
IET Cyber-systems and Robotics

Research Article

Failsafe mechanism design of multicopters
based on supervisory control theory

eISSN 2631-6315
Received on 3rd November 2019
Revised 18th December 2019
Accepted on 6th January 2020
E-First on 19th February 2020
doi: 10.1049/iet-csr.2019.0039
www.ietdl.org

Quan Quan1 , Zhiyao Zhao2, Liyong Lin3, Peng Wang1, Walter Murray Wonham3, Kai-Yuan Cai1
1School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, People's Republic of China
2School of Computer and Information Engineering, Beijing Technology and Business University, No. 11/33 Fucheng Road, Haidian District,
Beijing 100048, People's Republic of China
3Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada

 E-mail: qq_buaa@buaa.edu.cn

Abstract: In order to handle undesirable failures of a multicopter, which occurs in either the pre-flight process or the in-flight
process, a failsafe mechanism design method based on supervisory control theory (SCT) is proposed for the semi-autonomous
control mode. The failsafe mechanism is a control logic that guides what subsequent actions the multicopter should take, by
taking account of real-time information from guidance, attitude control, diagnosis and other low-level subsystems. In order to
design a failsafe mechanism for the multicopters, safety issues of the multicopters are introduced. Then, user requirements
including functional requirements and safety requirements are textually described, where functional requirements guide the
modelling of a general multicopter plant, and safety requirements cover the failsafe measures dealing with the presented safety
issues. Based on these requirements, several multicopter modes and events are defined. On this basis, the multicopter plant
and control specifications are modelled by automata. Then, a supervisor is synthesized by using SCT. In addition, the authors
present three examples to demonstrate the potential conflicting phenomena due to the inappropriate design of control
specifications. Finally, based on the obtained supervisor, an implementation method suitable for multicopters is presented, in
which the supervisor is transformed into decision-making codes.

1 Introduction
Multicopters are well-suited to a wide range of mission scenarios,
such as search and rescue, package delivery, border patrol, military
surveillance and agricultural production [1]. In either pre-flight
process or in-flight process, multicopter failures cannot be
absolutely avoided. These failures may abort missions, crash
multicopters and moreover, injure or even kill people. In order to
handle undesirable failures in industrial systems, a technique
named Prognostics and Health Management (PHM) is presented
[2]. As shown in Fig. 1, an integrated PHM system generally
contains three levels: monitoring, prediction and management [3].
On the one hand, the monitoring and prediction levels assess the
quantitative health of the studied system [4–7]. On the other hand,
the management level imports the quantitative health results from
the monitoring and prediction levels and then responds to meet
qualitative safety or health requirements. This paper aims to study
a safety decision-making logic by using supervisory control theory
(SCT) to guarantee flight safety from a qualitative perspective.

In the framework of multicopters, guidance, attitude control,
PHM and other low-level subsystems work together under the
coordination of a high-level decision-making module [8]. In this

module, the failsafe mechanism is an important part. It is a control
logic that receives information from all subsystems to decide the
best flight manoeuvre from a global perspective and send flight
instructions to low-level subsystems [9]. However, current
academic literature covering failure-related topics of multicopters
mainly focuses on fault detection techniques and fault-tolerant
control algorithms [10–14], which belong to a study of low-level
subsystems. For the study of the high-level decision-making
module, most research focuses on path planning [15–17] and
obstacle avoidance [18, 19] of an individual multicopter, or PHM-
based mission allocation of a multicopter team [20, 21]. However,
few studies have focused on the failsafe mechanism design of an
individual multicopter subject to multiple potential failures. Ten
Harmsel et al. [22] proposed an emergency flight planning for an
energy-constrained situation. De Smet et al. [23] proposed a
failsafe design for an uncontrollable situation. Johry and Kapoor
[24] designed multiple failsafe measures dealing with different
anomalies of unmanned aerial vehicles. Nevertheless, these
research works only consider certain ad hoc failsafe mechanisms
for certain faults or anomalies, and so far do not present a
comprehensive failsafe mechanism for a multicopter. In current
autopilot products (for example, DJI autopilot [25] and ArduPilot
[26]), there exist comprehensive failsafe mechanisms to cope with
communication, sensor and battery failures, but such mechanisms
are either proprietary or can be accessed only in part. Moreover, to
the best of the authors' knowledge, these failsafe mechanisms are
mainly developed according to engineering experience
[Engineering experience, while invaluable, may nevertheless be
susceptible to subtle errors of logic when dealing with complex
systems. It is here that formal methods of synthesis like SCT can
play an important complementary role in enforcing rigorous design
specifications. A final design should always be confirmed by both
criteria.]. As a result, such a development process lacks a
theoretical foundation; this will inevitably lead to man-made
mistakes, logical bugs or incomplete treatment. Motivated by these,
this paper first summarizes safety issues and user requirements for
multicopters in the semi-autonomous control mode. Most

Fig. 1  PHM framework

IET Cyber-syst. Robot., 2020, Vol. 2 Iss. 1, pp. 31-42
This is an open access article published by the IET and Zhejiang University Press under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

31

multicopters have two high-level control modes: semi-autonomous
control and full-autonomous control. Many open source autopilots
support both modes. The semi-autonomous control mode implies
that autopilots can be used to stabilize the attitude of the
multicopters, and also they can help the multicopters hold the
altitude and position. Under such a mode, a multicopter will be still
under the control of remote pilots. On the other hand, the fully
autonomous control mode implies that the multicopter can follow a
pre-programmed mission script stored in the autopilot which is
made up of navigation commands and also can take off and land
automatically. Under such a mode, remote pilots on the ground
only need to schedule the tasks [1] and then uses SCT of discrete
event systems (DESs) to design a failsafe mechanism of
multicopters.

SCT [27, 28], also known as Ramadge–Wonham (RW)
framework, is a method for synthesising supervisors that restrict
the behaviour of a plant such that the given control specifications
are fulfiled and never violated. Currently, SCT has been developed
with a solid theoretical foundation [29–31], and it has been
successfully applied to practical systems such as flexible
manufacturing systems [32–35] and patient support systems [36].
A recent overview can be found in [37]. This paper formalizes the
problem of failsafe mechanism design as a DES control problem.
The solution procedure is shown in Fig. 2. In order to obtain the
desired failsafe mechanism, the following steps are performed: (i)
define related modes and events by studying the user requirements
(including functional and safety requirements); (ii) model the
multicopter plant by transforming the functional requirements to an
automaton with defined modes and events; (iii) analyse the safety
requirements by taking the defined modes and events into account,
and transform the safety requirements to automata as control
specifications; (iv) synthesize the supervisor by SCT software; (v)
implement the failsafe mechanism based on the obtained
supervisor.

The contributions of the paper mainly lie in two aspects.

• First, this paper introduces SCT into a new application area. The
proposed SCT-based method sets a solid theoretical foundation
for designing the failsafe mechanism of multicopters. In the
field of aircraft engineering, especially of multicopters and
drones, traditional design methods are based on engineering
experience. The failsafe mechanism obtained by these methods
may be problematic (for example, the failsafe mechanism may
contain unintended deadlocks), especially when multiple safety
issues are taken into account. Compared to existing empirical
design methods, the proposed method can guarantee the
correctness and effectiveness of the obtained failsafe
mechanism, which is an urgent need for multicopter designers
and manufacturers.

• Second, as a practical application of SCT, this paper emphasizes
the modelling process of the plant and control specifications
rather than developing a new theory of SCT. We believe this
work is important to both the development of SCT research and
practical engineering because SCT is presented with rich
mathematical terminology and theory which many engineers
may not understand. Motivated by this, this paper presents the
procedure of applying SCT to an engineering problem, from
requirements described textually, to a plant and specifications in
the form of automata, then to a synthesized supervisor and

finally to implementation on a real-time flight simulation
platform of quadcopters developed by MATLAB. In addition,
we present three examples to demonstrate the potential
conflicting phenomena due to inappropriate design of control
specifications. From the perspective of practitioners, this paper
may serve as a guide for those engineers who are not familiar
with SCT to solve their own problems in their own projects by
using SCT and related software.

The remainder of this paper is organized as follows. Section 2
presents preliminaries of SCT. Section 3 lists some relevant safety
issues of multicopters. Also, user requirements including functional
requirements and safety requirements are textually described. In
order to transform the user requirements to automata, the relevant
multicopter modes and events are defined in Section 4. On this
basis, a detailed modelling process of the multicopter plant and
control specifications is presented in Section 5. Then, TCT
software is used to perform supervisor synthesis. Section 6 uses
three examples to demonstrate some possible reasons leading to a
conflict and provides a brief discussion about the scope of
applications and properties of the proposed method. Section 7
shows an implementation process of the proposed failsafe
mechanism on the platforms MATLAB and FlightGear. Section 8
presents our conclusions and suggests some future research.

2 Preliminaries on supervisory control theory
As SCT is well established, readers can refer to textbooks [27, 38,
39] for detailed background and knowledge. This section only
reviews some basic concepts and notation.

• Automaton: In RW theory [27, 28], the formal structure of DES
is modelled by an automaton (generator)

G = Q, Σ, δ, q0, Qm (1)

where Q is the finite state set; Σ is the finite event set (also
called an alphabet); δ:Q × Σ → Q is the (partial) transition
function; q0 ∈ Q is the initial state; Qm ⊆ Q is the set of marker
states. A marker state is a state that it is desired to reach. For
SCT, the alphabet Σ is partitioned as

Σ = Σc ∪ Σu

where Σc is the set of controllable events that can be stopped or
started by will and Σu is the set of uncontrollable events that
cannot be stopped or started by will.

• Plant: Physical systems or processes in DESs are often modelled
as plants in the form of automata. A plant contains all possible
behaviours of the considered system or process, i.e. all possible
event occurrence sequences. A single, more complex plant can
be composed of many smaller components in the form of
automata by using the synchronous product. [For two automata
Gi = Qi, Σi, δi, q0, i, Qm, i , i = 1, 2, their interaction is captured by
the synchronous product G = Q, Σ, δ, q0, Qm of G1 and G2,
denoted by G1 ∥ G2 [27, Chapter 3.3]. The synchronous product
of more than two automata can be constructed similarly.]

Fig. 2  Solution procedure to design the failsafe mechanism of multicopters

32 IET Cyber-syst. Robot., 2020, Vol. 2 Iss. 1, pp. 31-42
This is an open access article published by the IET and Zhejiang University Press under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

• Specification: Specifications in the form of automata are
translated from text-based requirements, specifying how the
plants are supposed to behave, i.e. all event occurrence
sequences that are allowed by these specifications. A
specification is often the synchronous product of many smaller
specifications in the form of automata.

• Blocking state and forbidden state: Nonblocking state is a state
from which the system can always reach a marker state.
Otherwise, the state is blocking. An automaton is said to be non-
blocking if it does not have blocking states. Otherwise, the
automaton is blocked. Two (or more) non-blocking automata are
conflicting if, and only if, their synchronous product is blocked,
i.e. a blocking state exists. Forbidden states are the states which
we do not want to avoid the violation of specifications.

• Supervisor: A supervisor is generated based on plants and
specifications. It forces the plant to comply with the
specification by disabling or enabling certain controllable events
that are originally able to occur in the plant. A supervisor can
also be modelled by an automaton, which includes all possible
event occurrence sequences in the controlled plant.

In order to explain these concepts above, we use a simplified small
factory example as shown in Fig. 3. As shown in Fig. 3b, the
transition graph represents two simplified machines named MACH
i, with two states, labelled Ii, Wi for ‘idle’ and ‘working’,
respectively, i = 1, 2. MACH i executes a sequence of events in
accordance with its transition graph. For MACH1, the finite state
set is Q = I1, W1 , the finite event set is Σ = α1, β1 , the transition
function is given by δ I1, α1 = W1, δ W1, β1 = I1, the initial state is
q0 = I1, and the marker state set is Qm = I1, W1 . As shown in
Fig. 3a, a small factory operates as follows. Initially, the buffer is
empty. With the event α1, MACH1 takes a workpiece from an
infinite input bin and enters W1 from I1. Subsequently, MACH1

returns to I1 (event β1). MACH2 operates similarly, but takes its
workpiece from the BUFF (event α2) and enters W2, and then
deposits it when finished in an infinite output bin (event β2). The
text-based requirement for admissible operation is: the buffer must
not overflow or underflow. The requirement is translated into a
formal specification in the form of an automaton, namely BUFF as
shown in Fig. 3b. BUFF has two states, labelled E, F for ‘empty’
and ‘full’. Here, MACH1 and MACH2 are plants, and BUFF is the
specification. The events α1, α2 are controllable events, but β1,β2 are
uncontrollable events because they simply happen in accordance
with internal machine volition. The synchronous product of two
plants, namely MACH 1 ∥MACH2, is shown in Fig. 4a, where, for
example, the new state I1W2 represents that MACH1 is at I1 and
MACH2 is at W2. After applying the synthesis procedure, we can
get an automaton shown in Fig. 4b, where, for example, the new
state FI1W2 represents that BUFF is at F, MACH1 is at I1 and
MACH2 is at W2. The states FW1W2 and FW1I2 are forbidden states
because the buffer may overflow (two workpieces are in the buffer)
due to the uncontrollable event β1, namely the requirement will be
violated. For example, MACH1 may finish its job (event β1
happens; this is uncontrollable or unpredictable) before MACH2
takes an existing workpiece from the buffer (event α2 happens). To
prevent this, we need to disable the controllable event α1 at the state
FI1W2 so that the forbidden state FW1W2 cannot be reached.
Similarly, we will disable the controllable event α1 at the state
FI1I2. Finally, we can get the supervisor as shown in Fig. 4c. With
such a supervisor, the requirement will not be violated.

3 Safety issues and user requirements
This section lists some relevant safety issues of multicopters. Also,
user requirements including functional requirements and safety
requirements are textually described.

Fig. 3  Simplified small factory
(a) Connection, (b) Plant model

Fig. 4  Supervisory control for the simplified small factory
(a) Automaton synthesis, (b) MACH1 ∥ MACH2, (c) Supervisor

IET Cyber-syst. Robot., 2020, Vol. 2 Iss. 1, pp. 31-42
This is an open access article published by the IET and Zhejiang University Press under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

33

3.1 Safety issues

Major types of multicopter failures that may cause accidents will
be introduced. Here, three types of failures are considered,
including communication breakdown, sensor failure and propulsion
system anomaly

• Communication breakdown: Communication breakdown mainly
refers to a contact anomaly between the remote controller (RC)
transmitter and the multicopter or between the ground control
station and the multicopter. In this paper, for simplicity, only RC
is considered.

• Sensor failure: Sensor failure mainly means that a sensor on the
multicopter cannot accurately measure related signals, or cannot
work properly. This paper considers the sensor failures including
barometer failure, compass failure, GPS failure and inertial
navigation system (INS) failure.

• Propulsion system anomaly: Propulsion system anomaly mainly
refers to battery failure and propulsor failure caused by
electronic speed controllers, motors or propellers.

More information about safety issues can be found in the book [1,
Chapter 14.2].

3.2 User requirements

For safety, a multicopter product is required to have general
functions (functional requirements), and also be capable of coping
with relevant safety issues. Functional requirements and safety
requirements are listed in Tables 1–4, respectively. They are
summarized from the material in [26] and the authors' knowledge
and engineering experience.

(i) Functional requirements: The following functional requirements
describe what behaviour the multicopter is able to perform.
(ii) Safety requirements: The safety requirements restrict what
actions the user wants the multicopter to perform under specific
situations when it is on the ground, in flight, or in the process of
returning and landing.

4 Multicopter mode and event definition
In order to transform the user requirements to automata, several
multicopter modes and events are defined in this section.

4.1 Multicopter mode

Referring to [1, 26], the whole process from taking off to landing
of multicopters is divided into eight multicopter modes. They form
the basis of the failsafe mechanism.

• POWER OFF MODE: This mode means that a multicopter is
turned off. In this mode, the remote pilot can (possibly)
disassemble, maintain and replace the hardware of a multicopter.

• STANDBY MODE: When a multicopter is connected to the
power module, it enters a pre-flight status. In this mode, the
multicopter has not been armed, and the remote pilot can arm
the multicopter manually. Afterwards, the multicopter will
perform a safety check and then transit to the next mode
according to the results of the safety check.

• GROUND-ERROR MODE: This mode indicates that the
multicopter has a safety problem. In this mode, the buzzer will
turn on an alarm to alert the remote pilot that there exist errors in
the multicopter.

• LOITER MODE: Under this mode, the remote pilot can use the
control sticks of the RC transmitter to control the multicopter.
When the remote pilot releases the two control sticks, the
multicopter will slow to a stop, and automatically maintain the
current location, heading and altitude.

• ALTITUDE-HOLD MODE: When the throttle control stick is in
the mid-throttle deadzone, the throttle is automatically
controlled to maintain the current altitude and the attitude is also
stabilized but the horizontal position drift will occur. When the
throttle control stick goes outside the mid-throttle deadzone, the
multicopter will descend or climb depending upon the deflection
of the control stick.

• STABILIZE MODE: This mode allows a remote pilot to fly the
multicopter manually, but self-levels the roll and pitch axes.
When the remote pilot releases the roll and pitch control sticks,

Table 1 Functional requirements
Name Description
FR1 the remote pilot can arm the multicopter by the RC

transmitter and then allow it to take off
FR2 after taking off, the remote pilot can manually switch the

multicopter by the RC transmitter to fly normally, return to
base or land automatically

FR3 the remote pilot can manually control the multicopter to land
and disarm it by the RC transmitter

FR4 when the multicopter is flying, the multicopter can realize
spot hover, altitude-hold hover and attitude self-stabilization

FR5 when the multicopter is flying, the multicopter can
automatically switch to returning to base or landing

Arm is the instruction that the propellers of the multicopter be unlocked; in this case,
the multicopter can take off. Correspondingly, disarm is the instruction that the
propellers of the multicopter be locked; in this case, the multicopter cannot take off.

Table 2 Safety requirements on the ground
Name Description
SR1 when the remote pilot tries to arm the multicopter, if the INS

and propulsors are both healthy, the connection to RC
transmitter is normal, and the battery's capacity is adequate,
then the multicopter can be successfully armed and take off.

Otherwise, the multicopter cannot be armed

Table 3 Safety requirements in flight
Name Description
SR2 if the multicopter is on the ground (in-flight status) or close to

ground, the multicopter can be manually disarmed by the RC
transmitter, or automatically disarmed if no instruction is sent

to the multicopter by the RC transmitter.
SR3 when the multicopter is flying, the multicopter performs spot

hover by default. If the GPS or compass is unhealthy, the
multicopter can only realize altitude-hold hover. If the

barometer is unhealthy, the multicopter can only realize
attitude self-stabilization. If the corresponding components

are recovered, the multicopter should switch to the spot
hover or altitude-hold hover

SR4 when the multicopter is flying and the connection to the RC
transmitter becomes abnormal, if the INS, GPS, barometer,

compass and propulsors are all healthy, the multicopter
should switch to returning to base. Otherwise, the multicopter

should switch to landing
SR5 when the multicopter is flying, if the battery's capacity

becomes inadequate but the multicopter is able to return to
base, then the multicopter should switch to returning to base;
if the battery's capacity becomes inadequate and unable to

return, then the multicopter should switch to landing
SR6 when the multicopter is flying, if the INS or propulsors are

unhealthy, the multicopter should automatically switch to
landing

SR7 when the multicopter is flying, the multicopter can be
manually switched to returning to base by the RC transmitter.
This switch requires that the INS, GPS, barometer, compass,
propulsors are all healthy, and the battery's capacity is able
to support the multicopter to return to base. Otherwise, the

switch is ignored by the multicopter
SR8 when the multicopter is flying, the multicopter can be

manually switched by the RC transmitter to AL

34 IET Cyber-syst. Robot., 2020, Vol. 2 Iss. 1, pp. 31-42
This is an open access article published by the IET and Zhejiang University Press under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

the multicopter automatically stabilizes its attitude but position
drift may occur.

• RETURN-TO-LAUNCH (RTL) MODE: Under this mode, the
multicopter will return to the base location from the current
position, and hover there.

• AUTOMATIC-LANDING (AL) MODE. In this mode, the
multicopter realizes landing automatically by adjusting the
throttle according to the estimated height [Even if the barometer
fails, the height estimation is acceptable within a short time.
Similarly, the other estimates generated by filters could continue
to be used for a short time, even if related sensors fail.].

4.2 Event definition

Three types of events are defined here: manual input events
(MIEs), mode control events (MCEs) and automatic trigger events
(ATEs). The failsafe mechanism takes MIEs and ATEs as inputs,
and outputs MCEs to decide which mode the multicopter should
stay in or switch to. Here, MIEs and MCEs are controllable, while
ATEs are uncontrollable in the sense of SCT.

(i) MIEs: MIEs are instructions from the remote pilot sent through
the RC transmitter. This part defines eight MIEs as shown in
Table 5. Here, MIE3, MIE4 are realized by certain successive
actions on the control sticks of the RC transmitter as shown in
Fig. 5; MIE6, MIE7 and MIE8 are realized by the three-position
switch (namely the flight mode switch) on the RC transmitter as
shown in Fig. 5. It is noticed that the elements in (MIE1, MIE2) are
defined mutually exclusively, namely, one and only one is always
true for all time. Also, the elements in (MIE3, MIE4, MIE5) and
the elements in (MIE6, MIE7, MIE8) are defined mutually
exclusively.
(ii) MCEs: MCEs are instructions from multicopter's autopilot. As
shown in Table 6, these events will control the multicopter to
switch to a specified multicopter mode defined in Section 4.1. It is
noticed that the events in (MCE1, ⋯, MCE8) are mutually
exclusive. So, enabling one event is equivalent to disabling others.
(iii) ATEs: ATEs are independent of the remote pilot's operations.
As shown in Table 7, these events contain the health check results
and flight status of a multicopter. It is noticed that the events in
(ATE1, ATE2), ⋯, (ATE11, ATE12), (ATE13, ATE14, ATE15),
(ATE16, ATE17), ⋯, (ATE20, ATE21) are mutually exclusive.
Here, note that this paper assumes the component health check can
be performed by effective fault diagnosis and health evaluation
methods. For simplified presentation, the statements of ‘check
result of’ and ‘measured’ are omitted in the subsequent sections.

5 Failsafe mechanism design
In this section, functional requirements guide the modelling of the
multicopter plant based on defined multicopter modes and events.
Then, from the safety requirements, multiple control specifications
are represented by automata. These control specifications should
indicate the preferable failsafe measures that are consistent with the
textually described safety requirements. After the plant and control
specifications have been obtained, a supervisor is synthesized by
using monolithic (namely fully centralized) supervisory control
[27, Chapter 4.6].

5.1 Multicopter plant modelling

(i) Modelling principles: Modelling the multicopter plant in the
form of an automaton is to mathematically describe what behaviour
the multicopter is able to perform, which is mainly based on
functional requirements. In this paper, the modelling principles of
the multicopter plant include: (i) modelling the ‘on ground’
component and the ‘in air’ component one by one; (ii) events of
each transition modelled mutually exclusively, namely one and
only one event will be always executed. As shown in Fig. 6, the
transition from S3 to S4 is related to the arm action, disarm action
and other actions on the sticks, associated with three mutually
exclusive events. The plant allows that the three events can happen
at S3. As shown in Fig. 6, the transition from S26 to S14 is related to

Table 4 Safety requirements for returning and landing
Name Description
SR9 when the multicopter is in the process of returning to base,

the multicopter can be manually switched by the RC
transmitter to normal flight or landing

SR10 when the multicopter is in the process of returning to the
base, if the distance to base is less than a given threshold,

the multicopter should switch to landing; if the battery's
capacity becomes inadequate and unable to return to base,

the multicopter should switch to landing; if the INS, GPS,
barometer, compass or propulsors are unhealthy, the

multicopter should switch to landing
SR11 when the multicopter is in the process of landing, the

multicopter can be manually switched by the RC transmitter
to normal flight. This switch requires that the INS and
propulsors are both healthy, the connection to the RC

transmitter is normal, and the battery's capacity is adequate.
Otherwise, the switch is ignored by the multicopter

SR12 when the multicopter is in the process of landing, the
multicopter can be manually switched by the RC transmitter
to returning to base. This switch requires that the INS, GPS,
barometer, compass, propulsors are all healthy, the battery's
capacity is able to support the multicopter to return to base,

and the distance to the base is not less than a given
threshold. Otherwise, the switch is ignored by the multicopter

SR13 when the multicopter is in the process of landing, if the
multicopter's altitude is lower than a given threshold, or the
multicopter's throttle is less than a given threshold over a

time horizon, the multicopter can be automatically disarmed

Table 5 MIE definition
Name Description
MIE1 the power is on
MIE2 the power is off
MIE3 arm action is executed by remote pilots
MIE4 disarm action is executed by remote pilots
MIE5 other actions on the sticks by remote pilots. These actions

also include the do-nothing operation
MIE6 switch to normal flight. In normal flight, the multicopter can

be in either LOITER MODE, ALTITUDE-HOLD MODE or
STABILIZE MODE

MIE7 switch to RTL MODE
MIE8 switch to AL MODE

Fig. 5  Flight mode switch

Table 6 MCE definition
Name Description
MCE1 multicopter switched to POWER OFF MODE
MCE2 multicopter switched to STANDBY MODE
MCE3 multicopter switched to GROUND-ERROR MODE
MCE4 multicopter switched to LOITER MODE
MCE5 multicopter switched to ALTITUDE-HOLD MODE
MCE6 multicopter switched to STABILIZE MODE
MCE7 multicopter switched to RTL MODE
MCE8 multicopter switched to AL MODE

IET Cyber-syst. Robot., 2020, Vol. 2 Iss. 1, pp. 31-42
This is an open access article published by the IET and Zhejiang University Press under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

35

the five multicopter mode decisions, after which health checking
(the loop from S14 to S26) is required. The plant allows that the five
events can happen. However, in our resulting supervisor, only one
event is allowed to happen at S26 if the transition from S26 to S14 is
performed.
(ii) Model details: As shown in Fig. 7, the plant describes basic
functions of a multicopter. Specifically, Plant contains 27 states (S0
–S26), 37 events and 63 transitions. Here, the states S0, S3, S13, S14
are marker states. The state S0 can be understood as POWER OFF
MODE; the state S3 can be understood as STANDBY MODE; the
state S13 can be understood as GROUND-ERROR MODE; the state
S14 can be understood as other multicopter modes, including
LOITER MODE, ALTITUDE-HOLD MODE, STABILIZE
MODE, RTL MODE and AL MODE. Since the event occurrence
sequences are of principal interest, the meaning of states, in fact,
can be ignored. The desired behaviour will be defined in
specifications. Plant can be divided into two parts: one (consists of
states S0 − S13 and transitions among them) describes the
multicopter behaviour on the ground (‘on ground’ component), and
the other one (consists of states S14 − S26 and transitions among
them) describes the behaviour during the flight (‘in air’
component). The model of the plant is not easy to divide into many
small components (each one corresponds to a physical component),
so we use a monolithic model. This is unlike many existing
examples. As in the small factory example in Section 2, the plant is
composed of three physical components explicitly, namely two
machines and a buffer.

5.2 Control specification design

(i) Modelling principle: In this part, control specifications are
designed to restrict the behaviour of Plant according to the
description of the safety requirements. In order to guarantee the
completeness and only one MCE to occur, [A multicopter itself has
to decide to enter one of eight multicopter modes defined in
Section 4.1 depending on the specifications. This may be unlike
some SCT problems that allow multiple events to be chosen at one
state.] the control specifications must cover all possible strings in
the plant.
(ii) Control specification design ‘on ground’: Through a study of
textual safety requirements, it can be seen that SR1 in Table 2
describes the intended failsafe measure when the multicopter is on
the ground. In other words, SR1 restricts what action the user

Table 7 ATE definition
Name Description
ATE1 the check result of INS is healthy
ATE2 the check result of INS is unhealthy
ATE3 the check result of GPS is healthy
ATE4 the check result of GPS is unhealthy
ATE5 the check result of the barometer is healthy
ATE6 the check result of the barometer is unhealthy
ATE7 the check result of the compass is healthy
ATE8 the check result of the compass is unhealthy
ATE9 the check result of propulsors is healthy
ATE10 the check result of propulsors is unhealthy
ATE11 the check result of connection to the RC transmitter is normal
ATE12 the check result of connection to the RC transmitter is

abnormal
ATE13 the measured battery's capacity is adequate
ATE14 the measured battery's capacity is inadequate, able to RTL
ATE15 the measured battery's capacity is inadequate, unable to

RTL
ATE16 the measured multicopter's altitude is lower than a given

threshold
ATE17 the measured multicopter's altitude is not lower than a given

threshold
ATE18 the measured multicopter's distance from the base is less

than a given threshold
ATE19 the measured multicopter's distance from the base is not less

than a given threshold
ATE20 the measured multicopter's throttle is less than a given

threshold over a time horizon
ATE21 other throttle situation

Fig. 6  Transition and events

Fig. 7  Automaton model of Plant. In this plant, the following functions are described in the automaton model: (i) if the power is turned on (MIE1 occurs), the
multicopter enters STANDBY MODE (MCE2 occurs); (ii) in STANDBY MODE, if the power is turned off (MIE2 occurs), the multicopter enters POWER OFF
MODE (MCE1 occurs); (iii) in STANDBY MODE, according to remote pilot’s operation (MIE3-MIE8) and the health status of onboard equipment (ATE1-
ATE15), the multicopter may either enter LOITER MODE (MCE4 occurs), GROUND-ERROR MODE (MCE3 occurs), or stay in STANDBY MODE (MCE2
occurs); (iv) in LOITER MODE, according to remote pilot's operation (MIE3-MIE8) the health status of onboard equipment (ATE1-ATE15), and the
multicopter status (ATE16-ATE21), the multicopter can switch among LOITER MODE (MCE4 occurs), ALTITUDE-HOLD MODE (MCE5 occurs),
STABILIZE MODE (MCE6 occurs), RTL MODE (MCE7 occurs) and AL MODE (MCE8 occurs); (v) the multicopter can also be manually or automatically
disarmed, and enter STANDBY MODE (MCE2 occurs) or GROUND-ERROR MODE (MCE3 occurs)

36 IET Cyber-syst. Robot., 2020, Vol. 2 Iss. 1, pp. 31-42
This is an open access article published by the IET and Zhejiang University Press under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

wants the multicopter to perform under specific situations when it
is on the ground. The requirements given in Tables 1–3 are
different from the designed specifications. The former are textually
and informally described, whereas the latter are designed formally
in the form of automata. Several textual requirements may be
captured by one specification, or one requirement may be captured
by several specifications.

In safety requirement SR1 in Table 2, the user lists the required
conditions for a successful arm. In order to model it with an
automaton, the key is to split the branches in the ‘on ground’
component of Plant, and enable only one mode which the user
expects the multicopter to switch to. Following this principle, a
control specification named Specification 1 is designed as shown in
Fig. 8. It contains eight states S0 − S7 , 24 events and 68
transitions. Here, the states S0, S1, are marker states. The state S1
can be understood as STANDBY MODE, and the state S0 can be
understood as other multicopter modes. Here, two points need to be
noted: (i) The selfloops on the states S0, S4, S6 are used to
guarantee that the irrelevant events will not interrupt the event
sequences presented in Plant. (ii) SR1 itself is textually and
informally described, which does not mention the mode the
multicopter should enter if it cannot be successfully armed. In this
case, in the design of control specifications, it is required to
appropriately infer the user's potential intention, and add the
omitted part to guarantee that the control specification covers all
possible strings in the ‘on ground’ component of Plant.
(iii) Control specification design ‘in air’ (Specification 7): For the
‘in air’ component of Plant, safety requirements SR2–SR13 in
Table 2 restrict what action the user wants a multicopter to perform
under specific situations when it is in the air. Thus, we design 24
control specifications to cover all possible strings in the ‘in air’
component of Plant so that one and only one MCE will be enabled
by the resulting supervisor when the multicopter is in the air. That
will facilitate the mode switching. The traversal relation between
the designed control specifications and the structure of the ‘in air’
component of Plant is shown in Fig. 9.

Here, due to the limitation of space, we take Specification 7 as an
example to demonstrate the design of control specifications for the
‘in air’ component of Plant. This control specification is obtained
by transforming SR7 and SR8 to an automaton model. As shown in
Fig. 10, Specification 7 contains six states S0 − S5 , 31 events and
91 transitions. Here, the states S0, S1, are marker states. The state S1
can be understood as LOITER MODE, and the state S0 can be

understood as other multicopter modes. The details of other control
specifications are presented in the support material available in
http://rfly.buaa.edu.cn/resources. It should be noted that MIE3 and
MIE4 (arm and disarm actions on the RC transmitter) can be also
enabled by the remote pilot (maybe a pilot error), but it does not
imply that the propellers of the multicopter must be locked. In most
cases, MIE3 and MIE4 will be ignored (according to our
specifications) when a multicopter is in the air, namely, these
actions will not be responded to by the multicopter.

5.3 Supervisor synthesis on TCT software

Related algorithms in SCT can be performed on software platforms
such as TCT software [27], Supremica [40] and Discrete Event
Control Kit [41]. The algorithms and operations in this part are
performed on TCT software. The multicopter plant is named as
‘PLANT’, and the 25 control specifications are named as ‘Ej’,
j = 1, 2, …, 25. The source files are given in http://rfly.buaa.edu.cn/
resources.

Step 1: In the monolithic supervisory control framework, all the
control specifications should be synchronized into a monolithic
one, i.e.

E = sync E1, E2, …, E25 .

It turns out that E is non-blocking, and contains 133 states and
2092 transitions.
Step 2: Here, note that PLANT contains 37 events, while the
number of events in each Ej is <37 (i.e. the alphabet of each Ej is
different from that of the PLANT). This is because the given
textual safety requirements only emphasise the events we are
concerned with and ignore the remaining events. For supervisory
control, the alphabet of E should be equal to the alphabet of
PLANT. Thus, the control specification should be completed by the
following TCT instructions:

EVENTS = all events PLANT

where EVENTS is a self-loop automaton containing all events in
the alphabet of PLANT. Then, for E, we have

E = sync E, EVENTS .

Fig. 8  Automaton model of Specification 1. In Specification 1, the multicopter is first in STANDBY MODE (MCE2 occurs). In this case, when the remote pilot
executes an arm action (MIE3 occurs), if the INS and propulsors are both healthy (ATE1 and ATE9 occur), the connection to RC transmitter is normal (ATE11
occurs), the battery’s capacity is adequate (ATE13 occurs), and the flight mode switch is on the position of ‘ normal flight’ (MIE6 occurs), then the multicopter
can be successfully armed, and enter LOITER MODE (MCE4 occurs). Otherwise, if the remote pilot does not execute an arm action (MIE4 or MIE5 occurs),
or the flight mode switch is not on the position of ‘normal flight’ (MIE7 or MIE8 occurs), the multicopter stays in STANDBY MODE (MCE2 occurs); if one of
the related components is unhealthy (ATE2, ATE10, ATE12, ATE14 or ATE15 occurs), the multicopter enters GROUND-ERROR MODE (MCE3 occurs). Also,
the remote pilot can directly turn off the power (MIE2 occurs), and the multicopter enters POWER OFF mode (MCE1 occurs)

IET Cyber-syst. Robot., 2020, Vol. 2 Iss. 1, pp. 31-42
This is an open access article published by the IET and Zhejiang University Press under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

37

Here, the events present in PLANT but not in E are added into
E in the form of self-loops.

Step 3: A monolithic supervisor is synthesized by

S = supcon PLANT, E .

The obtained supervisor is the expected failsafe mechanism. It
contains 790 states, 37 events and 1566 transitions. There are eight
marker states, which correspond to eight multicopter modes,
respectively. Besides monolithic supervisory control, the
supervisor can also be synthesized by decentralized supervisory
control [42], and a supervisor reduction [43] process can also be
carried out for an easier realisation in practice. The synthesis is
also carried out in the software Supremica with the same result as
with TCT. These source files are presented in http://
rfly.buaa.edu.cn/resources.

6 Examples and discussion
In SCT, plants and specifications are supposed to be correct even if
specifications may conflict with each other. The resulting
supervisor will automatically remove conflicts such as blocking
states and satisfy all requirements. In fact, we may consider such
requirements and specifications not correct because conflict is not
expected by the designers. In this sense, the design of control
specifications is a process to understand and re-organize these
requirements. If designers synthesise an empty supervisor or find
conflict in specifications by SCT software, the correctness of
requirements and specifications needs to be rechecked and then
corresponding modifications need to be made. This section
illustrates three examples to demonstrate some possible reasons
leading to conflict and gives a brief discussion about the scope of
applications and properties of the method.

6.1 Examples

 
Example 1: The aim of this example is to show that missing

information in specifications may lead to conflict. In this example,
we delete transitions ‘S6 → ATE13 → S6’, ‘S6 → ATE14 → S6’ and
‘S6 → ATE15 → S6’ in Specification 1. In this case, Specification 1
is changed to an automaton named as Specification 1ʹ. This implies
that ATE13/14/15 cannot occur at state S6. By replacing
Specification 1 with Specification 1ʹ, a conflict will arise after the
occurrence of ATE11/12, because the next possible event defined in
the plant model is ATE13/14/15, which are all disabled by
Specification 1ʹ. This will be shown by some SCT software, such
as Supremica (‘purge result’ is not used). The problematic trace is
depicted in Fig. 11. Through this, we can locate problems in
specifications and make modifications.
 

Example 2: The aim of this example is to show the conflict in
specifications. In this example, we replace the transition
‘S6 → MCE2 → S1’ with a transition ‘S6 → MCE3 → S1’ in
Specification 1, resulting in Specification 1ʺ. This implies that
Specification 1 and Specification 1ʺ have a conflict. By adding
Specification 1ʺ to the whole control specification, Specification 1
and Specification 1ʺ will exist simultaneously. A conflict will arise
after the occurrence of ATE13/14/15 because the next event is
MCE2 according to Specification 1 but MCE3 according to
Specification 1ʺ. This will be shown by some SCT software, such
as Supremica (‘purge result’ is not used). The problematic trace is
depicted in Fig. 12. Through this, we can locate problems in
specifications and make modifications.
 

Example 3: The aim of this example is to show the conflict in
user requirements. Assume that we have a new safety requirement
described as follows: ‘when the multicopter is flying, the
multicopter can be manually switched to returning to base by the
RC transmitter. This switch requires that the INS, GPS, barometer,
compass and propulsors be all healthy. Otherwise, the switch
cannot occur for the multicopter.’ Then, this safety requirement is
transformed to an automaton named Specification 7ʹ. Compared to
Specification 7, ATE13/14/15 are all removed in Specification 7ʹ
because they are not considered. By adding Specification 7ʹ to the
whole control specification, Specification 7 and Specification 7ʹ
will exist simultaneously. Then, a conflict will arise with the
problematic trace depicted in Fig. 13 for Specification 7.
Specification 7 indicates that‘this switch requires that the INS,
GPS, barometer, compass, propulsors be all healthy, and the
battery's capacity be able to support the multicopter to return to
base’. However, Specification 7ʹ does not restrict the condition of
battery's capacity. So, when battery's capacity is very low (ATE15
is true in Fig. 13), Specification 7 will not allow MCE7 (RTL
MODE) to occur, but Specification 7ʹ will allow MCE7 to occur.
Therefore, this conflict arises.
 

Remark 1: From the above examples, it can be seen that an
incorrect failsafe mechanism might be obtained during the design
process due to conflicting safety requirements or incorrect and
inappropriate design of control specifications. The mistake might

Fig. 9  Traversal relation between 24 control specifications and the
structure of the ‘in air’ component of Plant

38 IET Cyber-syst. Robot., 2020, Vol. 2 Iss. 1, pp. 31-42
This is an open access article published by the IET and Zhejiang University Press under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

be introduced inadvertently, and the designer cannot easily detect
the problem by using empirical design methods. However, by
relying on the SCT-based method, we can check the correctness of
the obtained failsafe mechanism, and make modifications if the
conflict is observed. This is a big advantage of the proposed
method over empirical design methods. Once the conflict is
removed, the resulting failsafe mechanism in the form of the
supervisor is logically correct with respect to the plant and
specifications, and able to deal with all relevant safety issues
during flight.

6.2 Discussion

This paper aims to apply the SCT based method to guarantee the
correctness in the design of the failsafe mechanism. It can be
understood that, given a correct plant and correct specifications for
a multicopter, synthesis approaches can automatically generate a
correct protocol (or strategy) to control the multicopter. This
process is also called ‘correct-by-design’ [44]. In this domain,
various formal methods and techniques, such as SCT and formal
synthesis based on linear temporal logic, are used to design control
protocol of autonomous systems, including autonomous cars [45],
aircraft [46–48] and swarm robots [49]. With a precise description
of both the multicopter and its correct behaviour, the proposed
method allows a failsafe mechanism that guarantees the correct
behaviour of the system to be automatically designed.

Here, the generated supervisor by SCT satisfies the following
properties:

(i) Deterministic: This property has two aspects. First, there exists
no situation that one event triggers a transition from a single source
state to different target states in the obtained supervisor. Second,
after the occurrence of MIEs and ATEs, SCT can guarantee that
only one MCE is enabled by disabling other MCEs due to
deliberate design of control specifications. In this case, after the

Fig. 10  Automaton model of Specification 7. Specification 7 is triggered
under the two successive conditions: (i) the multicopter is in LOITER
MODE (MCE4 occurs), (ii) and then the remote pilot normally manipulates
the sticks of the RC transmitter (MIE5 occurs). In this case, when the
remote pilot uses the flight mode switch to manually switch the multicopter
to RTL MODE (MIE7 occurs), if the INS, GPS, barometer, compass,
propulsors are all healthy (ATE1, ATE3, ATE5, ATE7 and ATE9 occur), the
connection to the RC transmitter is normal (ATE11 occurs), the battery's
capacity is able to support the multicopter to return to the base (ATE13 or
ATE14 occurs), and the multicopter’s distance from the base is not less than
a given threshold (ATE19 occurs), then the multicopter enters RTL MODE
(MCE7 occurs); otherwise, the multicopter stays in LOITER MODE
(MCE4 occurs). Furthermore, when the remote pilot uses the flight mode
switch to manually switch the multicopter to AL MODE (MIE8 occurs), the
multicopter enters AL MODE (MCE8 occurs)

Fig. 11  Problematic trace in synthesized supervisor due to Specification 1ʹ

Fig. 12  Problematic trace in synthesized supervisor due to Specification 1ʺ

IET Cyber-syst. Robot., 2020, Vol. 2 Iss. 1, pp. 31-42
This is an open access article published by the IET and Zhejiang University Press under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

39

occurrence of certain MIEs and ATEs, the mode which the
multicopter should enter is deterministic.
(ii) Non-conflicting [27, Chapter 3.6]: SCT often can find the
maximally permissive non-blocking supervisor satisfying all
requirements. If some requirements are fundamentally
contradictory, then a supervisor does not exist (this can be observed
by using SCT software). If so, the designer should check in part (i)
the correctness of control specifications transformed from user
textual requirements; or (ii) the reasonableness of the user
requirements.
(iii) Logically correct: SCT is a mature and effective tool to be
used in the area of decision-making. If the plant and control
specifications are correctly modelled, the logic of the generated
supervisor will correctly satisfy user requirements without
introducing man-made mistakes and bugs in the high level.

7 Implementation and simulation
Based on the obtained supervisor generated by TCT software or
Supremica, an implementation method suitable for multicopters is
presented, in which the supervisor is transformed into decision-
making codes. Here, for any state, we only focus on enabling
certain controllable events here rather than disabling controllable
events. The two ways are equivalent to each other.

7.1 A simple semi-autonomous autopilot (SAA) system
architecture

In order to introduce the implementation, we need to know where
our supervisor is implemented in a SAA system architecture for
multicopters. A simple SAA system architecture is shown in
Fig. 14. The communication management module is used to detect
the command sent by remote pilots, namely MIEs in Table 5. PHM
module is used to detect the safety issues, namely communication
breakdown, sensor failure and propulsion system anomaly, with the
output being ATEs in Table 7. The mission management module is
used to decide which mode the multicopter will switch to, based on
MIEs, ATEs and the obtained supervisor. According to the selected
mode (eight multicopter modes defined in Section 6.1), eight low-
level flight controllers correspond to them, namely C1, C2, ..., C8.
A multicopter with such an SAA is always controlled by one of
them. The sensor management module is used to estimate the
information of multicopters, such as motion information and
actuator information. It serves for feedback control and PHM.
PHM is in turn used to help sensor management module to separate
some failed sensors so that their information will not invalidate
fusion results.

7.2 Failsafe mechanism implementation

On the one hand, we would want to avoid manual implementation
of the calculated supervisors, since this may introduce errors and is
also difficult for complex cases. On the other hand, we look for an
easy way to generate an application programming interface (API)
function, with events MIEs, ATEs as the input and modes (MCEs)
as output, so that it can be easily put in the mission management
module shown in Fig. 14. The information required from a
synthesized supervisor is a transition matrix, which is an m × 3
matrix where m is the number of transitions in the synthesized
supervisor. (We have developed a function to export the transition
matrix based on the output file of Supremica, available in http://
rfly.buaa.edu.cn/resources.) As shown in Table 8, in each row, it
consists of a source state, a destination state and a triggered event.
For example, if the multicopter is in source state 1 and the
triggered event is 1, then the destination state will be 2. By taking
the synthesized supervisor of multicopters as an example, it
contains 790 states, 37 events and 1566 transitions. So, the
transition matrix is a 1566 × 3 matrix. In fact, we only need to
consider eight modes (corresponding to eight marker states in the
supervisor), namely POWER OFF MODE, STANDBY MODE,

Fig. 13  Problematic trace in synthesized supervisor due to Specification 7

Fig. 14  Simple SAA system architecture

Table 8 Transition matrix
Source state Destination state Triggered event
1 2 1
⋮ ⋮ ⋮
2 3 3

40 IET Cyber-syst. Robot., 2020, Vol. 2 Iss. 1, pp. 31-42
This is an open access article published by the IET and Zhejiang University Press under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

GROUND-ERROR MODE, LOITER MODE, ALTITUDE-HOLD
MODE, STABILIZE MODE, RTL MODE and AL MODE in
Section 6.1. For each of them, a corresponding low-level flight
controller, namely C1, C2, ..., or C8, is used to control the
multicopter (see Fig. 14). Also, there exist many non-marker states
in the transition matrix (790 − 8 = 782 non-marker states for the
considered multicopter), to which no low-level flight controllers
correspond. Therefore, after one decision period, the system must
be in one of those eight states. By recalling Fig. 7, since the events
in every transition are mutually exclusive, one and only one event
must be triggered for any transition. As a result, the system does
not stop at any non-marker state. The computation is affordable by
current autopilots. For example, if an autopilot has a 20 MHz CPU,
then the maximum time for a mode decision will only take about
1.566 ms.

Actually the high-level decision-making is a relatively slow
process in practice. Thus, the failsafe mechanism implementation
is not synchronized with the low-level flight control system. In
practice, for example, the events MIEs, ATEs will be detected
every 0.01 s, while the mode decision period may be 1 s. All
triggered events are collected together in every mode decision
period. So, the same event may be overwritten by the new one
during the mode decision period. We do not need to consider the
past sequence of all detected events, because they will be fed into
the mission management module according to the occurrence order
in Plant shown in Fig. 7. For example, in Fig. 7, if the initial state
is S14 and the events ATE3, ATE1, ATE5, ATE7, ATE9, ATE11,
ATE13, ATE16, ATE18, ATE20, MIE5, MIE6 are collected one by
one, then they will be fed into the mission management module
according to the occurrence order in Plant, namely MIE5, MIE6,
ATE1, ATE3 ATE5, ATE7, ATE9, ATE11, ATE13, ATE16, ATE18,
and ATE20. Then the system will go to S26 in Plant. Consequently,
only one MCEi will be enabled by the autopilot according to the
specifications, i = 1, 2, …, 8. Therefore, the system will finally
have a definite mode chosen. For our case, the failsafe mechanism
is implemented as shown in Table 9, where Δ > 0 represents a
mode decision period.

7.3 Simulation

In this part, we put the failsafe mechanism into a real-time flight
simulation platform of quadcopters developed by MATLAB.
Although it is realized by MATLAB, this method is applicable to
any programming language. The simulation diagram is shown in
Fig. 15. This simulation contains three main functions: (i) the
failsafe mechanism can determine the flight mode according to the
health check result, instruction of RC transmitter and quadcopter
status; (ii) the remote pilot can fly the quadcopter through RC
transmitter; (iii) the flight status of quadcopter can be visually
displayed by FlightGear. Thus, this simulation can be viewed as an
SAA simulation of quadcopters. A video of this simulation is
presented in https://www.youtube.com/watch?v=b1-
K2xWbwF8&feature=youtu.be and http://t.cn/RXmhnu6. It
contains three scenarios: (i) the remote pilot manually controls the
quadcopter to arm, fly, RTL, and land; (ii) anomalies of GPS,
barometer, and INS occur during flight; (iii) the connection of RC
transmitter is abnormal during flight.

8 Conclusions
This paper proposes an SCT-based method to design a failsafe
mechanism of multicopters. The modelling process of the plant and
control specifications is presented in detail. The failsafe
mechanism is obtained by synthesising a supervisor in the
monolithic framework. It ignores the detailed dynamic behaviour
underlying each multicopter mode. This is reasonable because the
failsafe mechanism belongs to the high-level decision-making
module of a multicopter, while the dynamic behaviour can be
characterized and controlled in the low-level flight control system.
Also, we discuss the meaning of correctness and the properties of
the obtained supervisor. The formal method based on SCT
increases our confidence in the correctness of the designed failsafe
mechanism. In future research, it is deserved to study how to
normalise and simplify requirement analysis and related modelling
so that the proposed formal method for multicopters can be easy to
extend to the failsafe mechanism for other similar safety-critical

Table 9 Decision-making logic implementation
Step Description
1 export a transition matrix from the supervisor synthesized by TCT software or Supremica; k = 0; Δ > 0 is a positive integer representing a

mode decision period; the initial state s = s0

2 k = k + 1
3 detect the instruction from the RC transmitter, health status of all considered equipment and flight status of the multicopter. If mod

k, Δ = 0, goes to step 4; otherwise, go to step 2
4 collect events occurring in the mode decision period Δ
5 by starting at state s with the events input according to the occurrence order in Plant one by one, search the transition matrix when an

event is an input. After all the MIEs and ATEs are fed completely, search the transition matrix again, and only one match will be found,
where the triggered event is an MCE and the destination state is s1

6 s = s1, go to step 2

Fig. 15  Simulation diagram

IET Cyber-syst. Robot., 2020, Vol. 2 Iss. 1, pp. 31-42
This is an open access article published by the IET and Zhejiang University Press under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

41

autonomous systems. As for a more complex plant modelling, the
state tree structure [50], an extension of the finite state machine in
SCT with a hierarchical structure for system models, can be
adopted.

9 Acknowledgment
This work was partially supported by the National Natural Science
Foundation of China (61973015, 61903008), the Beijing Natural
Science Foundation (4194074) and the Natural Sciences and
Engineering Research Council (NSERC) of Canada (Grant
#DG_480599).

10 References
[1] Quan, Q.: ‘Introduction to multicopter design and control’ (Springer,

Singapore, 2017)
[2] Kalgren, P.W., Byington, C.S., Roemer, M.J., et al.: ‘Defining PHM, a lexical

evolution of maintenance and logistics’. 2006 IEEE Autotestcon, Anaheim,
California, USA, 2006, pp. 353–358

[3] Sheppard, J.W., Kaufman, M.A., Wilmer, T.J.: ‘IEEE standards for
prognostics and health management’, IEEE Aerosp. Electron. Syst. Mag.,
2009, 24, pp. 34–41

[4] Henriquez, P., Alonso, J.B., Ferrer, M., et al.: ‘Review of automatic fault
diagnosis systems using audio and vibration signals’, IEEE Trans. Syst., Man,
Cybern.: Syst., 2014, 44, pp. 642–652

[5] Zhao, Z., Quan, Q., Cai, K.-Y.: ‘A profust reliability based approach to
prognostics and health management’, IEEE Trans. Reliab., 2014, 63, pp. 26–
41

[6] Gao, Z., Cecati, C., Ding, S.X.: ‘A survey of fault diagnosis and fault-tolerant
techniques-part I: fault diagnosis with model-based and signal-based
approaches’, IEEE Trans. Ind. Electron., 2015, 62, pp. 3757–3767

[7] Zhao, Z., Quan, Q., Cai, K.-Y.: ‘A modified profust-performance-reliability
algorithm and its application to dynamic systems’, J. Intell. Fuzzy Syst., 2017,
32, pp. 643–660

[8] Fisher, J.E., Lawrence, D.A., Zhu, J.J.: ‘Autocommander-a supervisory
controller for integrated guidance and control for the 2nd generation reusable
launch vehicle’. AIAA Guidance, Navigation, and Control Conf. and Exhibit,
Monterey, California, USA, 2002, AIAA 2002-4562

[9] Arnaiz, A., Ferreiro, S., Buderath, M.: ‘New decision support system based
on operational risk assessment to improve aircraft operability’, Proc. Inst.
Mech. Eng., Part O: J. Risk Reliab., 2010, 224, pp. 137–147

[10] Zhang, Y., Jiang, J.: ‘Integrated design of reconfigurable fault-tolerant control
systems’, J. Guid. Control Dyn., 2001, 24, pp. 133–136

[11] Meskin, N., Khorasani, K., Rabbath, C.A.: ‘A hybrid fault detection and
isolation strategy for a network of unmanned vehicles in presence of large
environmental disturbances’, IEEE Trans. Control Syst. Technol., 2010, 18,
pp. 1422–1429

[12] Dydek, Z.T., Annaswamy, A.M., Lavretsky, E.: ‘Adaptive control of
quadrotor UAVs: A design trade study with flight evaluations’, IEEE Trans.
Control Syst. Technol., 2013, 21, pp. 1400–1406

[13] Du, G.X., Quan, Q., Cai, K.-Y.: ‘Controllability analysis and degraded control
for a class of hexacopters subject to rotor failures’, J Intell Robot Syst, 2015,
78, pp. 143–157

[14] Mueller, M.W., D'Andrea, R.: ‘Relaxed hover solutions for multicopters:
application to algorithmic redundancy and novel vehicles’, Int. J. Rob. Res.,
2015, 35, pp. 847–889

[15] Bozhinoski, D., Di Ruscio, D., Malavolta, I., et al.: ‘FLYAQ: enabling non-
expert users to specify and generate missions of autonomous multicopters’.
30th IEEE/ACM Int. Conf. on Automated Software Engineering (ASE),
Lincoln, Nebraska, USA, 2015, pp. 801–806

[16] Yakovlev, K.S., Makarov, D.A., Baskin, E.S.: ‘Automatic path planning for an
unmanned drone with constrained flight dynamics’, Sci. Tech. Inf. Process.,
2015, 42, pp. 347–358

[17] Noriega, A., Anderson, R.: ‘Linear-optimization-based path planning
algorithm for an agricultural UAV’. AIAA SciTech Forum, San Diego,
California, USA, 2016, AIAA 2016-1003

[18] Nieuwenhuisen, M., Droeschel, D., Schneider, J., et al.: ‘Multimodal obstacle
detection and collision avoidance for micro aerial vehicles’. European Conf.
on Mobile Robots (ECMR), Barcelona, Catalonia, Spain, 2013, pp. 7–12

[19] Orsag, M., Haus, T., Palunko, I., et al.: ‘State estimation, robust control and
obstacle avoidance for multicopter in cluttered environments: EuRoC
experience and results’. Int. Conf. on Unmanned Aircraft Systems, Denver,
Colorado, USA, 2015, pp. 455–461

[20] Chen, Y.F., Ure, N.K., Chowdhary, G., et al.: ‘Planning for large-scale
multiagent problems via hierarchical decomposition with applications to UAV

health management’. American Control Conf., Portland, Oregon, USA, 2014,
pp. 1279–1285

[21] Omidshafiei, S., Agha-mohammadi, A., Amato, C., et al.: ‘Health-aware
multi-UAV planning using decentralized partially observable semi-Markov
decision processes’. AIAA SciTech Forum, San Diego, California, USA,
2016, AIAA 2016-1407

[22] Ten Harmsel, A.J., Olson, I.J., Atkins, E.M.: ‘Emergency flight planning for
an energy-constrained multicopter’, J Intell Robot Syst, 2017, 85, pp. 145–165

[23] De Smet, B., De Moor, M., Cosyn, P.: ‘Unmanned aircraft with failsafe
system’, US Patent 9,120,579, 2015-9-1

[24] Johry, A., Kapoor, M.: ‘Unmanned aerial vehicle (UAV): fault tolerant
design’, Int. J. Eng. Technol. Sci. Res., 2016, 3, pp. 1–7

[25] DJI Failsafe.: available at. http://www.dji.com/cn/inspire-2
[26] ArduPilot Failsafe: available at: http://ardupilot.org/copter/docs/failsafe-

landing-page.html
[27] Wonham, W.M., Cai, K.: ‘Supervisory control of discrete-event systems’

(Series: Communications and Control Engineering, Springer, 2019)
[28] Ramadge, P.J., Wonham, W.M.: ‘Supervisory control of a class of discrete

event processes’, SIAM J. Control Optim., 1987, 25, pp. 206–230
[29] Cai, K., Zhang, R., Wonham, W.M.: ‘Relative observability of discrete-event

systems and its supremal sublanguages’, IEEE Trans. Autom. Control, 2015,
60, pp. 659–670

[30] Zhang, R., Cai, K., Gan, Y., et al.: ‘Supervision localization of timed discrete-
event systems’, Automatica, 2013, 49, pp. 2786–2794

[31] Cai, K., Wonham, W.M.: ‘Supervisor localization of discrete-event systems
based on state tree structures’, IEEE Trans. Autom. Control, 2014, 59, pp.
1329–1335

[32] Leduc, R.J., Lawford, M., Dai, P.: ‘Hierarchical interface-based supervisory
control of a flexible manufacturing system’, IEEE Trans. Control Syst.
Technol., 2006, 14, pp. 654–668

[33] Feng, L., Cai, K., Wonham, W.M.: ‘A structural approach to the non-blocking
supervisory control of discrete-event systems’, Int. J. Adv. Manuf. Technol.,
2009, 41, pp. 1152–1168

[34] Chen, Y.F., Li, Z.W., Zhou, M.C.: ‘Optimal supervisory control of flexible
manufacturing systems by Petri nets: a set classification approach’, IEEE
Trans. Autom. Sci. Eng., 2014, 11, pp. 549–563

[35] Hu, H., Liu, Y., Yuan, L.: ‘Supervisor simplification in FMSs: comparative
studies and new results using Petri nets’, IEEE Trans. Control Syst. Technol.,
2016, 24, pp. 81–95

[36] Theunissen, R.J.M., Petreczky, M., Schiffelers, R.R.H, et al.: ‘Application of
supervisory control synthesis to a patient support table of a magnetic
resonance imaging scanner’, IEEE Trans. Autom. Sci. Eng., 2013, 11, pp. 20–
32

[37] Wonham, W.M., Cai, K., Rudie, K.: ‘Supervisory control of discrete-event
systems: a brief history – 1980 – 2015’. Int. Fed. Autom. Control, Toulouse,
France, 2017, pp. 1827–1833

[38] Fabian, M.: ‘Discrete event systems’, Department of Signals and Systems,
Chalmers University of Technology, 2004

[39] Cassandras, C.G., Stephane, L.: ‘Introduction to discrete event systems’
(Springer, New York, 2009)

[40] Åkesson, K., Fabian, M., Flordal, H., et al.: ‘Supremica-a tool for verification
and synthesis of discrete event supervisors’. The 11th Mediterranean Conf. on
Control and Automation, Rhodes, Greece, 2003

[41] Hashtrudi Zad, S., Boroomand, F.: ‘Discrete event control kit (DECK)’,
available at. http://users.encs.concordia.ca/126shz/deck/, 2003

[42] Lin, F., Wonham, W.M.: ‘Decentralized supervisory control of discrete-event
systems’, Inf. Sci., 1988, 44, pp. 199–224

[43] Su, R., Wonham, W.M.: ‘Supervisor reduction for discrete-event systems’,
Discrete Event Dyn. Syst., 2004, 14, pp. 31–53

[44] Zhang, X., Zhu, Y., Lin, H.: ‘Performance guaranteed human-robot
collaboration through correct-by-design’. American Control Conf., Boston,
Massachusetts, USA, 2016, pp. 6183–6188

[45] Wongpiromsarn, T., Topcu, U., Murray, R.M.: ‘Synthesis of control protocols
for autonomous systems’, Unmanned Syst., 2013, 1, pp. 21–39

[46] Feng, L., Wiltsche, C., Humphrey, L., et al.: ‘Synthesis of human-in-the-loop
control protocols for autonomous systems’, IEEE Trans. Autom. Sci. Eng.,
2016, 13, pp. 450–462

[47] Mickelin, O., Ozay, N., Murray, R.M.: ‘Synthesis of correct-by-construction
control protocols for hybrid systems using partial state information’.
American Control Conf., Portland, Oregon, USA, 2014, pp. 2305–2311

[48] Feng, L., Wiltsche, C., Humphrey, L., et al.: ‘Controller synthesis for
autonomous systems interacting with human operators’. Proc. ACM/IEEE
Sixth Int. Conf. on Cyber-Physical Systems, Seattle, Washington, USA, 2015,
pp. 70–79

[49] Lopes, Y.K., Trenkwalder, S.M., Leal, A.B., et al.: ‘Supervisory control
theory applied to swarm robotics’, Swarm Intell., 2016, 10, pp. 65–97

[50] Dong, K., Quan, Q., Wonham, W.M.: ‘Failsafe mechanism design for
autonomous aerial refueling using state tree structures’, Unmanned Syst.,
2019, 7, pp. 261–279

42 IET Cyber-syst. Robot., 2020, Vol. 2 Iss. 1, pp. 31-42
This is an open access article published by the IET and Zhejiang University Press under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)

