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This paper presents an additive-state-decomposition-based attitude tracking control method for a class 
of bank-to-turn aerial vehicles subject to unknown disturbances and nonlinear coupling. This method 
‘additively’ decomposes the original tracking problem into two more tractable problems, namely a 
tracking problem for a deterministic nonlinear ‘primary’ system, and a disturbance rejection problem 
for a linear time-invariant ‘secondary’ system. Based on the decomposition, a backstepping controller 
is designed for the primary system to track the reference attitude signal, and a proportional-integral 
controller is applied to the secondary system to compensate for the disturbances. Finally, the two 
designed controllers are combined to achieve the original control objective. By using additive state 
decomposition, the proposed control method with two degrees of freedom can consider tracking task 
and disturbance rejection task respectively. Simulation results illustrate that the proposed controller 
can track the reference attitude signal and compensate for disturbances meanwhile. Additionally, the 
ASD-based controller outperforms the traditional backstepping controller in the presence of unknown 
disturbances and input delay, and the robustness of the full system can be improved by adjusting the 
controller parameters of the secondary system.

© 2018 Elsevier Masson SAS. All rights reserved.
1. Introduction

It is well-known that the bank-to-turn (BTT) control provides 
potential performance improvement for aerial vehicles including 
missiles [1] and unmanned aerial vehicles (UAVs) [2]. Compared 
with the skid-to-turn (STT) control mode, the BTT control mode 
provides higher maneuverability, larger acceleration, and faster re-
sponse. Hence, the autopilot design of BTT aerial vehicles (BTT 
aerial vehicles denote the aerial vehicles adopting the BTT control 
mode) has received widespread attention. To perform the control 
strategies of BTT autopilots, aerial vehicles must have the capabil-
ity of changing the orientation of acceleration rapidly via a con-
siderably large roll rate. However, such a large roll rate further 
induces unignorable cross-coupling, which results in undesirable 
pitch and yaw motions. Furthermore, the imprecise knowledge of 
aerodynamic parameters, highly nonlinear dynamics, and unknown 
disturbances make the autopilot design of BTT aerial vehicles more 
challenging [3,4]. Thus, the autopilot design of BTT aerial vehicles 
is meaningful.
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Various control methods have been applied to the autopilot de-
sign of BTT aerial vehicles. The most frequently-used methods can 
be divided into five categories.

(i) The gain-scheduling control method is adopted by [5–7]. 
It is a linear control method, which is based on some classical 
linear control methods, such as linear quadratic regulator, H∞ , 
μ-synthesis. Two significant limitations of gain-scheduling are that 
a linearization assumption is needed and parameter variations may 
be too fast. In order to solve the first limitation, a linear param-
eter varying (LPV) model is adopted by [7]. However, the con-
trol design is separated onto decoupled channels to facilitate the 
transformation into an LPV form. Since BTT aerial vehicles have 
high coupling characteristic, the methods aiming at linear inde-
pendent channel design cannot respond very well due to a large 
roll rate.

(ii) The input/output feedback linearization control method is 
one of common nonlinear methods [8,9], which is proposed for 
multiple-input–multiple-output systems directly. A kind of feed-
back linearization technique along with a singular perturbation-
like technique is adopted by [9], and excellent set-point tracking 
performance is obtained. The drawbacks of feedback linearization 
are that an accurate model is often required and the intrinsic sin-
gularity problem may occur.
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(iii) The backstepping control method [2,10] is another choice, 
which is a systematic approach guaranteeing stability based on 
Lyapunov functions. However, system performance may deterio-
rate when model uncertainty is large. In order to solve the prob-
lem, robust sigmoid-like control functions are used to confine the 
uncertain terms [10]. However, in practice, uncertain terms are 
mostly related to aerodynamic coefficients and dynamic pressure. 
Therefore, the corresponding bounding functions, which are often 
constructed using experience or based on a priori knowledge on 
system behaviors, are difficult to obtain.

(iv) In order to cope with various disturbances, the robust con-
trol method including H∞ [11], μ-synthesis [5], and sliding mode 
control [12,13] attract researchers’ attention. Robust control allows 
the formulation of the robustness and performance requirements 
with respect to plant uncertainty or disturbances. The resulting 
controllers can cover a wider flight envelope and offer a system-
atic treatment of coupled system dynamics. Nevertheless, robust 
control is less intuitive than classical control techniques. In addi-
tion, a disturbance observer is another choice to improve system 
robustness [14].

(v) The intelligent control method is also popular, such as fuzzy 
logic [4,15] or neural networks [3,16] based control methods. In-
telligent control can tackle unknown nonlinearities, but the corre-
sponding design is somewhat complicated. The number of fuzzy 
rules may become prohibitively large and sparse, and neural net-
works may cost a long time to learn for complex high-dimensional 
systems.

It is well-known that there is an intrinsic conflict between per-
formance (trajectory tracking) and robustness (disturbance rejec-
tion) in the standard feedback framework [17]. This conflict in-
spires an idea that it would be better to tackle the two control 
objectives separately. In order to exploit this idea, an additive-
state-decomposition-based (ASD-based) [18] attitude tracking con-
trol method is proposed for the extended medium range air-to-air 
technology (EMRAAT) BTT missile, a typical representative of BTT 
aerial vehicles. The basic idea of the control design is to additively 
decompose the original tracking problem into two more tractable 
problems, namely a tracking problem for a deterministic nonlinear 
primary system and a disturbance rejection problem for a linear 
time-invariant (LTI) secondary system. Based on the decomposi-
tion, a backstepping controller is designed for the tracking prob-
lem, and a classical proportional-integral (PI) controller is adopted 
to solve the disturbance rejection problem for the secondary sys-
tem. The advantage of the ASD-based control method lies in the 
decomposition of the original problem into two well-solved control 
problems. Unlike the aforementioned control methods, the pro-
posed control method avoids model linearization and neglect of 
nonlinear dynamics as much as possible.

The main contributions of this paper are summarized as below.
(i) An ASD-based control method is proposed to solve the atti-

tude tracking problem for BTT aerial vehicles. Introducing additive 
state decomposition simplifies the design and also increases the 
flexibility of controller design.

(ii) The proposed control method is a type of two-degree-of-
freedom control method, which separates a disturbance rejection 
task from a tracking task. Thus, it becomes convenient to consider 
tracking performance and robustness, respectively, and it is easier 
to obtain a better comprehensive performance.

(iii) A major difference of this control method from the pre-
vious ASD-based control method [18,19] is the tracking task is 
allocated to a nonlinear system, rather than an LTI system. On 
the other hand, allocating disturbances to an LTI system makes 
disturbance rejection more achievable. Moreover, only state feed-
back controllers are designed for nonlinear subsystems in [18,19], 
whereas a backstepping controller is adopted for the nonlinear 
subsystem in this paper.
Fig. 1. Schematic diagram of the BTT missile system.

Fig. 2. BTT missile diagram.

The remainder of this paper is organized as follows. In Sec-
tion 2, an EMRAAT BTT missile model is given. Section 3 presents 
the ASD-based tracking controller design for the BTT missile. In 
Section 4, simulations are carried out to demonstrate the effec-
tiveness and robustness of the proposed control method. Section 5
concludes this paper and gives future work.

2. EMRAAT BTT missile model

A schematic diagram of the complete BTT missile system is 
shown in Fig. 1, where dm is the disturbance acting on the BTT 
missile. The BTT missile model will be described in this section, 
and the BTT autopilot including the state feedback controller and 
the ASD-based controller will be designed in the subsequent sec-
tion.

The studied BTT aerial vehicle is an EMRAAT BTT missile, a typ-
ical benchmark. When establishing the BTT missile model, three 
commonly used coordinate frames are the missile-body frame 
(obxb ybzb), the wind frame (owxw ywzw), and the stability frame 
(osxs yszs), which are shown in Fig. 2. Several variables necessary 
for the later model representation are also displayed in Fig. 2, 
where α is the angle of attack, β is the sideslip angle, φ is the 
roll angle, p is the roll rate, q is the pitch rate, and r is the yaw 
rate. The concrete definitions of the mentioned coordinate frames 
and variables can be found in [20].

The dynamic equations of the EMRAAT BTT missile in a flight 
condition of Mach 2 and 30,000 ft are given as below

α̇ = q − tan (β) [p cos (α) + r sin (α)] + 0.0166

cos (β)
cos (α) cos (φ)

− cos (α)

cos (β)

(
0.092α + 3.654 × 10−5q + 0.01516δq

)
β̇ = p sin (α) + (−0.0375β − 1.8396 × 10−6 p

+ 0.000504δp − 0.00882δr) cos (β) − r cos (α)

+ 0.0166 sin (φ) cos (β)

φ̇ = p

ṗ = 1.7919 × 10−5 p2 + 0.0184q2 − 0.0184r2

− 0.0151pq − 0.0023pr
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− 0.5qr − 0.2223p − 0.0159q + 0.0823r − 6.4354α (1)

+ 102.2269β − 126.9688δp − 3.1941δq + 97.9748δr

q̇ = 0.01p2 + 7.0814 × 10−5q2 − 0.01r2

− 5.3719 × 10−4 pq + 0.9922pr

+ 0.002qr − 8.686 × 10−4 p − 0.0621q

+ 3.0643 × 10−4r − 25.2112α

+ 0.4018β − 0.4956δp − 12.5134δq + 0.3847δr

ṙ = 0.0039p2 − 0.00406q2 + 1.81 × 10−4r2

− 0.9771pq + 5.0136 × 10−4 pr

+ 0.0149qr + 0.00404p + 1.4304 × 10−4q

− 0.0618r − 0.05806α

+ 9.8096β + 1.7892δp + 0.02882δq+7.7577δr

where δp , δq and δr denote the three virtual control surface deflec-
tions that influence the roll, pitch and yaw moments, respectively. 
Readers can refer to [21] for more details about the BTT missile 
model. Additionally, each input is effected by an actuator modeled 
as⎡
⎣ δp

δq

δr

⎤
⎦

︸ ︷︷ ︸
δ

= e−τ2s

τ1s + 1

⎡
⎣ δpc

δqc

δrc

⎤
⎦

︸ ︷︷ ︸
δc

(2)

where τ1 = 0.0064 and τ2 > 0 will be specified in the simulation.
System (1) exhibits strong coupling and nonlinearity. In order to 

simplify the design process, some assumptions are made as follows 
so that a simplified model (3) can be obtained to perform the con-
troller design. However, in the simulation, the dynamic equations 
in (1) will be used.

Assumption 1. δ ≈ δc .

Assumption 2. sinα ≈ α, sin β ≈ tan β ≈ β , cosα ≈ cosβ ≈ 1, α2
≈

0, β2
≈ 0, αβ ≈ 0.

Remark 1. Assumption 1 implies that the actuator dynamics are 
sufficiently fast compared with that of the BTT missile. Since the 
angle of attack and sideslip angle of the BTT missile are small, 
Assumption 2 is also reasonable.

By the assumptions above, the EMRAAT BTT missile model is 
simplified as

ẋ = A0x + Bδ + ψ (x) + d

y = Cx, x (0) = x0
(3)

where the state vector x = [α β φ p q r]T, the output vector 
y = [α β φ]T, the input vector δ = [

δp δq δr
]T

, and x0 is the 
initial state. All the simplified and ignored quantities from the 
full system (1) to the simplified system (3) based on Assump-
tions 1–2 are lumped into the unknown disturbance vector d =
[d1 d2 0 d3 d4 d5]T, whose true value is small. The matrices A0, B
and C are constant, and ψ (x) is a known nonlinear term with re-
spect to the state x. For more information about this model, please 
refer to Appendix A.

The control objective is to design a tracking controller δ based 
on the simplified missile model (3), and then apply the designed 
controller to the full missile model (1) such that y − yr → 0 as 
t → ∞ when there exist disturbances, where yr is the reference 
attitude signal.
Remark 2. The formulated control problem is applicable to the at-
titude tracking control for not only BTT missiles but also BTT UAVs 
[2] whose dynamic models are in the form of (3).

3. ASD-based tracking controller design

This section presents the BTT autopilot design. First, based on 
additive state decomposition, the considered system (5) is de-
composed into two subsystems: a deterministic nonlinear primary 
system (9) and an LTI secondary system (10) including all distur-
bances. Correspondingly, the original tracking task for system (5)
is decomposed into two subtasks: a tracking subtask for (9) and a 
disturbance rejection subtask for (10).

3.1. Additive state decomposition

Additive state decomposition (ASD) [18] is a decomposition 
method for nonlinear systems just like superposition principle for 
linear systems. ASD was first proposed in [22], and the latest re-
search can be found in [19]. In the following, ASD is introduced to 
decompose the aforementioned BTT missile model into two sub-
systems to make the following controller design more flexible and 
easier.

In order to obtain a stable system matrix, a simple state feed-
back controller is designed as

δ = u + K x (4)

where K ∈ R
3×6. Since the pair (A0, B) is controllable, there al-

ways exists a matrix K such that A0 + B K is stable, and the 
eigenvalues can be assigned freely. After state feedback (4), the 
simplified BTT model (3) is rewritten as

ẋ = (A0 + B K )︸ ︷︷ ︸
A

x + Bu + ψ (x) + d

y = Cx, x (0) = x0.

(5)

Consider system (5) as the original system. By applying ASD, 
the primary system is chosen as

ẋp = Axp + Bup + ψ (x)
yp = Cxp, xp (0) = x0

(6)

where xp = [
αp βp φp pp qp rp

]T
and yp = [

αp βp φp
]T

. Then, 
subtracting the primary system (6) from the original system (5)
gives

ẋ − ẋp = A
(
x − xp

) + B
(
u − up

) + d
y − yp = C

(
x − xp

)
, x (0) − xp (0) = 0.

(7)

Next, by defining

xs = x − xp, ys = y − yp, us = u − up (8)

system (6) and system (7) become

Primary system:

{
ẋp = Axp + Bup + ψ

(
xp + xs

)
yp = Cxp, xp (0) = x0

(9)

Secondary system:

{
ẋs = Axs + Bus + d
ys = Cxs, xs (0) = 0

. (10)

The two decomposed systems have the same dimensions with the 
original system (5). Conversely, the original system (5) can be re-
placed by putting the primary system (9) and the secondary sys-
tem (10) together, which means the state and the output satisfy

x = xp + xs, y = yp + ys, u = up + us. (11)
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Fig. 3. Additive state decomposition of system (5).

It is clear from equations (9)–(11) that if the controller up

drives yp − yr → 0 as t → ∞ and the controller us drives ys → 0
as t → ∞, then y − yr → 0 as t → ∞. The strategy here is to assign 
the tracking subtask to the primary system (9) and the disturbance 
rejection subtask to the secondary system (10), which is shown in 
Fig. 3. Since system (9) is a deterministic nonlinear system, many 
nonlinear tracking control methods, such as the backstepping con-
trol method, can be applied to solve the tracking problem. On the 
other hand, system (10) is a classical LTI system, standard design 
methods in either frequency domain or time domain, such as the 
proportional-integral control method, can be used to handle the 
disturbance rejection problem. It should be noticed that the ASD 
offers a two-degree-of-freedom way to tackle a tracking task and a 
disturbance rejection task respectively.

Remark 3. The considered system and the concrete decomposition 
distinguish from those in [18]. First, the nonlinear function vec-
tor ψ (·) in [18] is with respect to the output, whereas ψ (·) is a 
nonlinear function vector with respect to the state here. Further-
more, the original tracking problem in [18] is decomposed into an 
output feedback tracking problem for an LTI primary system and a 
state feedback stabilization problem for a nonlinear secondary sys-
tem. By contrast, in this study, the considered tracking problem for 
system (5) is decomposed into a tracking problem for the deter-
ministic nonlinear primary system (9) and a disturbance rejection 
problem for the LTI secondary system (10).

Remark 4. It can be seen that the disturbances are allocated to 
the LTI system (10), to which classical robust control methods are 
applicable. For an LTI system, the development of robust control is 
rather mature, so the disturbance rejection problem of system (10)
is easier than that of the nonlinear system (5).

3.2. Controller design for the primary and secondary systems

So far, the considered system has been decomposed into two 
subsystems in charge of corresponding subtasks. In this section, 
controller design is investigated in the form of two problems with 
respect to the two subtasks, respectively.

3.2.1. Problem 1: tracking problem
For (9), design a controller

up = up
(
xp, yr

)
(12)

such that ep = yp − yr → 0 as t → ∞, meanwhile keeping xp

bounded.
It is shown from equations (9) and (10) that the secondary sys-
tem is an independent system which has no relationship with the 
primary system, whereas the primary system is affected by the 
secondary system via the term ψ

(
xp + xs

)
. In order to make the 

controller design easier, the primary system (9) is further rewrit-
ten as

ẋp = Axp + Bup + ψ
(
xp

) + [
ψ

(
xp + xs

) − ψ
(
xp

)]
. (13)

From Appendix A, it can be known that

ψ(x)= [−pβ pα 0 0 0.01p2 + 0.9922pr 0.0039p2 − 0.9771pq
]T

.

Since controller design for the secondary system aims to drive 
ys → 0 as t → ∞, namely αs , βs and φs approach to zero. Fur-
ther, due to the relationship between angles and angular rates, 
the states ps , qs and rs will tend to small quantities. According 
to these, ψ

(
xp + xs

) − ψ
(
xp

)
≈ 0 in (13) can be considered dur-

ing the controller design, because each element in ψ (x) is coupled 
with attitude angular rates. Thus, Problem 1 can be solved based on

ẋp = Axp + Bup + ψ
(
xp

)
. (14)

Then, it can be found that equation (14) can be rewritten in a 
“strict-feedback” form as

ẋ1,p = ϕ1
(
x1,p

) + f1
(
x1,p

)
x2,p (15)

ẋ2,p = ϕ2
(
x1,p, x2,p

) + f2up (16)

yp = x1,p (17)

where x1,p = [
αp βp φp

]T
, x2,p = [

pp qp rp
]T

, ϕ1
(
x1,p

) ∈ R
3 and 

f1
(
x1,p

) ∈ R
3×3 are nonlinear function matrices about state x1,p , 

ϕ2
(
x1,p, x2,p

) ∈ R
3 is a nonlinear function matrix about states 

x1,p and x2,p , f2 ∈ R
3×3 is a constant matrix, and x2,p is treated 

as a virtual control input to (15). A well-known control method 
applicable to “strict-feedback” systems is the backstepping con-
trol method, which is a systematic approach guaranteeing stability 
based on Lyapunov functions. The backstepping control method 
can achieve good tracking performance with short settling time for 
nonlinear systems. Moreover, the primary system (9) is a pure sys-
tem without uncertainties, so the poor robustness problem men-
tioned in Section 2 will not occur. Thus, the backstepping control 
method is a good choice to design a controller for (14). It should 
be noticed that system (14) is just a control-oriented model, and 
the feedback signals for the backstepping controller still come from 
system (9) (see Theorem 3 in the following).

Theorem 1. For system (9), if the backstepping controller is designed as

up
(
xp, yr

) = − f −1
2

(
k2e2 + ϕ2

(
x1,p, x2,p

)

− ∂x2,p,r

∂xT
1,p

(
ϕ1

(
x1,p

) + f1
(
x1,p

)
x2,p

) + f T
1 e1

)
(18)

then yp − yr → 0 as t → ∞, and xp is bounded.

Proof.
The basic idea of the proof follows [23], and the concrete proof 

can be found in Appendix B. The backstepping controller design 
process is also provided. �
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3.2.2. Problem 2: disturbance rejection problem
For (10), design a disturbance rejection controller

us = us

⎛
⎝xs,

t∫
0

ys (s)ds

⎞
⎠ (19)

such that ys → 0 as t → ∞, meanwhile keeping xs bounded.
In the following, a proportional-integral controller will be de-

signed. Define a new variable z (t) = ∫ t
0 ys (s)ds. Then

ż = Cxs. (20)

By using (20), system (10) can be augmented as[
ż
ẋs

]
=

[
0 C
0 A

][
z
xs

]
+

[
0
B

]
us +

[
0
d

]
(21)

ys = [
0 C

][
z
xs

]
. (22)

Theorem 2. For the augmented system (21), if i) d is a constant vector, 
ii) there exists a control input

us = K̄1z + K̄2xs (23)

where K̄1 ∈R
3×3 and K̄2 ∈R

3×6 , such that

Aa =
[

0 C
0 A

]
+

[
0
B

][
K̄1 K̄2

]
(24)

is stable, then ys (t) → 0 as t → ∞, and xs is bounded.

Proof. The basic idea of the proof follows [24], and the concrete 
proof can be found in Appendix C. �

In this paper, the disturbance vector d in (10) is considered as a 
slow time-varying signal. Therefore, the disturbance rejection con-
troller for the secondary system (10) is designed as

us

⎛
⎝xs,

t∫
0

ys (s)ds

⎞
⎠ = K̄1

t∫
0

ys (s)ds + K̄2xs. (25)

3.3. Controller integration

Controller design for the decomposed systems (9) and (10) re-
quires their states and outputs as feedback variables. However, 
they are virtual and unknown. For such a purpose, an observer 
is designed in Theorem 3 to estimate xp , xs and ys .

Theorem 3. Suppose that an observer is designed to estimate xp, xs and 
ys in (9) and (10) as

˙̂xp = Ax̂p + Bup + ψ (x) , x̂p (0) = x0. (26)

x̂s = x − x̂p (27)

ŷs = C x̂s. (28)

Then x̂p ≡ xp , x̂s ≡ xs and ŷs ≡ ys.

Proof. Subtracting (26) from (9) results in ˙̃xp = Ax̃p and x̃p (0) = 0, 
where x̃p � xp − x̂p . Then, considering that A is stable, x̃p ≡ 0, 
which implies that x̂p ≡ xp . Consequently, by (11), it can be ob-
tained that x̂s ≡ x − x̂p ≡ xs . Additionally, ŷs ≡ Cx̂s ≡ ys . �
Remark 5. The designed observer is an open-loop observer, in 
which A must be stable. Otherwise, state feedback is needed to 
obtain a stable A, which can be realized by controller (4). If a 
closed-loop observer is adopted here, then it will be rather dif-
ficult to analyze the stability of the closed-loop system consisting 
of the nonlinear controller and observer, because separation prin-
ciple does not hold in nonlinear systems.

Remark 6. Since the initial values xp (0) and x̂p (0) are both as-
signed by the designer, they are all deterministic. If there is an 
initial value measurement error, then it will be assigned to and 
considered in the secondary system in the form of disturbances.

With the solutions to the two problems in hand, one is ready 
to claim Theorem 4.

Theorem 4. Under Assumptions 1 and 2, suppose (i) Problems 1 and 2 
are solved; (ii) the controller for system (1) is designed as

Observer:

˙̂xp = Ax̂p + Bup + ψ (x) , x̂p (0) = x0

x̂s = x − x̂p (29)

ŷs = C x̂s

Controller:

δc = up
(
x̂p, yr

) + us

⎛
⎝x̂s,

t∫
0

ŷs (s)ds

⎞
⎠ + K x. (30)

Then, the output of system (1) satisfies y − yr → 0 as t → ∞.

Proof. According to Theorem 3, observer (29) will make x̂p ≡ xp , 
x̂s ≡ xs and ŷs ≡ ys . Under condition (i), the controller up drives 
yp − yr → 0 as t → ∞ for system (9) (Theorem 1), and the con-
troller us drives ys (t) → 0 as t → ∞ for system (10) (Theorem 2). 
Then the controller u = up + us guarantees y − yr → 0 as t → ∞
for system (5). Moreover, taking the state feedback into consid-
eration, the controller (30) guarantees y − yr → 0 as t → ∞ for 
system (1). �

The structure of the overall closed-loop system is depicted in 
Fig. 4.

Remark 7. In Fig. 4, the dash-dotted line represents the unidirec-
tional interaction between the primary system and the secondary 
system. If xs = 0, then the two systems are completely decoupled, 
and the primary system is a pure system. Otherwise, the sec-
ondary system affects the primary system by the coupling term 
ψ

(
xp + xs

)
. As long as the controller of the secondary system 

is well designed, xs → 0 in a short time, namely ψ
(
xp + xs

) →
ψ

(
xp

)
fast. Thus, it can be roughly considered that the two sys-

tems are decoupled. In this case, a resulting thought comes that 
one can improve the tracking performance of the primary system 
and the disturbance rejection performance of the secondary sys-
tem, respectively. In the following, the disturbance rejection per-
formance improvement of the full system by just adjusting the 
controller parameters of the secondary system is studied in the 
simulation.

4. Simulation studies

In this section, the effectiveness, robustness, and practicality 
of the proposed method are demonstrated through various sim-
ulations and analyses. The closed-loop responses to the desired 
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Fig. 4. Structure of the closed-loop system with the ASD-based control.
attitude command are simulated with the full nonlinear plant (1)
considering the actuators’ dynamics and saturation. Moreover, the 
robustness against disturbances and delay is investigated, and the 
problem about how to obtain stronger robustness is also studied.

4.1. Parameter settings

In the simulation, some controller parameters are selected as 
follows. The reference attitude yr = [5◦ 0◦ 45◦]T. The initial states 
α0 = 1◦ , β0 = 0.11◦ , φ0 = 5◦ , p0 = 0◦/s, q0 = 0◦/s, r0 = 0◦/s. 
Choose

K =
⎡
⎣ 0.013 −0.073 −0.017 −0.011 0.008 −0.160

−1.938 0.007 −0.022 −0.017 0.170 −0.008
0.023 −1.134 −0.033 −0.036 0.018 −0.212

⎤
⎦

then A = A0 + B K is stable, whose eigenvalues are −0.5, −0.7,

−0.9, −1.2, −1.5, −1.8. For the backsteping controller (18), k1 =
30 and k2 = 35. For the PI controller (25), the feedback gain ma-
trices are designed as

K̄1 =
⎡
⎣−0.841 38.769 1.997

39.771 −0.413 −1.935
0.437 50.414 −2.163

⎤
⎦ ,

K̄2 =
⎡
⎣ −0.338 14.955 0.930 0.147 −0.051 −1.789

14.834 −0.111 −0.491 −0.020 1.722 0.015
0.101 19.421 −0.626 −0.024 −0.009 −2.317

⎤
⎦ .

Then, the eigenvalues of Aa are −7, −7.2, −7.4, −7.6, −7.8, −8,

−8.2, −8.4, −8.6. Additionally, the saturation constraint of the 
control input δc is selected as [−40◦,40◦].

4.2. Compared method

In order to verify the tracking performance and robustness 
of the ASD-based tracking control method, comparisons are also 
made between the ASD-based tracking control method and a tra-
ditional backstepping control method. A traditional backstepping 
controller is designed as

δ̄c = up (x, yr) + K x. (31)

The structure of the closed-loop system with backstepping con-
troller (31) is presented in Fig. 5. It should be noticed that, in the 
proposed controller (30), x̂p replaces x in up (x, yr).

4.3. Results

4.3.1. Simulation of performance
In the first group of simulations, the nominal case, which does 

not consider disturbances and delay, is studied. In the nominal 
Fig. 5. Structure of the closed-loop system with the traditional backstepping control.

Fig. 6. System outputs.

case, the control performance is not affected by the disturbance re-
jection performance, and thus can be better shown. The designed 
two controllers are directly applied to the full model (1). The sys-
tem outputs are presented in Fig. 6, and the corresponding control 
inputs are presented in Fig. 7. It is obvious that both methods can 
achieve the control objective given in Section 2. Although the ASD-
based controller leads to a little slower tracking response than 
the traditional backstepping controller, the control inputs of the 
traditional backstepping controller are larger and even reach the 
saturation bound.

In order to reveal the actual role of the primary and secondary 
systems, the corresponding responses are shown in Fig. 8. The 
responses are consistent with the theoretical analyses that the pri-
mary system performs a tracking task, and the secondary system 
performs a stabilization task.



J. Ren et al. / Aerospace Science and Technology 77 (2018) 409–418 415
Fig. 7. Control inputs.

Fig. 8. System responses of the primary and secondary systems.

4.3.2. Simulation of robustness
In the second group of simulations, some other cases, which 

take disturbances or delay into consideration, are studied with the 
full model (1). In these cases, the disturbance rejection perfor-
mance of the proposed controller can be displayed by comparing 
with the nominal case and the traditional backstepping controller.

In order to test the inherent robustness of the designed 
controllers, system (1) is perturbed by disturbance first d1 =
[0.5 0.5 0.5 0.5 0.5 0.5]T, and then d2 = [0.7 0.7 0.7 0.7 0.7 0.7]T. 
The disturbance d1 or d2 is a lumped one including system dis-
turbance, measurement noise, and model uncertainty, which cor-
responds to dm in Fig. 1 and Fig. 4. It is evident from Fig. 9 that, 
when there exists disturbance d1, the response of the ASD-based 
controller is still smooth, while the traditional backstepping con-
troller leads to system oscillation and the outputs cannot finally 
converge to the desired values. When the disturbance is further 
increased to d2, Fig. 10 shows that the traditional backstepping 
controller causes system divergence, whereas the ASD-based con-
troller still performs well.

Remark 8. The traditional backstepping control method results in 
system oscillation, system divergence and nonzero steady-state er-
ror when there exist disturbances. The reason is that equation 
(B.11) becomes V̇ 2 = −k1eT

1e1 − k2eT
2e2 + eT

1d′
1 + eT

2d′
2 when there 

exist disturbances, where d′
1 and d′

2 are the disturbances existing 
in the first layer and the second layer of the two-layer strict-
feedback system respectively. If the disturbances are small, V̇ 2 < 0
Fig. 9. System response subject to disturbance d1.

Fig. 10. System response subject to disturbance d2.

may still hold, whereas e1, e2 → 0 cannot be guaranteed, which is 
reflected in the system response by a convergence with a nonzero 
steady-state error. What is worse, if the disturbances are large 
enough, V̇ 2 > 0 and the system response is divergent. However, 
for the ASD-based control method, the primary system is roughly 
a pure system without disturbances, so the tracking performance 
can be guaranteed. Furthermore, the PI controller for the secondary 
system can compensate for the disturbances.

Additionally, the input delay is another common and inevitable 
phenomenon in practice, so τ2 = 0.015 sec is considered in Fig. 11. 
The traditional backstepping controller leads to system oscilla-
tion, while the control effect of the ASD-based controller does 
not change too much compared with the nominal case. As shown 
in Fig. 12, the traditional backstepping controller destabilizes the 
closed-loop system as the input delay τ2 increases to 0.025 s. 
However, the ASD-based controller still works well.

In order to show the disturbance rejection capability of the sec-
ondary system more intuitively, an input disturbance in the form 
of d3 = [0 0 0 dW dW dW ]T is considered, where dW is given by 
a MATLAB/SIMULINK block named Band-Limited White Noise. Two 
cases are studied here. In Case 1, the noise power of dW is selected 
as 0.1. It is shown in Fig. 13 that the response of the primary sys-
tem is roughly the same as that of the nominal case shown in 
Fig. 8. Another obvious result is that the oscillation of the full sys-
tem is nearly the same as that of the secondary system. In Case 2, 
the noise power of dW is selected as 1 (Fig. 14). A similar re-
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Fig. 11. System response subject to input delay τ2 = 0.015 s.

Fig. 12. System response subject to input delay τ2 = 0.025 s.

sult can be obtained as Case 1, except that the oscillations of the 
full system and the secondary system become larger than Case 1. 
Thus, a conclusion can be drawn that the disturbances are allo-
cated to the secondary system leaving the primary system a pure 
one, which is consistent with the theoretical analyses of Remark 4
and Remark 7. Then, the disturbance rejection performance is im-
proved by adjusting the controller parameters of the secondary 
system in Case 1 to

K̄1 =
⎡
⎣ −5.841 316.648 20.447

295.621 −0.474 1.168
1.675 410.849 −11.420

⎤
⎦ ,

K̄2 =
⎡
⎣ −1.212 60.931 4.265 0.303 −0.091 −3.767

56.951 −0.063 0.098 0.012 3.528 0.009
0.233 79.022 −1.809 −0.059 −0.006 −4.880

⎤
⎦ .

This case is denoted as Case 3. It can be found from Fig. 15 that 
the oscillation of the full system becomes smaller compared with 
Case 1.

4.4. Discussions

Simulation results present that the ASD-based controller can 
track the reference attitude signal without steady-state error in the 
presence of disturbances. Moreover, the ASD-based controller can 
tolerate larger disturbances and input delay than the traditional 
backstepping controller. Tracking performance for the primary sys-
tem is almost maintained in the presence of input disturbances, 
Fig. 13. System responses in Case 1.

Fig. 14. System responses in Case 2.

Fig. 15. System responses in Case 3.

and oscillation caused by input disturbances nearly comes from 
the outputs of the secondary system. It verifies that the primary 
and secondary systems are roughly decoupled, which leads to an 
advantage that disturbance rejection effect can be improved by ad-
justing the controller parameters of the secondary system, leaving 
the tracking performance unaffected. Since the traditional back-
stepping control method mixes tracking and disturbance rejection 
together, the price to be paid is poor robustness against distur-
bances and delay. By contrast, the ASD-based control method de-
composes the tracking task and disturbance rejection task, then 
one can design a controller for each task respectively. The ASD-
based control method with two degrees of freedom can resolve 
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the conflict between the reference tracking objective and its com-
peting objectives [25]. Therefore, the ASD-based control method 
can achieve a better tradeoff between tracking performance and 
robustness.

5. Conclusions

In this study, the attitude tracking problem for a class of BTT 
aerial vehicles subject to unknown disturbances and nonlinear 
coupling has been addressed by an ASD-based control method. 
In order to demonstrate its effectiveness, the control method is 
applied to the EMRAAT BTT missile. The designed controller can 
track the reference attitude signal and compensate for unknown 
disturbances. Simulations show that the ASD-based controller out-
performs the traditional backstepping controller in the presence of 
unknown disturbances and input delay. The robustness of the full 
system can be improved by adjusting the controller parameters of 
the secondary system. While PI control and backstepping control 
are not new, the salient feature of the proposed control method 
lies in the fusion of them by using additive state decomposition to 
solve a challenging nonlinear tracking problem. In future research, 
stability margin could be introduced into the secondary system to 
study the stability and robustness of the full system in a more ac-
curate and quantitative way. Furthermore, frequency-domain com-
pensation methods could be introduced into the secondary system 
to study the robustness performance improvement of the full sys-
tem.
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Appendix A. System information about model (3)

A0 =

⎡
⎢⎢⎢⎢⎢⎣

−0.092 0 0 0 1 0
0 −0.0375 0 0 0 −1
0 0 0 1 0 0

−6.4354 102.2269 0 −0.2223 0 0
−25.2112 0.4018 0 0 −0.0621 0

0 9.8096 0 0 0 −0.0618

⎤
⎥⎥⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

−126.9688 −3.1941 97.9748
−0.4956 −12.5134 0.3847
1.7892 0.02882 7.7577

⎤
⎥⎥⎥⎥⎥⎦ ,

ψ (x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−pβ

pα
0
0

0.01p2 + 0.9922pr
0.0039p2 − 0.9771pq

⎤
⎥⎥⎥⎥⎥⎥⎦

,

C =
⎡
⎣1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎦ .
Appendix B. Backstepping controller design for the primary 
system

The overall design procedure can be divided into three steps.

Step 1. By considering the two-layer feedback system (15)–(17), 
error variables e1, e2 ∈ R

3 are defined as

e1 = x1,p − x1,p,r (B.1)

e2 = x2,p − x2,p,r (B.2)

where x1,p,r and x2,p,r are the desired states, x1,p,r is obtained 
from the reference attitude yr (here x1,p,r = yr ), and x2,p,r will be 
obtained from the backstepping controller design. The rest steps of 
the design are to stabilize the two error variables in a recursive 
manner. Here, by substituting (15)–(16) into (B.1)–(B.2), the error 
model can be obtained as

ė1 = ϕ1
(
x1,p

) + f1
(
x1,p

)
x2,p − ẋ1,p,r (B.3)

ė2 = ϕ2
(
x1,p, x2,p

) + f2up − ẋ2,p,r . (B.4)

Step 2. A Lyapunov function is chosen as

V 1
(
x1,p

) = 1

2
eT

1e1. (B.5)

Explore a desired virtual control input x2,p,r to make the derivative 
of (B.5) nonnegative, that is

V̇ 1
(
x1,p

) = eT
1ė1 = eT

1

(
ϕ1

(
x1,p

) + f1
(
x1,p

)
x2,p − ẋ1,p,r

) ≤ 0.

(B.6)

In order to make equation (B.6) hold, x2,p,r can be chosen as

x2,p,r = − f −1
1

(
x1,p

) (
ϕ1

(
x1,p

) − ẋ1,p,r + k1e1
)

(B.7)

where parameter k1 > 0. Then, by putting the desired virtual con-
trol input (B.7) into (B.3) and (B.6), one can get

V̇ 1 = −k1eT
1e1 + eT

1 f1e2,

where the coupling term eT
1 f1e2 will be canceled in the next step.

Step 3. Another Lyapunov function is defined as

V 2
(
x1,p, x2,p

) = V 1
(
x1,p

) + 1

2
eT

2e2. (B.8)

The derivative of V 2
(
x1,p, x2,p

)
is

V̇ 2
(
x1,p, x2,p

) = V̇ 1
(
x1,p

) + eT
2ė2 = −k1eT

1e1 + eT
1 f1e2

+ eT
2

(
ϕ2

(
x1,p, x2,p

) + f2up − ẋ2,p,r
)
. (B.9)

In order to make (B.9) nonnegative, the real control input up is 
selected as

up
(
xp, yr

) = − f −1
2

(
k2e2 + ϕ2

(
x1,p, x2,p

)

− ∂x2,p,r

∂xT
1,p

(
ϕ1

(
x1,p

) + f1
(
x1,p

)
x2,p

) + f T
1 e1

)

(B.10)

where parameter k2 > 0. Then, putting the control input (B.10) into 
(B.4) and (B.9) results in

V̇ 2 = −k1eT
1e1 − k2eT

2e2 ≤ 0. (B.11)

Hence, x2,p → x2,p,r and x1,p → x1,p,r as t → ∞, namely yp −
yr → 0 as t → ∞, and xp is bounded.
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Remark 9. By the definitions of f1
(
x1,p

)
and f2, one has

det
(

f1
(
x1,p

)) = det

⎛
⎝

⎡
⎣−βp 1 0

αp 0 −1
1 0 0

⎤
⎦

⎞
⎠ = −1

and f2 is a constant matrix with det ( f2) �= 0. Therefore, the in-
verse matrices f −1

1

(
x1,p

)
and f −1

2 always exist, and then con-
troller (B.10) is realizable.

Appendix C. Proof of Theorem 2

Substituting the control input (23) into system (21) results in[
ż
ẋs

]
=

[
0 C

B K̄1 A + B K̄2

][
z
xs

]
+

[
0
d

]
. (C.1)

By doing Laplace transformation for (C.1), one can get[
z (s)
xs (s)

]
=

[
sI −C

−B K̄1 sI − (
A + B K̄2

) ]−1 [
0
d

]
1

s
.

Since 
[

0 C
0 A

]
+

[
0
B

]
K̄ is stable, on the basis of the final value 

theorem, it can be obtained that

lim
t→∞

[
z (t)
xs (t)

]
= lim

s→0
s

[
z (s)
xs (s)

]

=
[

0 −C
−B K̄1 − (

A + B K̄2
) ]−1 [

0
d

]

which means xs (t) and z (t) will approach to constants. Thus, 
ys → 0 (ż = ys) as t → ∞, and xs is bounded.
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