller
used in this paper.
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Notes
1. A system is called finite-time stablemeans that the system reaches in the

steady state and remains there in a finite time T(x0). The settling time
T(x0) is a finite value variant with initial conditions.

2. A system is called fixed-time stable means that the system reaches in the
steady state and remains there in a fixed time T. The settling time T is a
uniform value for a set of admissible initial states within the attraction
domain.

3. In this paper, x, y, z in lower-case letters denote the three directions
associated with the earth coordinate system.

4. In this paper, S, C, T, and Se denote respectively sin, cos, tan, and sec.
5. The relative degree of a system is the number of times of differentiations

of the output y before the control input u appears explicitly. This is a
notion that derives from Lie derivative.

6. By definition, L f h(x) = ∑n
i=1

∂h
∂xi

fi(x); Lkf h(x) = L f (Lk−1
f h(x)).

7. The non-singularity of �(x) has been proved in the paper of Mistler
et al. (2001), we use directly the conclusion here.
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