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ABSTRACT
There exist at least two viewpoints on the internalmodel principle (IMP), namely the cancelation viewpoint
and the geometrical viewpoint. However, neither of them is applicable to repetitive control (RC, or repeti-
tive controller, also designated RC) of nonlinear systems directly. Because of this, error dynamics are often
derived to transform a periodic signal tracking problem into a rejection problem. This not only fails to rep-
resent the special feature of periodic signals but also restricts the applications of RC. In view of this, this
paper proposes a new viewpoint on IMP, namely the actuator-focussed viewpoint. With this, the periodic
signal tracking problem can be converted into a stability problem without deriving error dynamics for lin-
ear periodic systems and nonlinear systems. In order to demonstrate its effectiveness, the proposed design
approach is applied to RC problems for a linear periodic system, a minimum-phase nonlinear system and a
nonminimum-phase nonlinear system.
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1. Introduction

The internal model principle (IMP) was first proposed by Fran-
cis and Wonham (1976) and Wonham (1976). It states that
if any exogenous signal can be regarded as the output of an
autonomous system, then the inclusion of this signal model,
namely internal model, in a stable closed-loop system can assure
asymptotic tracking or asymptotic rejection of the signal. Until
now, to the best of the authors’ knowledge, there exist at least
two viewpoints on IMP. In the early years, for linear time-
invariant (LTI) systems, IMP implies that the internal model
is to supply closed-loop transmission zeros which cancel the
unstable poles of the disturbances and reference signals. This
is called cancelation viewpoint here and only works for prob-
lems able to be formulated in terms of transfer functions. In
the mid-1970s, Francis and Wonham proposed the geometric
approach (Wonham, 1979) to design an internal model con-
troller (Francis &Wonham, 1976;Wonham, 1976). The purpose
of internal models is to construct an invariant subspace for
the closed-loop system and make the regulated output zero at
each point of the invariant subspace. This is called geometri-
cal viewpoint here. By the geometrical viewpoint, Isidori and
Byrnes in the early 1990s further extended it fromLTI systems to
nonlinear time-invariant systems (Isidori & Byrnes, 1990). This
work inspires the development of internal-model-based con-
troller designmethods greatly up to now (Chen &Huang, 2014;
Huang, 2004; Isidori, Marconi, & Serrani, 2003; Knobloch,
Isidori, & Flockerzi, 2014; Memon & Khalil, 2010; Trip,
Burger, & De Persis, 2016; Wieland, Sepulchre, & Allgo-
wer, 2011). Also, by the geometrical viewpoint, the finite-
dimensional output regulation problemhas been generalised for
both infinite-dimensional systems and reference/disturbance
signals generated by some infinite-dimensional exosystems
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(Byrnes, Laukó, Gilliam, & Shubov, 2000; Hämäläinen & Pohjo-
lainen, 2010; Hara, Yamamoto, Omata, & Nakano, 1988; Immo-
nen, 2007a, 2007b;Natarajan, Gilliam,&Weiss, 2014; Paunonen
& Pohjolainen, 2010; Weiss & Häfele, 1999; Xu & Dublje-
vic, 2017). However, the two viewpoints on IMP are difficult
to handle general periodic signal tracking problems for non-
linear systems subject to periodic disturbances generated by
infinite-dimensional exosystems, because the resulting closed-
loop system, which contains the copy of such an exosystem,
is nonlinear and infinite-dimensional. On the one hand, the
cancelation viewpoint cannot be applied to nonlinear systems
directly because it relies on transfer functions. On the other
hand, the existing theories on geometric approach for infinite-
dimensional systems cannot be applied to nonlinear systems
directly because they rely on the linear operator theory.

Any T-periodic signal can be regarded as the output of
an autonomous system model 1

1−e−sT , an infinite-dimensional
model. A controller including the internalmodel 1

1−e−sT is called
a repetitive controller (RC, or repetitive control, also designated
RC), and a system including such a controller is referred to as
an RC system. The basic idea of RC stems from the cancelation
viewpoint on the IMP. RC initially developed for continuous
single-input, single-output (SISO) LTI systems by Inoue et al.,
for high accuracy tracking of a periodic signal with a known
period. Later, Hara et al. extended the RC to multiple-input,
multiple-output (MIMO) LTI systems (Hara et al., 1988). Since
then, RC has begun to receive more attention and applications,
and has become a special topic in control theory. In recent
years, the development on RC has been uneven. By the use of
frequency-domain methods, the theories and applications of
LTI systems have developed very well (Longman, 2000; Rogers
& Owens, 1992). On the other hand, RC in nonlinear systems
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has received insufficient research effort (Quan & Cai, 2010).
Currently, there exist two major ways to design RCs for non-
linear systems. One way is to transform a nonlinear system into
an LTI system with/without a weak nonlinear term, then apply
existing design methods of LTI systems to the transformed sys-
tem (Alleyne & Pomykalski, 2000; Ghosh & Paden, 2004; Lee
& Tsao, 2004; Lin, Chung, & Hung, 1991; Ma, 1990). However,
not all nonlinear systems can be transformed into simple forms.
What is more, in these early literature, only the stability of the
closed-loop with an RC internal model was considered. It was
supposed that the RC could attenuate the periodic component at
the tracking error for nonlinear systems as for LTI systems. But,
the reasons were not found. In fact, the proposed new viewpoint
on the IMP can be used to explain the reason. The otherway is to
transform a tracking problem for nonlinear systems to a rejec-
tion problem for nonlinear error dynamics, then apply existing
adaptive-control-likemethods to the transformed error dynam-
ics (Chien & Tayebi, 2008; Dixon, Zergeroglu, & Costic, 2002;
Kim & Ha, 2000; Messner, Horowitz, Kao, & Boals, 1991; Quan
& Cai, 2011; Sadegh, Horowitz, Kao, & Tomizuka, 1990; Sun,
Ge, & Mareels, 2006; Xu & Yan, 2006). Currently, the adaptive-
control-like method is the leading method of designing RCs in
nonlinear systems. Compared with the internal-model-based
controller design, the structures of RCs obtained are similar
or the same, but the ways to obtain them are very different.
By the internal-model-based controller design, error dynamics
do not need to be derived. However, by the adaptive-control-
like method, error dynamics are derived to convert a tracking
problem to a rejection problem, during which full desired states
are required. This not only fails to represent the special feature
of T-periodic signals but also restricts the application of RC.
For nonminimum-phase nonlinear systems, the ideal internal
dynamics are required to obtain the error dynamics. This is diffi-
cult and computationally expensive especially when the internal
dynamics are subject to an unknown disturbance (Shkolnikov
& Shtessel, 2002). As a result, the authors suppose that this is
the reasonwhy fewRCworks onnonminimum-phase nonlinear
systems have been reported.

Based on the consideration above, this paper proposes a new
viewpoint on the IMP, namely the actuator-focussed viewpoint.
The actuator-focussed viewpoint can overcome the drawbacks
mentioned in both the cancelation viewpoint and the geometri-
cal viewpoint when general periodic external signals are consid-
ered. By this proposed new viewpoint, the actuator-focussed RC
design method is further proposed for T-periodic signal track-
ing of linear periodic systems and nonlinear systems. Themajor
contributions of this paper are: (i) the new actuator-focussed
viewpoint on the IMP which overcomes some drawbacks in
both the cancelation viewpoint and the geometrical viewpoint;
(ii) the actuator-focussed RC design method which can unify
the RC design for LTI systems, linear periodic systems, and
nonlinear systems; (iii) the proposed method facilitating the
controller design and simplifying the designed controllers.

The following notation is used. R
n is Euclidean space

of dimension n and N denotes nonnegative integers. ‖·‖
denotes the Euclidean norm or a matrix norm induced
by the Euclidean norm. C([a, b],Rn) denotes the space
of continuous n-dimension function vector on [a, b]. The
symbol xt ∈ C([a, b],Rn) implies xt(θ) � x(t + θ), θ ∈ [a, b].

CnPT([0,∞);Rm) is the space of nth-order continuously differ-
entiable functions f : [0,∞) → R

m which are T-periodic, i.e.
f(t + T) = f(t). If x(t) is bounded on [0,∞), let ‖ · ‖a denote
the quantity ‖x‖a � lim sup

t→∞
‖x(t)‖ (Teel, 1996). The font of a

scalar is normal, while the corresponding vector symbol is bold
font. For example, e,v are scalars, while e, v are vectors.

The remainder of this paper is organised as follows. Section 2
introduces some preliminaries. In Section 3, the actuator-
focussed viewpoint on IMP is presented, where two examples
about the step signal and general T-periodic signal show the
general idea. By the aforementioned actuator-focussed view-
point, the actuator-focussed RC design method is further pro-
posed in Section 4 to establish conditions that the viewpoint
requires. In Section 5, the actuator-focussed RC design method
is further proposed to solve three periodic signal tracking prob-
lems. Finally, conclusions are given in Section 6.

2. Preliminaries

Consider a general perturbed time-delay system

ẋ (t) = f (t, xt ,w) , t ≥ t0 (1)

with xt0(θ) = φ(θ), θ ∈ [−T, 0], T> 0, where x(t) ∈ R
n,

w(t) ∈ R
m is a piecewise continuous and bounded pertur-

bation. The function f : [t0,∞) × C([−T, 0],Rn) × R
m → R

n

is supposed to be continuous and takes bounded sets into
bounded sets. Here, let initial time t0 = 0 for simplicity.

Definition 2.1: The solutions xt(φ) of system (1) with xt0(θ) =
φ(θ), θ ∈ [−T, 0] are said to be uniformly bounded, if for each
δ > 0 there exists ε > 0 such that ‖x(φ)(t)‖ ≤ ε, t ≥ t0, when
sup

θ∈[−T,0]
‖φ(θ)‖ < δ.

Definition 2.2: The solutions xt(φ) of system (1) with xt0(θ) =
φ(θ), θ ∈ [−T, 0] are said to be uniformly ultimately bounded
with ultimate bound ε, if for each δ > 0 there exists T1 =
T1(ε, δ) > 0 independent of t0 such that ‖x(φ)(t)‖ ≤ ε for all
t ≥ t0 + T1 when sup

θ∈[−T,0]
‖φ(t)‖ < δ.

Lemma 2.1 (Burton, 1985, pp. 249–251): Suppose (i) f(t, xt ,w
(t)) = f(t + T, xt ,w(t + T)), (ii) f(t, xt ,w) satisfies a local Lip-
schitz condition in xt , (iii) x(t + T) is a solution of (1) whenever
x(t) is a solution of (1). If solutions of (1) are uniformly bounded
and uniformly ultimately bounded, then (1) has a T-periodic
solution.

3. Actuator-focussed viewpoint on IMP

The general idea of the actuator-focussed viewpoint on IMP
is introduced first. Then it is used to explain the role of the
internal models for step signals and general periodic signals,
respectively. Finally, the viewpoint is extended to filtered repet-
itive control (FRC, or filtered repetitive controller, also desig-
nated FRC) systems. This section is only to clarify the actuator-
focussed viewpoint in the aspect of signals. The next sectionwill
introduce how to generate such signals required by designing
controllers.
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Figure 1. A general system including the internal model.

3.1 General idea

As shown in Figure 1, some definitions are given to clarify the
general idea of the actuator-focussed viewpoint. The internal
model is defined as

v = IM (s0, e) . (2)

Here IM : S0 ⊕ E → V , where S0 is a Banach space for the
initial conditions (the initial condition can have many forms,
such as s0 ∈ R

n or s0(θ) = φ(θ) ∈ R
n, θ ∈ [−T, 0]); e(t) ∈

E = {f : R → R
m} and v(t) ∈ V = {f : R → R

m} are signal
spaces, representing the input and output of the internal model,
respectively. Let IM = {s ∈ V|s = IM(s0, 0), ∀ s0 ∈ S0}, which
denotes the set of all possible outputs. For example, IM can be
a set of step signals with different amplitudes (Section 3.2.1), or
a set of sinusoids at frequency ω with different phases, or a set
of T-periodic signals with different shapes (Section 3.2.2). For
any s1 ∈ IM , there exists an initial condition s10 ∈ S0 such that
s1 = IM(s10, 0). Similarly, as shown in Figure 1, the plant P is
defined as

y = P (x0,u) .

Here P : X0 ⊕ U → Y , where X0 is a Banach space for the ini-
tial conditions; u(t) ∈ U = {f : R → R

m} and y(t) ∈ Y = {f :
R → R

m} are signal spaces, representing the input and output
of the plant, respectively. The steady states e∗ and v∗ of the gen-
eral system shown in Figure 1 imply that there exist s∗0 ∈ S0 and
x∗
0 ∈ X0 such that

e∗ = r − P
(
x∗
0 , d + v∗)

v∗ = IM
(
s∗0, e

∗) . (3)

Example 3.1 (on the composition of internal models): Gen-
erally, the internal model IM is marginally stable so that it can
generate non-vanishing and bounded signals with any nonzero
initial condition. However, IM(s0, IM(s′0, 0)) is often unbounded
if s′0 �= 0 no matter what s0 is. As shown in Figure 2, if IM is an
integral term whose Laplace transform is 1/s, then

IM
(
s′0, 0

) = s′0L−1
(
1
s

)
= s′0u (t)

whereL−1 is the inverse Laplace transform, u(t) is the unit step
function, and s′0 ∈ R is the initial condition. However, it can be

Figure 2. The composition of two integral terms.

observed that

IM
(
s0, IM

(
s′0, 0

)) = s0L−1
(
1
s

)
+ s′0L−1

(
1
s2

)
= s0u (t) + s′0tu (t) .

The signal IM(s0, IM(s′0, 0)) is unbounded when s′0 �= 0 no mat-
ter what s0 is. Therefore, the compound IM(s0, IM(s′0, 0)) /∈ IM
if s′0 �= 0. If IM is an internal model about sinusoids at frequency
ω whose Laplace transform is 1/(s2 + ω2), then

IM
(
s′0, 0

) = s′0L−1
(

1
s2 + ω2

)
= s′0 sin (ωt)

where s′0 ∈ R is the initial condition. Also, it can be shown that
IM(s0, IM(s′0, 0)) is unbounded when s′0 �= 0 no matter what s0
is. Therefore, the compound IM(s0, IM(s′0, 0)) /∈ IM if s′0 �= 0.

Theorem 3.1: As shown in Figure 1, suppose that

(i) The composition IM(s0, IM(s′0, 0)) /∈ IM if s′0 �= 0;
(ii) The steady states e∗, v∗ ∈ IM ;
(iii) IM(s0, 0) ≡ 0 if and only if s0 = 0.

Then e∗ = 0.

Proof: Prove it by contradiction, namely e∗ �= 0. Since e∗ ∈ IM
by condition (ii), there exists an initial condition s′0 such that
e∗ = IM(s′0, 0) according to definition of IM . Then, since e∗ �= 0
as supposed, s′0 �= 0 according to condition (iii). Furthermore,
according to (3), one further has

v∗ = IM
(
s∗0, e

∗) = IM
(
s∗0, IM

(
s′0, 0

))
.

Since s′0 �= 0, v∗ = IM(s∗0, IM(s′0, 0)) /∈ IM according to condi-
tion (i). This contradicts with v∗ ∈ IM in condition (ii). So,
e∗ = 0. �

Remark 3.1: For condition (i) in Theorem 3.1, it is reason-
able as shown in Example 3.1. Also, it is necessary. The form
IM(s0, IM(s′0, 0)) does not imply IM(s0, IM(s′0, 0)) /∈ IM accord-
ing to the definition, because there may exist s′′0 ∈ S0 such that
IM(s0, IM(s′0, 0)) = IM(s′′0 , 0). Condition (ii) in Theorem 3.1
implies states e, v will tend to steady states belonging to IM
eventually. Condition (iii) is also reasonable as shown in Exam-
ple 3.1. In the following Sections 3.2.1 and 3.2.2, Theorem 3.1
will be applied to two examples. Readers can obtain more intu-
itional explanation.

Remark 3.2: In the analysis, the controller (actuator), namely
(2) or see the dashed box in Figure 1, is focussed on. For
this reason, the new viewpoint is called the actuator-focussed
viewpoint.
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Figure 3. Step signal tracking.

3.2 Two examples

Two examples will further show the general idea on the
actuator-focussed viewpoint in detail.

3.2.1 Step signal
Since the Laplace transformation model of a unit step signal
and an integral term are the same, namely 1/s, the inclusion of
the model 1/s in a stable closed-loop system can assure perfect
tracking or complete rejection of the unit step signal according
to IMP.

Cancelation Viewpoint. As shown in Figure 3, the transfer
function from the desired signal to the tracking error is written
as follows

e (s) = 1
1 + 1

s G (s)
yd (s) = 1

s + G (s)

(
s
1
s

)

= 1
s + G (s)

. (4)

Then it only requires to verify whether or not the roots of the
equation s + G(s) = 0 are all in the left s-plane, namely whether
or not the closed-loop system is stable. If all roots are in the
left s-plane, then the tracking error tends to zero as t → ∞.
Therefore, the tracking problem has been reduced to a stability
problem of the closed-loop system.

Actuator-Focused Viewpoint. The actuator-focussed view-
point in the following will give a new explanation on IMP
without using transfer functions. In this example, IM is an inte-
gral term whose Laplace transform is 1/s. The conditions (i)
and (iii) of Theorem 3.1 hold as shown in Example 3.1. In the
following, the condition (ii) of Theorem 3.1 is examined. Let
G(s) = cT(sI − A)−1b + d, whereA ∈ R

n×n, b, c ∈ R
n, d ∈ R.

The minimal realisation of y = G(s)v is

ẋ = Ax + bv

y = cTx + dv.

As shown in Figure 3, the resulting closed-loop system becomes[
ẋ
v̇

]
︸︷︷︸
ż

=
[

A b
−cT −d

]
︸ ︷︷ ︸

Aa

[
x
v

]
︸︷︷︸
z

+
[
0
yd

]
︸︷︷︸
w

. (5)

The solution is

z (t) = eAatz (0) +
∫ t

0
eAa(t−s)w ds

where w is constant. If the closed-loop system is stable, then
the matrix Aa is stable, namely the real parts of eigenvalues of

Aa are negative. As a result, z(t) will tend to a constant vector,
say [x∗T v∗]T, as t → ∞. Consequently, v(t) and e(t) = yd −
cTx(t) − dv(t) will tend to constants v∗ and e∗ = yd − cTx∗ −
dv∗ as t → ∞, respectively. Therefore, v∗, e∗ ∈ IM . According
to Theorem 3.1, it can be claimed that e∗ = 0. An intuitive
interpretation is also given by contradiction. One has

v̇ (t) = e (t) (6)

because of the integral term. If e∗ �= 0, then v(t) = ∫
e(s) ds will

tend to infinity as t → ∞. This contradicts with v∗ being a con-
stant. So, e∗ = 0. The explanation is somewhat different from
Theorem 3.1, but their essential ideas are the same. As shown
above, to confirm that the tracking error e(t) → 0 as t → ∞, it
is only required to verify whether or not the closed-loop system
without external signals is exponentially stable. This implies that
the tracking problem has been reduced to a stability problem.

Remark 3.3: Another way is given to explain why v(t) and e(t)
will tend to constants as t → ∞ in the following. If the closed-
loop system without external signals is exponentially stable,
then when the system is driven by a unit step signal, the closed-
loop system is uniformly bounded and uniformly ultimately
bounded. By the fixed point theory (Burton, 1985, pp. 164–182),
there exists a constant solution to (5). Since the closed-loop sys-
temwithout external signals is exponentially stable, v(t) and e(t)
will tend to the constant solution as t → ∞.

3.2.2 General T-periodic signal
If the external signal is in the form of yd(t) = yd(t − T), which
can represent any T-periodic signal, then perfect tracking or
complete rejection can be achieved by incorporating the model
1/(1 − e−sT) into the closed-loop system.

Cancelation Viewpoint. Similarly, as shown in Figure 4, the
transfer function from the desired signal to the error is written
as follows

e (s) = 1
1 + 1

1−e−sT G (s)
yd (s)

= 1
1 − e−sT + G (s)

((
1 − e−sT

) 1
1 − e−sT

)

= 1
1 − e−sT + G (s)

.

Then, it is only required to verify whether or not the roots
of the equation 1 − e−sT + G(s) = 0 are all in the left s-plane
(if the real parts of the roots are strictly less than zero, then
the closed-loop system is exponentially stable (Hale & Verduyn
Lunel, 1993, p. 34, Corollary 7.2.)). Therefore, the tracking prob-
lem has been reduced to a stability problem of the closed-loop
system.

Actuator-Focused Viewpoint. The actuator-focussed view-
point in the following will give a new explanation on IMP
without using transfer functions. In this example, IM is an inter-
nal model whose Laplace transform is 1/(1 − e−sT). The term
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Figure 4. Periodic signal tracking of an RC system.

IM(s0, IM(s′0, 0)) in Theorem 3.1 can be written as

v (t) = v (t − T) + e (t)

e (t) = e (t − T)

where v(θ) = s0(θ) ∈ R, e(θ) = s′0(θ) ∈ R, θ ∈ [−T, 0]. Given
any θ ∈ [−T, 0], one has

v (kT + θ) = s0 (θ) + ks′0 (θ)

which is not a period signal if s′0(θ) �= 0, θ ∈ [−T, 0]. Therefore,
the conditions (i) of Theorem 3.1 holds, namely the compo-
sition IM(s0, IM(s′0, 0)) �∈ IM if s′0(θ) �= 0, θ ∈ [−T, 0]. Obvi-
ously, the conditions (iii) of Theorem 3.1 also holds. If the
closed-loop system without external signals is exponentially
stable, then, according to the solution of functional functions
(Hale & Verduyn Lunel, 1993), it can be proven that v(t) and
e(t) will both tend to T-periodic signals when the system is
driven by a T-periodic signal. Therefore, v∗, e∗ ∈ IM . Accord-
ing to Theorem 3.1, it can be claimed that e∗ = 0. An intuitive
interpretation is also given by contradiction. One has

e (t) = v (t) − v (t − T) . (7)

Consequently, based on (7), it can be concluded that e(t) → 0
as t → ∞ if v∗ ∈ IM (a T-periodic signal). As shown above, to
examine the tracking error tending to zero as t → ∞, it only
requires verifying whether or not the closed-loop system with-
out external signals is exponentially stable. This implies that the
tracking problem has been reduced to a stability problem.

Remark 3.4: Another way is given to explain why v(t) and e(t)
will tend to T-periodic solutions as t → ∞. If the closed-loop
system without external signals is exponentially stable, then
when the system is driven by a T-periodic signal, the closed-
loop system is uniformly bounded and uniformly ultimately
bounded. By the fixed point theory (or see Lemma 2.1), there
exists a T-periodic solution for v(t) and e(t). Since the closed-
loop systemwithout external signals is exponentially stable, v(t)
and e(t) will tend to the T-periodic solution as t → ∞.

3.3 Filtered repetitive control systems subject to
T-periodic signals

How to stabilise an RC system is not an easy problem due to
the inclusion of the time delay element in the positive feed-
back loop. It was proven in Hara et al. (1988) that stability
of RC systems could be achieved for continuous-time systems
only when the plants are proper but not strictly proper. More-
over, the internal model 1/(1 − e−sT) may lead to instability of
the system. The stability of RC systems is insufficiently robust.

Figure 5. Periodic signal tracking of an FRC system.

Taking these into account, low-pass filters are introduced into
RCs to enhance the stability of RC systems, resulting in FRCs
which can improve the robustness of the closed-loop systems.
With an appropriate filter, the FRC can usually achieve a sat-
isfactory tradeoff between tracking performance and stability,
which in turn broadens its application in practice. For example:
themodelQ(s)/(1 − Q(s) e−sT) replaces 1/(1 − e−sT) resulting
in the closed-loop system shown in Figure 5. Furthermore, if
Q(s) = 1/(1 + εs), then the relationship between v(t) and e(t)
is

e (t) = v (t) − v (t − T) + εv̇ (t) . (8)

If the closed-loop system without external signals is exponen-
tially stable, then, when the system is driven by a periodic signal,
it is easy to see that v(t) and e(t) will both tend to periodic
signals as t → ∞. Because of the relationship (8), it can be
concluded that e(t) − εv̇(t) → 0. This implies that the tracking
error can be adjusted by the filterQ(s) or say ε. Moreover, if v̇(t)
is bounded in t uniformly with respect to (w.r.t) ε as ε → 0,
then lim

t→∞,ε→0
e(t, ε) = 0. On the other hand, increasing ε can

improve the stability of the closed-loop system. Therefore, a sat-
isfactory tradeoff between stability and tracking performance
can be achieved by using the FRC.

4. Actuator-focussed RC designmethod

By the aforementioned actuator-focussed viewpoint, the
actuator-focussed RC design method is further proposed to
establish conditions that the viewpoint requires. The periodic
signal tracking problem for linear periodic systems is consid-
ered first, which can be taken as a special case of nonlinear
periodic systems. Then, the periodic signal tracking problem for
nonlinear periodic systems is considered.

4.1 Linear periodic system

Consider the following linear periodic system

ẋ (t) = A (t) x (t) + B (t) u (t) + d (t)

y (t) = CT (t) x (t) + D (t) u (t) (9)

where matrices A(t + T) = A(t) ∈ R
n×n, B(t + T) = B(t) ∈

R
n×m,C(t+T)=C(t) ∈ R

n×m, andD(t+T)=D(t) ∈ R
m×m

are bounded; x(t) ∈ R
n is the system state,u(t) ∈ R

m is the con-
trol input, d ∈ C0T([0,∞),Rn) is a T-periodic disturbance. The
objective of the control inputu is tomake y(t) track aT-periodic
desired signal yd ∈ C0T([0,∞);Rm).
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For the system (9), similar to Equation (8), an FRC is taken
in the form as

Aε v̇ (t) = −v (t) + (Im − αAε) v (t − T) + L1 (t) e (t)

u (t) = L2 (t) x (t) + v (t) (10)

where e � yd − y, Aε ∈ R
m×m is a positive semi-definite

matrix, α > 0, L1(t + T) = L1(t) ∈ R
m×m is nonsingular and

L2(t + T) = L2(t) ∈ R
m×n. Moreover, L1(t) and L2(t) are

bounded. The introduction of variable α is used for stability
analysis easier like in Quan and Cai (2011, Theorem 1) (also see
the role of α in (A3) and (A4)), which is often a small positive
value. Then

y (t) =
(
CT (t) + D (t) L2 (t)

)
x (t) + D (t) v (t) .

Next, by combining the system (9) and FRC (10), the resulting
closed-loop system is written as follows

Eż (t) = Aa (t) z (t) + Adz (t − T) + Ba (t)w (t) (11)

where

z =
[
v
x

]
, w =

[
yd
d

]
,

Aa =
[−Im − L1D −L1

(
CT + DL2

)
B A + BL2

]
E = diag (Aε , In) ,Ad = diag (Im − αAε , 0) ,

Ba = diag (L1, In) .

Lemma4.1: Suppose that the solution z(t) = 0 of the differential
equation

Eż (t) = Aa (t) z (t) + Adz (t − T) (12)

is globally exponentially stable. Then the resulting closed-loop sys-
tem in (11) has a unique globally exponentially stable T-periodic
solution z∗.

Proof: Since z(t) = 0 of (12) is globally exponentially stable,
the solutions of the resulting closed-loop system (11) are uni-
formly bounded and uniformly ultimately bounded. Then the
resulting closed-loop system in (11) has a T-periodic solution
according to Burton (1985, pp. 249–251). Suppose, to the con-
trary, that (11) has two solutions, denoted by z∗

1, z
∗
2, satisfying

Eż∗
1 (t) = Aa (t) z∗

1 (t) + Adz∗
1 (t − T) + Ba (t)w (t) (13)

Eż∗
2 (t) = Aa (t) z∗

2 (t) + Adz∗
2 (t − T) + Ba (t)w (t) . (14)

Subtracting (14) from (13) results in

Eż∗
e (t) = Aa (t) z∗

e (t) + Adz∗
e (t − T)

where z∗
e = z∗

1 − z∗
2. Since the solution z(t) = 0 of (12) is glob-

ally exponentially stable, z∗
e = 0, which implies z∗

1 = z∗
2. There-

fore the resulting closed-loop system in (11) has a unique stable
T-periodic solution z∗ = z∗

1 = z∗
2. �

Theorem 4.1: Suppose that (12) is globally exponentially sta-
ble. Then, the resulting closed-loop system in (11) has a unique

globally exponentially stable T-periodic solution z∗ = [v∗T x∗T]T.
Furthermore,

‖e‖a ≤ sup
t∈[0,T]

∥∥L−1
1 (t)Aε

∥∥ (‖v̇‖a + α ‖v‖a) . (15)

If z(t) = 0 in (12) is globally exponentially stable uniformly w.r.t
Aε as ‖Aε‖ → 0, then

lim
‖Aε‖→0

‖e (Aε)‖a = 0.

Proof: By Lemma 4.1, the resulting closed-loop system in (11)
has a unique globally exponentially stable T-periodic solution
z∗. By using (10), it follows that

L1 (t) e (t) = Aε v̇ (t) + v (t) − (1 − αAε) v (t − T) .

Taking ‖ · ‖a on both sides of the equation above yields

‖e‖a = lim sup
t→∞

∥∥∥∥L−1
1 (t)Aε (v̇ (t) + αv (t − T))

+L−1
1 (t) (v (t) − v (t − T))

∥∥∥∥
≤ lim sup

t→∞

∥∥L−1
1 (t)Aε (v̇ (t) + αv (t − T))

∥∥
+ lim sup

t→∞

∥∥L−1
1 (t) (v (t) − v (t − T))

∥∥
≤ sup

t∈[0,T]

∥∥L−1
1 (t)Aε

∥∥ (‖v̇‖a + α ‖v‖a) (16)

where the condition that the solutions of (11) approach the T-
periodic solution is used so that

lim sup
t→∞

∥∥L−1
1 (t) (v (t) − v (t − T))

∥∥ = 0.

If (12) is globally exponentially stable uniformly w.r.t Aε as
‖Aε‖ → 0, then ‖v̇‖a + α‖v‖a is bounded uniformly w.r.t
Aε as ‖Aε‖ → 0. Consequently, ‖Aε‖(‖v̇‖a + α‖v‖a) → 0 as
‖Aε‖ → 0. This implies that ‖e(Aε)‖a → 0 as ‖Aε‖ → 0
by (16). �

A sufficient condition is given in Theorem 4.2 to ensure that
z(t) = 0 in (11) is globally exponentially stable.

Theorem 4.2: If Aε > 0 and there exist matrices P = PT ∈
R
n×n, 0 < Q = QT ∈ R

m×m, λ1 > 0 such that

0 < PE + ETP (17)[
PAa (t) + AT

a (t)P + Q PAd
AT
dP −Q

]
≤ −λ1In+m (18)

then z(t) = 0 in (12) is globally exponentially stable. In particu-
lar, if Aε = 0, (18) holds and there exists λ2 > 0 such that

sup
t∈[0,T]

∥∥(Im + L (t)D (t))−1∥∥ < 1 (19)

[
0 0
0 λ2In+m

]
≤ PE + ETP (20)

then z(t) = 0 in (12) is globally exponentially stable.

Proof: See Appendix A.1. �
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Remark 4.1: By Theorem 4.1, the periodic signal tracking
problem for linear periodic systems (9) can be converted to
a stability problem (12) during which error dynamics are not
required. It should be noted that the FRC (10) still works if the
disturbance d in system (9) is unmatched. This is an advantage
of the proposed actuator-focussed RC design method.

Remark 4.2: As for Theorem 4.2, it is only a sufficient con-
dition for globally exponential stability of (12) independent of
the period T, where the condition (17) is used for establish-
ing a Lyapunov function (see Section A.1 or Quan, Yang, Cai,
and Jiang (2009)). Since

det (PE) = det (P) det (E) = det (P) det (Aε)

one has det(PE) = 0 if det(Aε) = 0, where det(·) is the deter-
minant of a matrix. In this case, (17) does not hold. According
to this, Aε > 0 is necessary for (17). When Aε = 0, the condi-
tion (19) implies D �= 0. This is consistent with the result for
LTI systems. It was proved in Hara et al. (1988) that, for a class
of general linear plants, the exponential stability of RC systems
could be achieved only when the plant is proper (D �= 0) but not
strictly proper1.

Remark 4.3: Since Aa(t) is T-periodic, the linear matrix
inequalities (17) and (18) cannot be solved by commonly-used
tools directly. Roughly, an easy way is to select a sufficient
number of sampling points in one period, namely ti = i TM ,
i = 0, . . . ,M,M ∈ N, bywhichAa(t1), . . . ,Aa(tM) are expected
to represent for the T-periodic Aa(t) well. Then, the time-
varying linear matrix inequality (18) is replaced with M time-
invariant linear matrix inequalities at the M sampling times
so that commonly-used tools are applicable. A brief analysis
is given in the following. Given any t ∈ [0,T], it is supposed
ti ≤ t ≤ ti+1 without loss of generality. Let

H (t) =
[
PAa (t) + AT

a (t)P + Q PAd
AT
dP −Q

]
.

It is assumed that ‖Ȧa(t)‖ is bounded. Then ‖Ḣ(t)‖ ≤ κ < ∞,
by confiningP,Qwhen solving the the linearmatrix inequalities
in Theorem 4.2. Given ελ1 > 0, if the linear matrix inequal-
ity (18) satisfies

H (ti) ≤ − (λ1 + ελ1

)
In+m, i = 0, . . . ,M (21)

then

H (t) = H (ti) +
∫ t

ti
Ḣ (s) ds

≤ H (ti) +
∫ t

ti

∥∥Ḣ (s)
∥∥ In+m ds

≤ − (λ1 + ελ1

)
In+m + κ (t − ti) In+m

≤ − (λ1 + ελ1

)
In+m + κ

T
M

In+m.

If
Tκ

ελ1

≤ M

then

H (t) ≤ −λ1In+m. (22)

This implies that if the sampling points are sufficient enough,
then (21) implies (22).

Remark 4.4: Generally, the convergence speedmainly depends
on the choice of L1, L2 as they are feedback gains, while the
tracking error mainly depends on the choice of Aε ,α according
to inequality (15).

4.2 General nonlinear system

In the following, let us consider a class of nonlinear periodic
systems

ẋ = f (t, x,u, d)

y = g (x,u) (23)

where f : [0,∞)× R
n × R

m × R
m → R

n, g : R
n × R

m → R
m,

and f(t, x,u, d(t)) = f(t + T, x,u, d(t + T)); x(t) ∈ R
n is the

system state, u(t) ∈ R
m is the control input, d ∈ C0T([0,∞),Rl)

is the T-periodic disturbance. The objective of the control
input u is to make y(t) track T-periodic desired signal yd ∈
C0T([0,∞);Rm).

For the system (23), similar to (8), an FRC is taken in the
form as

Aε v̇ (t) = −v (t) + (1 − αAε) v (t − T) + h (t, e)

u (t) = ust (x (t)) + v (t) (24)

where e � yd − y, Aε ∈ R
m×m is a positive semi-definite

matrix, α > 0, h : R
m × R

m → R
m is a continuous function,

and ust : R
n → R

m is a state feedback law employed to stabilise
the state of the considered plant (23). The functions h(·) and
ust(·) are both locally Lipschitz. On the other hand, the contin-
uous function v represents a feedforward input which will drive
the output y of (23) to track the given desired trajectory yd. Next,
the resulting closed-loop system is written as follows

Eż = fa (t, zt ,w) (25)

where

z = [vT xT]T, w = [yTd dT]T

E = diag (Aε , In) , y = g (x,ust (x) + v)

fa (t, zt ,w) =
[−v + (1 − αAε) v (t − T) − h (t, e)

f (t, x,ust (x) + v, d)

]
.

Theorem 4.3: Suppose (i) the solutions of the resulting closed-
loop system in (25) are uniformly bounded and uniformly ulti-
mately bounded; (ii) h(t, e) → 0 implies e → 0. Then the result-
ing closed-loop system in (25) has a T-periodic solution z∗ = [v∗T
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x∗T]T. Let ze � z − z∗. Furthermore, if

Eże = fa
(
t, z∗

t + zet ,w
)− fa

(
t, z∗

t ,w
)

(26)

is locally (globally) exponentially stable, then the T-periodic solu-
tion z∗ is locally (globally) exponentially stable and

‖h (·, e)‖a ≤ ‖Aε‖ (‖v̇‖a + α ‖v‖a)
holds locally (globally). Furthermore, if ‖v̇(Aε)‖a and ‖v(Aε)‖a
are bounded uniformly w.r.t Aε as ‖Aε‖ → 0, then lim

‖Aε‖→0
‖e

(Aε)‖a = 0 locally (globally).

Proof: Since w is a T-periodic function and f(t, x,u, d(t)) =
f(t + T, x,u, d(t + T)), one has fa(t, zt ,w(t)) = fa(t + T, zt ,w
(t + T)). Furthermore, fa(t, zt ,w) is locally Lipschitz and the
solutions of the resulting closed-loop system (25) are uniformly
bounded and uniformly ultimately bounded. Then the resulting
closed-loop system in (25) has a T-periodic solution according
to Lemma 2.1. Since z = z∗ + ze, one has (26). If (26) is locally
(globally) exponentially stable, ze → 0 as t → ∞ locally (glob-
ally). This implies z → z∗ as t → ∞ locally (globally), namely
the T-periodic solution z∗ is locally (globally) exponentially
stable. By using (24), it follows that

h (t, e) = Aε v̇ (t) + v (t) − (1 − αAε) v (t − T) . (27)

Taking ‖ · ‖a on both sides of the equation (27) yields

‖h (·, e)‖a = lim sup
t→∞

∥∥∥∥Aε (v̇ (t) + αv (t − T))

+v (t) − v (t − T)

∥∥∥∥
≤ lim sup

t→∞
‖Aε (v̇ (t) + αv (t − T))‖

+ lim sup
t→∞

‖v (t) − v (t − T)‖

≤ ‖Aε‖ (‖v̇‖a + α ‖v‖a)
where the condition that the solutions of (25) approach the
T-periodic solution is used. If ‖v̇‖a and ‖v‖a are bounded uni-
formly w.r.t Aε as ‖Aε‖ → 0, then ‖Aε‖(‖v̇‖a + α‖v‖a) → 0
as ‖Aε‖ → 0. This implies that ‖h(·, e·)‖a → 0 as ‖Aε‖ →
0. Note that h(t, e) → 0 implies e → 0 as t → ∞. Then
lim

‖Aε‖→0
‖e(Aε)‖a = 0. �

Remark 4.5: The state feedback law ust(·) employed is to sta-
bilise the state of the considered plant (23), i.e. making con-
dition (i) of Theorem 4.3 hold. It is required that h(t, e) →
0 imply e → 0 according to condition (ii) of Theorem 4.3.
The major idea of the actuator-focussed RC design is to make
h(t, e) as the input of the internal model, i.e. Aε v̇(t) = −v(t) +
(1 − αAε)v(t − T) + h(t, e) appearing in (24). If the closed-
loop system tends to equilibrium, then the tracking error can
be analysed according to the RC itself. This is based on the
actuator-focussed viewpoint.

Remark 4.6: The major advantage of the proposed actuator-
focussed RC design is to avoid the derivation of error dynamics.
This facilitates the tracking controller design. Through incor-
porating the internal model into the closed-loop system, it is

only necessary to ensure that the latter is uniformly bounded
and uniformly ultimately bounded. Uniform boundedness and
uniformly ultimate boundedness are often related to the expo-
nential stability of the closed-loop system when the exogenous
(reference and disturbance) signals are themselves fixed identi-
cally at zero.

5. Numerical examples

In order to demonstrate its effectiveness, the actuator-focussed
RC design method is further proposed to solve three peri-
odic signal tracking problems for a linear periodic system
(time-varying), a minimum-phase nonlinear system and a
nonminimum-phase nonlinear system.

5.1 A linear periodic system

Consider a linear periodic system (9) with

A (t) =
[

0 1
−1 − 0.3 sin t −2 − 0.6 cos t

]
,

B (t) =
[
0.3 sin t

1

]
,

d (t) =
[

0
sin (t + 1)

]
, C (t) =

[
1

0.6 cos t

]
,

D (t) = 1.

The objective is to design u to drive the signal y(t) − yd(t) → 0,
where yd(t) = sin t for simplicity. For the system above, accord-
ing to FRC (10), design

εv̇ (t) = −v (t) + (1 − 0.01ε) v (t − T) + L1
(
yd (t) − y (t)

)
u (t) = v (t) , v (θ) = 0, θ ∈ [−T, 0] (28)

where L1 = 6. Let ρ(t) be the maximal eigenvalue of the matrix
at the left side of (18). If ρ(t) < 0, ∀ t ∈ [0, 2π], then (18) holds.
The matrices P andQ in Theorem 4.2 can be found as

P =
⎡
⎣ 23.39 11.63 −11.42

11.63 87.32 16.72
−11.42 16.72 56.98

⎤
⎦ ,

Q =
⎡
⎣ 47.11 24.32 −27.13

24.31 27.87 −9.08
−27.13 −9.08 34.18

⎤
⎦ .

With them, the curve ρ(t) is plotted in Figure 6 with differ-
ent values ε = 0, 0.1, 1. As shown, (18) holds. Meanwhile, with
the same matrices P and Q, the condition (17) holds when
ε = 0.1, 1, the conditions (19) and (20) hold when ε = 0.

According to Theorem 4.2, the designed controller with
ε = 0, 0.1, 1 can make the closed-loop system uniformly
bounded and uniformly ultimately bounded. When ε = 0, by
the actuator-focussed viewpoint, the control form (28) is to
establish an input-output relation as follows

yd (t) − y (t) = 1
L1

(v (t) − v (t − T)) .

Since v approaches a T-periodic signal, it can be concluded
that yd(t) − y(t) → 0 as t → ∞. When ε = 0.1, 1, the track-
ing error yd(t) − y(t) is uniformly ultimately bounded. With
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Figure 6. The curve ρ(t) in one period.

Figure 7. Tracking error for the linear periodic system with different values ε.

different values ε = 0, 0.1, 1, the corresponding tracking errors
are shown in Figure 7, where the tracking error is nearly zero
after 20s when ε = 0, and tracking error is greatest when
ε = 1. Therefore, the simulation is consistent with our analysis
in Theorem 4.1.

5.2 Aminimum-phase nonlinear system

The dynamics of an m-degree-of-freedom manipulator are
described by the following differential equation

D (q) q̈ + C (q, q̇) q̇ + G (q) = u (29)

where q ∈ R
m denotes the vector of generalised displacements

in robot co-ordinates, u ∈ R
m denotes the vector of generalised

control input forces in robot coordinates; D(q) ∈ R
m×m is the

manipulator inertial matrix, C(q, q̇) ∈ R
m×m is the vector of

centripetal and Coriolis torques and G(q) ∈ R
m is the vector

of gravitational torques. It is assumed that both q and q̇ are
available from measurements. Because of no internal dynam-
ics, the system (29) is a minimum-phase nonlinear system.
Two common assumptions in the following are often made
on the system (29) (Lewis, Abdallah, & Dawson, 1993; Spong
& Vidyasagar, 1989).

(A1) The inertial matrix D(q) is symmetric, uniformly pos-
itive definite and bounded, i.e.

0 < λDIm ≤ D (q) ≤ λ̄DIm, ∀ q ∈ R
m (30)

where λD, λ̄D > 0.

(A2) The matrix Ḋ(q) − 2C(q, q̇) is skew-symmetric, hence

xT
(
Ḋ (q) − 2C (q, q̇)

)
x = 0, ∀ x ∈ R

m.

For a given desired trajectory qd ∈ C2PT([0,∞),Rm), the con-
troller u is designed to make q track qd. Define a new state x as
follows

x = q̇ + μq

where μ > 0. Let 0 < M = MT ∈ R
m×m be a positive definite

matrix and k> 0. According to (24), a control law u is taken in
the form as

εv̇ (t) = −v (t) + (1 − αε) v (t − T) + k ((q̇d + μqd) − x) (t)

u (t) = v (t) − Mx (t) + G (q (t))

− μD (q (t)) q̇ (t) − μC (q (t) , q̇ (t)) q (t) (31)

where v(θ) = 0, θ ∈ [−T, 0]. Substituting the controller (31)
into (29) results in

εv̇ (t) = −v (t) + (1 − αε) v (t − T)

+ k ((q̇d + μqd) − x) (t)

ẋ (t) = −D−1 (q (t)) (C (q (t) , q̇ (t)) + M (t)) x (t)

+ D−1 (q (t)) v (t) . (32)

The closed-loop system (32) can be rewritten in the form
of (25). Suppose (i) Assumptions (A1)–(A2) hold, (ii) 0 < αε <

1, ε,α, k > 0. Then the solutions of the closed-loop system (32)
are uniformly bounded and uniformly ultimately bounded (See
Appendix A.2). Then, the solutions of closed-loop system (32)
are uniformly ultimately bounded. Therefore, the closed-loop
systemhas aT-periodic solution by Lemma 2.1. By the actuator-
focussed viewpoint, according to (32), the control term v is to
establish an input-output relationship as follows

xd (t) − x (t) = 1
k

(v̇ (t) + v (t) − (1 − αε) v (t − T)) .

Suppose qd = [sin t cos t]T with periodicity T = 2π . The
parameters ofmanipulator are chosen as inKhalil (2002, p. 642).
The controller parameters are chosen as follows

M = 100I2, μ = 1, α = 0.1, ε = 0.01, k = 200.

From the simulation, v approaches a T-periodic solution, then

xd (t) − x (t) − ε

k
(v̇ + αv) (t) → 0.

Therefore, it is expected that q can track qd with good precision.
As shown in Figure 8, q has tracked qd with good precision in
the 8th cycle. In the controller design, the stability of the closed-
loop system is only considered rather than the stability of the
error dynamics. As observed as above, the controller design is
simple and the tracking result is satisfactory.
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Figure 8. Two-degree-of-freedommanipulator tracking.

Remark 5.1: For the similar problem, another way is to trans-
form the tracking problem for nonlinear system (29) to a rejec-
tion problem for nonlinear error dynamics in the form of Kim
and Ha (2000), Sun et al. (2006) and Quan and Cai (2011)

ėq (t) = f
(
t, eq

)+ b
(
t, eq

)
(v − vd) . (33)

where eq � xd(t) − x(t), vd is a unknown T-periodic signal
which needs to be learned by v, the functions f : [0,∞)

×R
m→R

m and b : [0,∞) ×R
m→R

m×m are nonlinear. As for
the proposed method, the closed-loop system (32) rather than
error dynamics (33) is analysed, which facilitates the controller
design and simplifies the designed controllers.

5.3 A nonminimum-phase nonlinear system

Consider the following nonlinear system

η̇ = sin η + ξ + dη

ξ̇ = u + dξ

y = ξ

(34)

where η(t), ξ(t), y(t)∈ R, dη, dξ ∈ C0T([0,∞),R) are T-periodic
disturbances. Since zero dynamics η̇ = sin η is unstable, the sys-
tem (34) is a nonminimum-phase nonlinear system. The control
is required not only to cause y to track yd, but also to make
the internal dynamics bounded. If existing methods are used
to handle this problem, then it may be difficult to obtain the
ideal internal dynamics because the disturbance in the inter-
nal dynamics is unknown. To the authors’ knowledge, general
methods handle such a case only at high computational cost
(Shkolnikov & Shtessel, 2002). Compared with the existing
design, the proposed design method will simplify the controller
design. According to (24), a control law u is taken in the form
as

εv̇ (t) = −v (t) + (1 − αε) v (t − T) + k
(
yd − y

)
(t)

u (t) = − (q1 + cos η
) (−q1η + z

)
(t) − ρz (t)

− q2η (t) + v (t) (35)

Figure 9. Periodic signal tracking of an FRC system.

where v(θ) = 0, θ ∈ [−T, 0], v,α, ε, k, q1, q2, ρ ∈ R and z =
ξ + q1η + sin η. Substituting the controller (35) into (34)
results in

εv̇ (t) = −v (t) + (1 − αε) v (t − T)

− k
(
z − q1η − sin η

)
(t) + kyd (t)

η̇ (t) = −q1η (t) + z (t) + dη (t)

ż (t) = −kz (t) − q2η (t) + v (t) + dξ (t)

+ dη (t)
(
q1 + cos η

)
(t) . (36)

It can be proven that the solutions of the resulting closed-loop
system (36) are uniformly bounded and uniformly ultimately
bounded (seeAppendixA.3). Then the closed-loop systemhas a
T-periodic solution by Lemma 2.1. Suppose dη = 0.1 sin t, dξ =
0.2 sin t, and yd = sin t. The controller parameters are chosen as
follows

ε = 0.1, α = 0.1, k = 5, q1 = q2 = 1, ρ = 2.

From the simulation, v approaches a T-periodic solution, then

(
yd − y

)
(t) − ε

k
(v̇ + αv) (t) → 0.

Therefore, it is expected that y can track yd with good preci-
sion. Figure 9 shows the response of the closed-loop system
from the given initial condition. The output tracks the desired
trajectory very quickly in the second cycle. The internal state
η(t) is also bounded. In the controller design, the stability of
the closed-loop system is only considered rather than the sta-
bility of the error dynamics so that the derivation of the ideal
internal dynamics is avoided.

Remark 5.2: Let us recall the method in Shkolnikov and Sht-
essel (2002), which is used to solve the similar problem. The
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internal dynamics of (34) is

η̇ = sin η + ξ + dη. (37)

Since dη is unknown, its estimate, namely d̂η, should be obtained
by an observer first. Let ηd be the reference state of η. The
nonlinear ideal internal dynamics is

η̇d = sin ηd + yd + dη (38)

where ξ in (37) has been replaced by its reference yd. According
to Shkolnikov and Shtessel (2002), (38) should be linearised as

η̇d = ηd + yd + dη (39)

for computation in the following. Furthermore, by assuming
that the forcing yd + d̂η can be piecewise modelled by a lin-
ear exosystem with known characteristic polynomial, the esti-
mate of ηd, namely η̂d, is generated by a designed differential
function related to (39). With η̂d obtained, the tracking prob-
lem can be converted to be a stabilising control problem. As
shown, solving the observer and the differential function are
time consuming, especially when the dimension of the whole
system is large. Moreover, the error will be generated because
of twice approximations, namely d̂η and then η̂d. Therefore,
the proposed method here facilitates the controller design and
simplifies the designed controllers.

6. Conclusions

A new viewpoint, namely the actuator-focussed viewpoint, on
IMP is proposed in this paper. It can be used to explain how
internal models work in the time domain. Compared with the
cancelation viewpoint, the proposed viewpoint can be applied to
nonlinear systems. Compared with the geometrical viewpoint,
the proposed viewpoint ismore suitable to explain how the peri-
odic internal model, an infinite-dimensional internal model,
works in the time domain. Guided by the actuator-focussed
viewpoint, the actuator-focussed RC design method is further
proposed for periodic signal tracking. In the controller design,
the stability of the closed-loop system needs to be considered
rather than that of the error dynamics. In order to demon-
strate its effectiveness, the proposed design method is applied
to RC problems for a linear periodic system (time-varying), a
minimum-phase nonlinear system and a nonminimum-phase
nonlinear system. From the given examples, the controller
design is simple, and the tracking result is satisfactory. Further-
more, from the nonminimum-phase nonlinear system tracking
example, the proposed design method provides a possible way
to deal with some currently difficult problems.

Stochastic systems are receiving more and more attention
(Wang & Zhu, 2015, 2017, 2018a, 2018b; Zhu, 2018; Zhu
&Wang, 2018). The proposed actuator-focussed designmethod
has a potential for stochastic systems, because, for which, ran-
dom periodic solutions can also be obtained according to fixed
point theorems (Feng, Zhao, & Zhou, 2011). Then, the rela-
tionship (7) is focussed on, where the tracking error will be
determined by stochastic variables. This can be as a future work.

Note

1. In control theory, a proper transfer function is a transfer function in
which the order of the numerator is not greater than the order of the
denominator. A strictly proper transfer function is a transfer func-
tion where the order of the numerator is less than the order of the
denominator.
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Appendix

A.1 Proof of Theorem 4.2
Choose a Lyapunov functional as

V (zt) = 1
2
zT (t)

(
PE + ETP

)
z (t) +

∫ 0

−T
zTt (θ)Qzt (θ) dθ .

Taking its derivative along (12) yields

V̇ (zt) = zT (t)
(
PE + ETP

)
ż (t) + zT (t)Qz (t)

− zT (t − T)Qz (t − T)

≤ −λ1 ‖z (t)‖2 − λ1 ‖z (t − T)‖2 ≤ 0 (A1)

where (17) is utilised. Based on (A1), two conclusions are proven in the
following.

(i) z(t) = 0 in (12) is globally exponentially stable when Aε > 0. For
system (12), there exist γ1, γ2, ρ > 0 such that

γ1 ‖z (t)‖2 ≤ V (zt) ≤ γ2 ‖z (t)‖2 + ρ

∫ 0

−T
‖zt (θ)‖2 dθ

V̇ (zt) ≤ −λ1 ‖z (t)‖2 .
According to Quan and Cai (2012, Theorem 1), (12) is globally expo-
nential convergence. Futhermore, z(t) = 0 is globally exponentially stable
according to the stability definition.

(ii) If supt∈[0,T] ‖(Im + L1(t)D(t))−1‖ < 1, then z(t) = 0 in (12) is
globally exponentially stable when Aε = 0. For system (12), there exist
γ2, ρ > 0 such that

λ2 ‖x (t)‖2 ≤ V (zt) ≤ γ2 ‖z (t)‖2 + ρ

∫ 0

−T
‖zt (θ)‖2 dθ

V̇ (zt) ≤ −λ1 ‖z (t)‖2 .
Similar to the proof in Quan and Cai (2012, Theorem 1), x(t) is globally
exponential convergence. Arranging (10) results in

v (t) = (Im + L1 (t)D (t))−1 v (t − T)

− (Im + L1 (t)D (t))−1 L1 (t)
(
CT (t) + D (t) L2 (t)

)
x (t) . (A2)

Since supt∈[0,T] ‖(Im + L(t)D(t))−1‖ < 1 and x(t) is globally exponential
convergence, then v(t) = 0 is globally exponential convergence as well.
Consequently, according to the stability definition, z = [vT xT]T = 0 is
globally exponentially stable.

A.2 Uniformly ultimate boundedness proof for
minimum-phase nonlinear system
Design a Lyapunov functional to be

V (zt) = k
2
xT (t)D (q (t)) x (t) + ε

2
vT (t) v (t)

+ 1
2

∫ 0

−T
vTt (θ) vt (θ) dθ .
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where (A1) is utilised. Taking the derivative ofV along the solutions of (32)
results in

V̇ (zt) = −kxT (t)Mx (t) + kxT (t) v (t)

+ 1
2

(
vT (t) v (t) − vT (t − T) v (t − T)

)
+ vT (t) (−v (t) + (1 − αε) v (t − T))

+ kvT (t) (xd (t) − x (t))

≤ −kxT (t)Mx (t) − αε (2 − αε)

2
vT (t) v (t)

+ kvT (t) xd (t)

where (A2) is utilised. Since

εvTv + 2kvTxd + 1
ε
k2xTdxd ≥ 0

for any ε > 0, one has

V̇ ≤ −kxTMx −
(

αε (2 − αε)

2
− ε

)
vTv + 1

ε
k2xTdxd. (A3)

Here, ε is chosen sufficiently small so that αε(2−αε)
2 − ε > 0. Therefore, the

given Lyapunov functional satisfies

γ0 ‖z(t)‖2 ≤ V (zt) ≤ γ1 ‖z(t)‖2 + 1
2

∫ 0

−T
‖zt (θ)‖2dθ

V̇ (zt) ≤ −γ2 ‖z(t)‖2 + χ

(
sup

t∈[0,T]
‖xd (t)‖2

)

where γ0 = min(
kλD
2 , ε

2), γ1 = max( kλ̄D2 , ε
2 ), γ2 = min(kλmin(M), αε(2−αε)

2− ε) and function χ belongs to classK (Khalil, 2002, Defintion 4.2, p. 144).
According to Quan and Cai (2012, Theorem 1), the solutions of (32) are
uniformly bounded and uniformly ultimately bounded.

A.3 Uniformly ultimate boundedness proof for
nonminimum-phase nonlinear system
Design a Lyapunov functional to be

V (zt) = 1
2
p1η2 (t) + 1

2
p2z2 (t) + ε

2
v2 (t) + 1

2

∫ 0

−T
v2t (θ) dθ .

where z � [η z v]T and p1, p2, ε > 0. Taking the derivative of V along the
solutions of (36) results in

V̇ (zt) = p1η (t) η̇ (t) + p2z (t) ż (t) + εv (t) v̇ (t)

+ 1
2
(
v2 (t) − v2 (t − T)

)
= −p1q1η2 (t) − p2kz2 (t) − αε (2 − αε)

2
v2 (t)

+ (
p1 − p2q2

)
η (t) z (t) + (

p2 − ρ
)
z (t) v (t)

+ v
(
q1η (t) + sin η (t)

)
+ p1η(t)dη(t) + p2

(
dξ (t) − dη (t)

(
q1 (t) + cos η (t)

))
z(t)

+ ρv(t)yd(t).

By fixing p1, q1 and choosing p2 = ρ and 0 < αε < 1, if k is chosen
sufficiently large, then

− p1q1η2 − p2kz2 − αε (2 − αε)

2
v2 + (

p1 − p2q2
)
ηz

+ (
p2 − ρ

)
zv + v

(
q1η + sin η

) ≤ −θ1η
2 − θ2z2 − θ3v2 (A4)

where θ1, θ2, θ3 > 0. Furthermore, there exists a class K function χ :
[0,∞) → [0,∞) (Khalil, 2002, Defintion 4.2, p. 144) such that

V̇ ≤ −θ ′
1η

2 − θ ′
2z

2 − θ ′
3v

2

+ χ

(
sup

t∈[0,T]

(∥∥yd (t)
∥∥2 + ∥∥dη (t)

∥∥2 + ∥∥dξ (t)
∥∥2))

where θ ′
1, θ

′
2, θ

′
3 > 0. Therefore, the given Lyapunov functional satisfies

γ0 ‖z(t)‖2 ≤ V (zt) ≤ γ1 ‖z(t)‖2 + 1
2

∫ 0

−T
‖zt (θ)‖2dθ

V̇ (zt) ≤ −γ2 ‖z(t)‖2

+ χ

(
sup

t∈[0,T]

(∥∥yd (t)
∥∥2 + ∥∥dη (t)

∥∥2 + ∥∥dξ (t)
∥∥2))

where γ0 = min( 12p1,
1
2p2,

ε
2 ), γ1 = max( 12p1,

1
2p2,

ε
2 ) and γ2 = min(θ ′

1,
θ ′
2, θ

′
3). According toQuan andCai (2012, Theorem 1), the solutions of (36)

are uniformly bounded and uniformly ultimately bounded. Furthermore,
ξ is also uniformly ultimately bounded by using the relationship ξ = z −
q1η − sin η.
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