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Abstract— Relative pose estimation is critical for collabo-
rative multi-agent systems. To achieve accurate and low-cost
localization in cluttered and GPS-denied environments, we
propose a novel relative pose estimation system based on a
designed active infrared coded target. Specifically, each agent
is equipped with a forward-looking monocular camera and a
unique infrared coded target. The target with the unique lighted
LED arrangement is detected by the camera and processed with
an efficient decoding algorithm. The relative pose between the
agent and the camera is estimated by combining a PnP algo-
rithm and a Kalman filter. Various experiments are performed
to show that the proposed pose estimation system is accurate,
robust and efficient in cluttered and GPS-denied environments.

I. INTRODUCTION

In recent years, there is a booming interest in collaborative
multi-agent systems [1], [2], [3]. Compared to an individual
agent, multi-agent systems have the advantage over faster
task completion, more robust to sensor failures and higher-
precision pose estimation through sensor fusion. Multi-agent
systems have numerous indoor applications such as cooper-
ative surveillance, monitoring, search and rescue missions.

In multi-agent systems, precise knowledge of the relative
location among swarms of agents is crucial for the success of
collaborative tasks. Although the Global Positioning System
(GPS) is available for localization, the multi-agent systems
may work in a GPS-denied environment such as indoors or
urban areas with high buildings. Thus, vision-based relative
pose estimator has emerged to be one of the most popular
solutions for multi-agent systems.

Nowadays, the model-based relative localization, which
mainly relies on artificial landmarks, has become a common
approach for multi-agent systems. ARTags [4] and AprilTags
[5] were commonly used for mutual localization. They
provided not only a pose estimation but also a unique ID
for each agent. But those artificial landmarks required a
large and flat area, which made them unsuitable for micro-
aerial agents. Passive landmarks such as colored markers
were employed to estimate the pose in some researches [6],
[7]. The distinction among the UAVs based on different
colors of markers has also been proved to be an effective
method for multi-target identification [8]. However, the high
dependency on the illumination condition for passive markers
may decrease the accuracy. Some researches distinct target
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Fig. 1. Tllustration of the hardware platform. (a) The agent with an infrared
coded target on the back; (b) The designed target, which is 9.1 cmx2.2 cm
with 18 infrared LEDs.

ID with LEDs blink at different frequencies. [9] used a
Dynamic Vision Sensor (DVS) for pose estimation. A DVS
can track frequencies up to several kilohertz. Therefore, pose
estimation can be performed with low latency. However, low
sensor resolution (128x128 pixels) limited precision. [10]
used CMOS camera to obtain high-quality images with high
latency and low sampling frequency compared to the DVS
but suffered from motion blur. Simultaneous Localization
and Mapping (SLAM) or Monte Carlo Localization (MCL)
techniques were utilized to estimate positions for agents, as
in [11]. However, when sharing the positions with each agent,
the techniques were time-consuming.

The purpose of this paper is to propose an efficient relative
localization system with the designed coded target. The main
contributions of this paper are as follows:

o Design a small active infrared coded target for extract-
ing IDs for multiple micro-agents.

e Design a target decoding algorithm which is highly
efficient and robust in cluttered environments.

« Estimate relative positions for multi-agents with lighted
LEDs on the designed targets.

o Perform various experiments to evaluate the proposed
pose estimated system.

The rest of the paper is organized as follows. In Section
II, we describe the design of the coded target. The target
decoding algorithm and the pose estimation algorithm are
discussed in Section III. In Section IV, we present the
experiments, and the concluding remarks can be found in
Section V.

II. ACTIVE INFRARED CODED TARGET DESIGN

The designed hardware platform, as shown in Fig. 1(a),
is composed of a small-sized coded target and a monocular
camera. The coded target is a rectangle formed with 18 active



infrared LEDs, described in Fig. 1(b). The coded target is
small enough to be mounted on micro-agents.

The designed target is presented in Fig. 2. Infrared LEDs
on the target are divided into locators and detectors according
to different functions, as shown in Fig. 2(a). The locators
distinguish the target from the others while the detectors
provide unique IDs. For classifying locators and detectors,
their contour aspect ratios are designed to be different. As for
locators, light spots of four adjacent infrared LEDs overlap
together, making an aspect ratio equal to 3:1 approximately.
On the other hand, the contour aspect ratio for detectors is
about 1:1 since they are relatively sparse.

To extract a specific ID from the coded target, two
constraints are designed, as shown in Fig. 2(b)(c)(d). One
is the number of lighted detectors, defined as N. The other
is segment ratio, defined as M. IDs in Fig. 2(b)(c) have the
same number of lighted detectors (N = 3), but different
segment ratios ([2:2:2:3:3] in Fig. 2(b) yet [1:1:4:4:2] in
Fig. 2(c)); ID in Fig. 2(d) has different number of lighted
detectors (N = 4) and different segment ratios ([1:2:2:1:2:4])
as well. Before extracting IDs, it is necessary to build an
ID library. Inspired by modified lexicode' and AprilTag [5]
which use minimum Hamming distance?, we generate an ID
library by maximizing Mean Squared Error (MSE):
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where x; and y, are corresponding segments from two IDs
whose NN is equal; m is the number of segments. When
p is greater than a threshold, the ID is considered to be a
valid candidate. MSE and minimum Hamming distance have
a common goal, i.e., maximizing the difference between IDs.
However, the proposed coded target is small and the number
of detectors is limited. Therefore, using segment ratios to
be a constraint is better than using a minimum Hamming
distance, which is more robust as the number of detectors
increases.

Moreover, the coding scheme should be robust to the
rotation. Thus, when a target is rotated by 90, 180 and 270
degrees, the same ID should be extracted rather than the
others. Since the proposed coded target is a rectangle instead
of a square, the only situation to be considered is 180 degrees
rotation. To solve this problem, another constraint is added:
candidate should never be of central symmetry. With this
constraint, the robustness against rotation is ensured in ID
extraction.

In this paper, we set IV ranging from 3 to 8. For every
case of a certain number of NV, we set 4 possibilities of
the segment ratios. As a result, a total of 24 candidate IDs
exists, which are enough for multi-agent systems. There
are several advantages to the designed target. First, the
proposed target is small enough to mount on micro-agents.
Secondly, unlike passive landmarks, active infrared LEDs
work under bad conditions regardless of dark or visible light

Uhttps://en.wikipedia.org/wiki/Lexicographic_code
Zhttps://en.wikipedia.org/wiki/Hamming_distance
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Fig. 2. Introduction of the designed target in details. (a) Locators (8
LEDs) are set on the left and right sides, colored in red and constantly
lighted; detectors (10 LEDs) are set on the top and bottom sides, colored in
white and whether the detectors are lighted depends on the coding algorithm,
(b)(c)(d) represent different IDs with a different number of lighted detectors
and segment ratio. Detectors colored in yellow are lighted and the segments
are colored in blue. The red number represents segment ratio. Label “ID
3-0” means that the number of lighted detectors is 3 and the segment ratio
is [2:2:2:3:3].

pollution. Thirdly, the locators and the detectors are easy to
distinguish and hard to be disturbed by other targets. Finally,
as discussed later, the correspondence between LEDs and
contours in the camera image is highly efficient due to the
design of our targets.

III. POSE ESTIMATION FOR MULTIPLE OBJECTS

Each agent in the multi-agent system is equipped with
the designed target described in Section II. The proposed ID
extraction algorithm and the relative pose estimation method
mainly contains five steps, as shown in Fig. 3. The current
camera image, aspect ratio, LED configuration and ID library
serve as inputs to the proposed algorithm. Meanwhile, the
target ID, relative position (xfj) and relative orientation (rfj)
act as outputs. First, lighted LEDs in the camera images are
detected. Second, they are divided into two parts according
to the aspect ratio, which are locators and detectors. Then,
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Fig. 3. Pipline of the ID extraction and relative pose estimation algorithm.

using locators to distinguish each target from the others in
the camera images. Next, IDs are extracted with ID library.
Finally, relative pose and orientation are estimated for the
multi-agent. All steps are described below in more detail.



A. LED Detection and Classify

First, LEDs need to be detected in the image. Since
infrared LEDs’ wavelength matches the infrared-pass filter in
the camera, they appear very bright in the image compared
to the background. Thus, a thresholding function is sufficient
to detect LEDs,

I'(u,v) = { 258:

where I(u, v) is the original pixel value and I’'(u, v) is
the processed one. 1" is the threshold. We found that a
large range of threshold parameter works well (80-180).
Then, the contours of the bright area are calculated by
findContours function. Next, the first moment is utilized
to calculate the centers of the contours and minAreaRect
function to calculate the minimum-area bounding rectangle
for the contours. The above functions are achieved by the
OpenCV library?.

Afterward, the contours are classified as two parts, locators
(L) and detectors (D,,), by the aspect ratio of the minimum-
area bounding rectangle. When the threshold is set to 2, it
can effectively classify the locators (aspect ratio nearly equal
to 3:1) and the detectors (aspect ratio nearly equals to 1:1).

if I(u,v)>T,
otherwise.

2

B. Recognize multi-agent

Before extracting IDs, the targets in the camera image
need to be separated first, with the help of the locators.
First, the locators are sorted by x-axis in the image to search
pairs of locators (L1, Ls). Since adjacent locators are more
likely to form the target, sorting the locators can reduce
the algorithm complexity greatly. After picking a pair of
locators Ly and Lo, the shape formed by L; and Ls is to be
determined whether a target or not by geometric relationship.
Specifically, it is more likely to be a target when the shape
is a rectangle. Thus, two constraints are used: the opposite
side to be equal and angles between adjacent sides close to
90 degrees. The first constraint is to ensure the shape formed
by L; and L, to be a parallelogram, avoiding the case that
shape is formed by different targets’ locators with different
orientations, as shown in Fig. 4(a). The distance constraint
is described as follows,

cr=+(a—-0)2+ (c—d)? < Ty (3)

where a, b, ¢, d are the side lengths of the shape, as shown
in Fig. 4(a) and 7T} is the threshold.

The second constraint is to ensure the angles between
adjacent sides close to 90 degrees, avoiding the case that two
locators result from different targets with same orientation
but different positions, as shown in Fig. 4(b). We use Cosine
theorem to restrict the angles,

Vi1 Vg
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where v; € R? and vo € R? are the direction vectors of
the adjacent sides and 7}, is the threshold. When the two
constraints are satisfied, the shape formed by L, and L, are
determined to be a target.
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Fig. 4. Two situations when picking a pair of locators to form the shape.
(a) locators picked from different targets with different orientations. a, b, c,
d represent the sides of the shape. (b) locators picked from different targets
with same orientation but different positions.

C. ID Extraction

After separating the target from the others, the ID can
be extracted through the proposed ID extraction algorithm.
First of all, endpoints of the target need to be calculated for
computing the top edge (TF) and the bottom edge (BE) of
the target. The endpoints can be calculated by the geometric
characteristics of the locators since the endpoints are the
locators’ five equal points. Then, compute distances between
lighted detectors and TFE, BE to determine which line
detectors belong to. Next, the segment ratio can be computed,
as shown in Fig. 2(b)(c)(d). Finally, the ID can be extracted
using (1) with ID library. The method of recognizing multi-
agent and ID extraction is summarized in Algorithm 1.

Algorithm 1 Recoginzing multi-agent and ID extraction
Input:
Locators L and detectors D,, in a image
Output:
IDs of the targets in the image
1: Sort L by x-axis in the image
2: for L1 € L do
for Ly € L\ Ly do
4 if g <Tgand co < T,
5 Compute TE, BE
6: Compute distances between D,, and TF, BE
7
8
9

[95]

Compute segment ratio
Extract ID using MSE with ID library

end if
10: L < update(L)
11:  end for
12: end for

D. Relative Pose Estimation

The designed coded target can also be used for estimating
relative pose. As shown in Fig. 3, the inputs of the pose
estimation step are locators, lighted detectors and LED con-
figuration. Locators and lighted detectors have been obtained
in the above steps. The LED configuration, i.e., the positions
of the lighted LEDs in the reference frame of the target,
needs to be measured in advance instead. The advantage of
the proposed target is that matching the lighted LEDs on the



target with the contours in the camera image is easy when the
target is separated from the others. Compared with previous
methods such as correspondence search in [12] and Particle
Swarm Optimization (PSO) algorithm in [13] to find the
optimal correspondence, our method is linear. The relative
pose is initialized by the PnP algorithm first. The coordinates
of the three lighted LEDs are fed into the P3P algorithm, as
described in [14]. Then, other lighted LEDs on the target
can be used to refine the reprojection error and evaluate its
correctness. After the initialization based on PnP algorithm,
a Kalman filter is utilized to predict relative pose to improve
the accuracy and robustness, as described in [15], with real-
time operation state estimation.

IV. EXPERIMENTS AND RESULTS

We design a set of experiments to evaluate the accuracy,
robustness and efficiency of our system. In Experiment 1, a
camera is used as a static agent who is fixed with a tripod,
and one unmanned aerial vehicle (UAV) equipped with the
designed target is involved in position estimation. In Experi-
ment 2, two more UAVs are added to the pose estimation
progress. This experiment aims at applying the proposed
system into multi-agent situations. Occlusion experiments are
designed to evaluate the robustness of the system as well.
Finally, the computational cost is measured for each step
of the algorithm to evaluate the efficiency of the system in
Experiment 3.

Fig. 5. Indoor experiment environment. MCS is used for providing the
ground truth. The camera is fixed with a tripod and the UAVs are moving.

A. Experiment 1: Single-agent localization

The goal of this experiment is to characterize the relative
localization system and analyze its accuracy. A camera with
an infrared-pass filter, a resolution of 752 x 480 pixels and
a field of view of 90° is used for the experiments. The coded
target is equipped on the back of the UAV (see Fig. 1(a)). As
shown in Fig. 5, the experiment is carried out in a laboratory
room with an OptiTrack* motion capture system installed,
which provides the ground truth of the UAV’s positions and
orientations.

In the first run, the camera is positioned at a fixed location
while the UAV is moving. The proposed relative localization

“https://optitrack.com/

system obtains UAV’s position and orientation relative to the
camera. The estimation results are then transformed into the
world frame compared with the ground truth provided by
OptiTrack motion capture system. In Fig. 6, the estimated
position, errors of position and orientation of the UAV are
shown in (a), (b), and (c), respectively. Accuracy assessment
results are as follows: with a total of 3978 images in the video
dataset, there are 3 images (0.075%) that the target could not
be detected while other images (99.925%) found a good pose
estimation; the position error is between 0.05 cm and 17.98
cm with a mean of 2.42 cm and a standard deviation of 1.91
cm; the orientation error lies between 0.05° and 2.09° with
a mean of 0.3° and standard deviation of 0.21°.
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Fig. 6. The performance of single-agent localization, including the

estimated position, error of position and error of orientation.



In the second run, we evaluate the error concerning the
distance between the camera and the UAV. The camera was
fixed at the origin and the target is moved from 0.3 m to
2.4 m while recording a total of 3759 images. Fig. 7 shows
the boxplot of the position error. We could observe that only
a minor increase exists in the localization error when the
distance between the camera and the target increases to the
maximum range. However, the target size and the camera
resolution limit the maximum valid distance between the
camera and the coded target. At a distance of 2.5 m, the
size of the detected LEDs is reduced to only a few pixels in
the camera of 752 x 480 resolution and the luminous area
emitted by LEDs overlapped.
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Fig. 7. Boxplot of the position error concerning the distance between the

camera and the target.

B. Experiment 2: Multi-agent recognition and localization

The second experiment firstly aims at the application of
pose estimation for multi-agent. The experimental setup is
the same as Experiment 1 except for increasing two UAVs
equipped with the coded targets. The camera is positioned
at a fixed location while three UAVs are moving at the same
time. The estimated pose of one of the UAVs is recorded
to evaluate the proposed system. In Fig. 8, the estimated
position, errors of position and orientation of this UAV are
shown in (a), (b), and (c), respectively. Accuracy assessment
results in the multi-agent system and occlusion situations are
as follows: the position error is between 0.09 cm and 19.86
cm with a mean of 3.01 cm and standard deviation of 2.10
cm; the orientation error lies between 0.08° and 12.74° with
a mean of 1.43° and a standard deviation of 1.08°.

Secondly, the designed occlusion experiments are per-
formed to evaluate the robustness of the system, as shown in
Fig. 9. In the T'; stage, the three targets are not obstructed
from each other. Their positions, orientations, as well as IDs,
can be estimated by the proposed algorithm, as shown in Fig.
9(a). In the T'9 stage, the locators of the target in the middle
is occluded by the right target. Therefore, the middle target is
not recognized by the proposed algorithm, but the right one
does not get disturbed. In the next stage, the left one and the
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right one all occlude the middle target, but they do not get
disturbed by the detectors of the middle one, as described in
Fig. 9(c). Finally, the middle target appears and is recognized
again by the proposed algorithm. The occlusion experiments
show that when the targets’ locators are occluded, the target
is hard to be recognized but the remaining detectors do not
interference other targets. And once the target appears, it will
be recognized immediately.

C. Experiment 3: Execution times

The mean execution times for each step of the proposed
algorithm with a different number of targets can be found in
Table I. For every fixed number of targets, they are measured
on a dataset with 2600 images. We use a laptop with an Intel
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Fig. 9. Camera images (a) before, (b)(c) during, (d) after the targets
occlusion. The green text in the images shows the ID of the targets, yaw
and position relative to the camera.

i7-7700 (2.80 GHz) processor. Note that as the number of
targets increases, the execution times increases sublinearly.
On average, relative pose estimation makes up 43.5% of the
execution time. And thanks to the designed coded target,
ID extraction step is efficient enough, which makes up only
7.72% of the execution time.

TABLE I
EXECUTION TIMES

Process Running Time (ms)
1 target | 2 targets | 4 targets | 8 targets

LED detection 0.802 0.807 0.887 1.016
Classify 0.555 0.692 1.298 1.988
Recognition 0.582 0.794 1.660 2.452
ID extraction 0.229 0.311 0.645 1.276
PnP + KF 1.225 1.806 4.039 6.657
Total 3.393 4410 8.529 13.39

V. CONCLUSIONS

In this paper, we present an accurate, robust and efficient
system capable of providing relative pose estimation and
target ID for multi-agent systems based on the designed
infrared coded target. The designed target is simple and
only requires a few infrared LEDs to code unique IDs and
estimate pose. As demonstrated, our solution works well
in cluttered environments for micro multi-agent systems,
further, owns high accuracy for both ID extraction and pose
estimation. Experiment results also show that, compared with

previous methods, the new strategy is more efficient because
of the easy correspondence method and the execution time
is sublinear with targets increased.

In the future, we plan to open source the code for
everyone to integrate our target into their robotic platforms to
solve the problem of multi-agent system relative localization.
Meanwhile, we will continue to improve the accuracy and
efficiency of the system and try to solve the problem that the
maximum valid distance between the camera and the coded
target is limited.
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