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ABSTRACT
The robust sampled-data repetitive control (RC, or repetitive controller, also designated RC) problem
for non-minimum phase nonlinear systems is both challenging and practical. This paper proposes
a sampled-data output-feedback RC design for a class of non-minimum phase systems with mea-
surable nonlinearities to improve the robustness against the period variation. The design relies on
additive-state decomposition, by which the output-feedback RC problem is decomposed into an
output-feedback RC problem for a linear time-invariant component and a state-feedback stabilisa-
tion problem for a nonlinear component. Thanks to the decomposition, existing controller design
methods in both the frequency domain and the time domain are employed to make the robust-
ness and discretisation for a continuous-time nonlinear system tractable. In order to demonstrate
the effectiveness, an illustrative example is given.
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1. Introduction

In nature, numerous examples of periodic phenom-
ena are found and observed, ranging from the orbital
motion of heavenly bodies to the rhythm of hearts. In
practice, many control tasks are of periodic nature as
well. When executing operations of picking, placing
or painting, industrial manipulators are often required
to track or reject periodic exogenous signals (Fateh
et al., 2013). Besides these, special applications fur-
ther include magnetic spacecraft attitude control (Pit-
telkau, 1993; Silani & Lovera, 2005), active control
of vibrations in helicopters (Arcara et al., 1997; Bit-
tanti & Cuzzola, 2002), autonomous vertical landing
on an oscillating platform (Isidori et al., 2003; Mar-
coni et al., 2002), harmonics elimination in aircraft
power supplies (Escobar et al., 2006), satellite for-
mation (Hu et al., 2014), LED light tracking (Scalzi
et al., 2015), control of hydraulic servomechanisms
(Yao et al., 2015), and control of lower limb exoskele-
ton (Yang et al., 2016). Repetitive Control (RC, or
repetitive controller, also designated RC) is a control
method used specifically in tracking or rejecting peri-
odic signals (Hara et al., 1988; Longman, 2010; Quan
& Cai, 2010).

CONTACT Quan Quan qq_buaa@buaa.edu.cn

• One of the major drawbacks of RC is that the con-
trol accuracy is sensitive to the period variation of
the external signals. It has been shown in Stein-
buch (2002) that, with a period variation as small
as 1.5% for an LTI system, the gain of the inter-
nal model part of the RC drops from ∞ to 10.
As a result, the tracking accuracy may be far from
satisfactory, especially for high-precision control.
For such a purpose, higher-order RCs composed
of several delay blocks in series were proposed
to improve the robustness of the control accuracy
against period variation (Kurniawan et al., 2014a;
Kurniawan & Cao, 2014b; Pipeleers et al., 2008;
Steinbuch, 2002; Steinbuch et al., 2007). However,
thesemethods are inapplicable to nonlinear systems
directly as they are all based on transfer functions
and frequency-domain analysis. The primary moti-
vation is to design an RC for nonlinear systems to
improve the robustness against the period variation.

• Although modern control systems are often imple-
mented via digital processors, RC schemes are often
designed for nonlinear continuous-time systems.
Unlike LTI systems, the zero-order hold equivalent
of a nonlinear continuous-time system cannot be
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represented as explicit, exact sampled-data mod-
els. Only approximate controller design methods
can be applied by taking the discretisation error
as an external disturbance. This often requires the
resulting closed-loop system to be input-to-state
stable (ISS, or input-to-state stability, also desig-
nated ISS) with respect to the discretisation error
(Nesić & Teel, 2001). However, a linear continuous-
time RC system is a neutral-type system in a critical
case.1 The characteristic equation of the neutral-
type system has an infinite sequence of poles with
negative real parts approaching zero. Consequently,
only non-exponential stability can be guaranteed in
the critical case (Quan et al., 2010). This further
implies that the ISS property cannot be obtained.
Therefore, in theory, a sampled-data RC cannot
be derived by discretising a continuous-time RC
directly for nonlinear systems. The second motiva-
tion is to design a sampled-data RC for continuous-
time nonlinear systems.

For clarity, a sampled-data output-feedback robust
RC problem for a class of systems with measurable
nonlinearities is considered in this paper. It is not
easy to convert the considered system into a lin-
ear system directly with a periodic disturbance term
(see Appendix A.1). The first reason is that the out-
put is only available from measurements. This makes
feedback linerization difficult. The other reason is
the unknown periodic disturbance. This makes state
estimation difficult because a general periodic dis-
turbance cannot be modelled as a finite-dimensional
autonomous exosystem. Even if it can be modelled
as a finite-dimensional autonomous exosystem, the
subsequent design and proof will be inconvenient. In
addition, to say the least, if the considered system can
be reduced to a linear system with a periodic dis-
turbance term, the continuous-time nonlinear control
term (compensate for nonlinearity) and continuous-
time linear RC term (tracking and rejection) will be
coupled together. It is still problematic how to guaran-
tee the stability under discretisation.

Based on these reasons mentioned above, the
sampled-data output-feedback robust RC problem is
solved under a recently developed tracking frame-
work, named the additive-state-decomposition-based
tracking control framework (Quan et al., 2015, 2014).
The key idea is to decompose the output-feedback
RC problem into two well-solved control problems

by additive-state decomposition: an output-feedback
RC for an LTI component and a state-feedback sta-
bilising control for a nonlinear component. Since
the RC problem is only limited to the LTI compo-
nent, existing robust higher-order RC methods can be
applied directly. Moreover, according to the proper-
ties of the two control problems, two different meth-
ods are adopted to design sampled-data controllers,
i.e. the sampled-data model design for the LTI com-
ponent and the emulation design for the nonlinear
component.2 Finally, one can combine the sampled-
data output-feedback robust RC with the sampled-
data state-feedback stabilising controller to achieve the
original control goal. The design process here is sim-
ilar to Quan et al. (2015), namely the additive-state
decomposition, observer design, controllers design
for the primary and secondary systems, and con-
troller integration. But, this paper focuses itself only
on the discrete-time domain and robust RC prob-
lem rather than the continuous-time domain and gen-
eral tracking problem. For example, the relationship
between the sampled-data nonlinear RC system and
the semiglobal practical stability property is estab-
lished. The contributions of this paper are (i) the
robust sampled-data RC problem is solved for a class
of non-minimum phase nonlinear systems for the
first time (covering the sampled-data output-feedback
robust RCproblem for a class of nonlinear continuous-
time systems); (ii) more importantly, an intermedi-
ate step is built between existing RC design methods
for LTI systems and a class of nonlinear systems so
that more RC problems for nonlinear systems become
tractable once this step is taken, such as rejection of
nonperiodic disturbances (Kurniawan et al., 2014a;
Kurniawan & Cao, 2014b) and the transient behaviour
improvement (Chen & Tomizuka, 2014).

The following notations are used. R
n is the n-

dimensional Euclidean space, and R+ is the set of
positive real numbers. N denotes the set of non-
negative integers. ‖·‖ denotes the Euclidean vector
norm or induced matrix norm. The symbol f ∈ L∞
implies that ‖f ‖∞ � supt∈[0,∞) ‖f (t)‖ < ∞. L and
L−1 denote the Laplace transform and the inverse
Laplace transform, respectively. Z and Z−1 denote
the Z-transform and the inverse Z-transform, respec-
tively. The following definitions can also be found
in Khalil (2002). A continuous function α : [0, a) →
[0,∞) belongs to class K if it is strictly increasing
and α(0) = 0. Furthermore, it belongs to class K∞ if



706 Q. QUAN AND K.-Y. CAI

a = ∞ and α(r) → ∞ as r → ∞. A continuous func-
tion β : [0, a) × [0,∞) → [0,∞) belongs to classKL
if, for each fixed s, the mapping β(r, s) belongs to K
with respect to r and, for each fixed r, the mapping
β(r, s) is decreasing with respect to s and β(r, s) → 0
as s → ∞.

2. Problem formulation

2.1. System description

Consider the class of single–input–single–output
(SISO) nonlinear systems (Ding, 2003; Lee & Tsao,
2004; Marino & Tomei, 1995):

ẋ (t) =Ax (t) + bu (t) + φ
(
y (t)

)+ d (t) , x (0) = x0

y (t) =cTx (t)
(1)

where A ∈ R
n×n is a constant matrix, b ∈ R

n and c ∈
R
n are constant vectors, φ : R → R

n is a nonlinear
function with φ(0) = 0, x(t) ∈ R

n is the state, y(t) ∈
R is the output, u(t) ∈ R is the control, and d(t) ∈
R
n is a periodic bounded disturbance with a period

T>0. The reference r(t) ∈ R is sufficiently smooth
with a period T. In the following, for convenience, we
will omit the variable t except when necessary. Two
assumptions on the nonlinear system (1) are made as
follows:

Assumption 2.1: The pair (A, cT) is observable and
the matrix A ∈ R

n×n is stable.

Assumption 2.2: Only y(t) is available from
measurements.

Remark 2.1: If A is unstable, then, by the observabil-
ity of (A, cT) in Assumption 2.1, there always exists
a vector p ∈ R

n such that A + pcT is stable, whose
eigenvalues can be assigned freely (Kautsky &Nichols,
1985). Then, (1) can be rewritten as ẋ = (A + pcT)x +
bu + (φ(y) − py) + d. Therefore, without loss of gen-
erality, A is assumed to be stable. There is no con-
straint on φ in contrast to a more specific class usually
assumed in other literature. If φ(0) = a �= 0, then (1)
can be rewritten as ẋ(t) = Ax(t) + bu(t) + φ′(y(t)) +
(d(t) + a), whereφ′(y(t)) = φ(y(t)) − awithφ′(0) =
0. Furthermore, if (1) is subject to model uncertain-
ties like ẋ = Ax + bu + φ(y) + �φ(x) + d and the
model uncertainty �φ(x) is not too large, then the
controller can also be designed according to (1) by tak-
ing �φ(x) + d as a new disturbance. The robustness

analysis is further carried out based on the small gain
theorem (Wei et al., 2016). Here, for simplicity, �φ(x)
is ignored.

In the following, the non-minimum or mini-
mum phase property of the nonlinear system (1) is
discussed.

Proposition 2.1: If and only if the following linear
system

ẋ = Ax + bu

y = cTx.
(2)

is non-minimum or minimum phase, then system (1)
without external signals is non-minimum or minimum
phase, respectively.

Proof: See Appendix 6.2. �

For system (2), the transfer function from u to y is

cT (sIn − A)−1 b = N (s)
D (s)

.

According to Proposition 2.1, system (1) without
external signals is non-minimum or minimum phase,
if N(s) has zeros on the right-half s-plane or open
left-half s-plane, respectively.

2.2. Objective

Let T>0 be the period of the disturbance and the ref-
erence in practice. The continuous-time system (1) is
controlled by using a sampled-data RCwith a sampling
period Ts > 0, where NTs instead of T is taken as the
period in the sampled-data controller design, N ∈ N.
More precisely, u in (1) is constant during the sampling
interval, so that u(t) = u(kTs), t ∈ [kTs, (k + 1)Ts),
k ∈ N. In practice, the disturbance period of T is not
known exactly or is varying, namely period T is uncer-
tain. This will cause the period variation, namely T −
NTs. On the other hand, sinceNTs instead of T is used
in the controller andNTs �= T in general,T can be also
considered as a variation of NTs. Let T = NTs + �

be the true period, where � is the perturbation. By
using NTs in the design, y−r is uniformly ultimately
bounded with the ultimate bound de� > 0.

Under Assumptions 2.1 and 2.2, for a given desired
output r, the objective is to design a sampled-data
output-feedback RC for the nonlinear system (1) such
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that y−r is uniformly ultimately boundedwith the ulti-
mate bound robust against the period variation. Here,
robustness can be roughly understood that de� is not
sensitive to � or say de�/� is small.

Remark 2.2: Here, for simplicity, the higher-order RC
is used to handle the period variation caused by mul-
tiple sources. If only the period variation caused by
sampling needs to be compensated for, the interpola-
tor design or low-pass filter modification is suggested
to use (Longman, 2010, pp. 477–480).

3. Sampled-data output-feedback robust RC by
additive state decomposition

Based on additive-state decomposition, the consid-
ered system (1) is decomposed into two subsystems:
an LTI system including all external signals as the
primary system, together with a secondary nonlinear
system whose equilibrium point is zero, as shown in
Figure 1. In the following, the decomposition process
and benefits from decomposition are introduced.

3.1. Additive state decomposition

3.1.1. Decomposition process
Consider the system (1) as the original system. The
primary system is chosen as follows:

ẋp = Axp + bup + φ (r) + d

yp = cTxp, xp (0) = x0.
(3)

Then the secondary system is determined by subtract-
ing the primary system (3) from the original system (1)
as

ẋ − ẋp = Ax + bu + φ
(
y
)+ d

− (
Axp + bup + φ (r) + d

)
y − yp = cTx − cTxp, x (0) − xp (0) = 0.

(4)

Let

xs � x − xp, ys � y − yp, us � u − up. (5)

Then the secondary system (4) is further written as

ẋs = Axs + bus + φ
(
r + ys + ep

)− φ (r)

ys = cTxs, xs (0) = 0
(6)

where ep � yp − r. According to the definitions,

y ≡ r + ys + ep.

If ep ≡ 0, then

ẋs = Axs + bus + φ
(
r + cTxs

)
− φ (r)

ys = cTxs, xs (0) = 0.
(7)

Thus (xs(t), us(t)) ≡ 0 is an equilibrium point of (7)
because it can make the left and right sides equal no
matterwhat the reference r is. According to (5), it holds
that

x = xp + xs, y = yp + ys, u = up + us. (8)

Controller design for the decomposed systems (3)
and (4) will use the output yp and state xs as feedback.
For such a purpose, an observer is proposed.

Lemma 3.1 (Quan et al., 2015): Suppose that an
observer is designed to estimate yp and xs in (3), (6) as
follows:

ŷp = y − cTx̂s (9)
˙̂xs = Ax̂s + bus + φ

(
y
)− φ (r) , x̂s (0) = 0. (10)

Then ŷp ≡ yp and x̂s ≡ xs.

Proof: Subtracting (10) from (6) results in ˙̃xs = Ax̃s,
x̃s(0) = 0, where x̃s = xs − x̂s. Then x̃s ≡ 0. This
implies that x̂s ≡ xs. Consequently, by (8), we have
ŷp ≡ y − cTx̂s ≡ yp. �

Remark 3.1: The observer proposed in Lemma 3.1
is different from classical observers because the state
estimate of x is still unknown. Also, the proposed
observer does not estimate the unknown disturbance
or equivalent-input disturbance (She et al., 2008; Zhou
& Li, 2018). A further explanation about the result
of Lemma 3.1 is given in the following. Since (6)
and (10) are only the models existing in the design,
the initial values xs(0), x̂s(0) are both assigned by the
designer and are all determinate. With this, x̂s ≡ xs.
Consequently, ŷp ≡ yp. This will simplify the following
stability analysis. The measurement y may be inaccu-
rate in practice. In this case, it is expected that small
uncertainties still maintain x̂s close to xs eventually.
Accordingly, the matrix A is required to be stable (see
Assumption 2.1) in the relationship ˙̃xs = Ax̃s in the
proof above.
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Figure 1. Additive-state decomposition and different discrete-time controller design for the primary system (3) and the secondary
system (4).

3.1.2. Benefits from decomposition
Additive-state decomposition brings in two benefits.

• For a given desired output r, the objective is to
design a sampled-data output-feedback RC for the
nonlinear system (1) such that y−r is uniformly
ultimately bounded. First, since the output of the
primary system and the state of the secondary sys-
tem can be observed,3 the original tracking prob-
lem for the system (1) is correspondingly decom-
posed into two problems: an output-feedback track-
ing problem (because only ŷp is available) for an
LTI ‘primary’ system (yp − r → B(δ1),4 δ1 ∈ R+)
and a state-feedback stabilisation problem (because
x̂s is available) for the complementary ‘secondary’
system (ys → B(δ2), δ2 ∈ R+). This is shown in
Figure 1. As a result, y − r → B(δ1 + δ2) according
to (8). So, the objective is achieved. Since the track-
ing task is only assigned to the LTI component, it
is therefore much easier than that for the nonlinear
system (1). The state-feedback stabilisation is also
easier than the output-feedback stabilisation.

• Secondly, for the two decomposed components, dif-
ferent discrete-time controller design methods can
be employed (shown in Figure 1). It is appropri-
ate to follow the discrete-time model design for the
discrete-time RC design of the linear primary sys-
tem. On the other hand, a state-feedback stabilisa-
tion problem for the secondary system is indepen-
dent of RC (The ISS property cannot be obtained for
a traditional RC system). The resultant closed-loop

system can be rendered ISS. Then, the emulation
design will be adopted for the discrete-time con-
troller design of the nonlinear secondary system.

3.2. Controller design for primary system and
secondary system

Thus far, the original tracking problem for the sys-
tem (1) is correspondingly decomposed into two prob-
lems: an output-feedback tracking problem for an LTI
primary system (3) and a state-feedback stabilisation
problem for the complementary secondary system (6).
In the following, we will solve them one by one.

3.2.1. Problem 3.1 on primary system (3)
Since (3) is an LTI system with an exogenous addi-
tive perturbation term given by φ(r) + d, by using
the sample-and-hold on the input and output with the
sampling period Ts, (3) can be written as

yp (z) = P (z) up (z) + dr (z) (11)

where P(z) = cT(zI − F)−1Hb, F = eATs ,
H = ∫ Ts

0 eAsds, and dr(z) represents the contribution
of φ(r) + d to the output. SinceA is stable by Assump-
tion 2.1, namely Re(λ(A)) < 0, then |λ(F)| < 1 no
matter what Ts > 0 is. This implies that P(z) is sta-
ble. Similarly to Steinbuch et al. (2007) and Pipeleers
et al. (2008), a sampled-data output-feedback RC can
be designed for (11). The corresponding problem is
stated in the following.
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problem 3.1: For (11) (or (3)), design a sampled-data
output-feedback RC as

up (z) = C (z) ep (z) (12)

such that, in time domain, ep(kTs) = r(kTs) − yp(kTs)

→ B(δ) as k → ∞, where

C (z) = 1 + L (z)
Q (z)W (z) z−N

1 − Q (z)W (z) z−N ,

and δ > 0 is expected as small as possible.

The stability analysis of the closed-loop system cor-
responding to (11) and (12) is given by Proposition 3.1.

Proposition 3.1: Let up in (11) be designed as in (12).
Suppose (i) Pc(z), L(z),Q(z) are stable, (ii)∣∣Q (z)W (z) z−N (1 − T (z) L (z))

∣∣ < 1, ∀ |z| = 1
(13)

where Pc(z) = 1
/
(1 + P(z)) and T(z) = P(z)Pc(z).

Then the tracking error ep is uniformly ultimately
bounded. Furthermore, if

Z−1 ((1 − Q (z)W (z) z−N) (r (z) − dr (z))
) → 0,

then ep(kTs) = r(kTs) − yp(kTs) → 0 as k → ∞.

Proof: By substituting (12) into (11), the tracking
error of the primary system is written as

ep (z) = Pc (z)K (z)[(
1 − Q (z)W (z) z−N) (r (z) − dr (z))

]
(14)

where K(z)=1
/
(1 − Q(z)W(z)z−N(1−T(z)L(z))) .

A sufficient criterion for stability of the closed-loop
system now becomes that Pc(z) and K(z) are both
stable. The transfer function Pc(z) is stable by con-
dition (i). For stability of K(z), to apply the small
gain theorem (Green & Limebeer, 1994, pp. 97-98),
Q(z)W(z)z−N(1 − T(z)L(z)) is required to be stable
first. This requires that Pc(z), P(z) and Q(z)W(z)z−N

be stable, which are satisfied by given conditions.
Therefore, if (13) holds, then K(z) is stable by the
small gain theorem. Then the tracking error ep is
uniformly ultimately bounded. Furthermore, taking
(1 − Q(z)W(z)z−N) (r(z) − dr(z)) as a new input
in (14), since Pc(z)K(z) is stable, ep(k) = r(k) −
yp(k) → 0 if Z−1(1 − Q(z)z−N(r(z) − dr(z))) → 0
ask → ∞. �

From Proposition 3.1, one can see that the stability
depends on three main elements of the controller (12):
L(z), Q(z) andW(z). The ideal design is

1 − T (z) L (z) = 0,Q (z) = 1. (15)

If so, then the condition (13) is satisfied and (14)
becomes

ep (z) = Pc (z)
(
1 − W (z) z−N) (r (z) − dr (z)) .

(16)

Since r(z) − dr(z) is periodic, Z−1((1 − W(z)z−N)

(r(z) − dr(z))) → 0. As a result, ep(kTs) = r(kTs) −
yp(kTs) → 0 based on (16). However, (15 ) is not often
satisfied. The following remarks comment this.

Remark 3.2 (design of L(z)): In practice, the transfer
functionT(z)may benon-minimum-phase. So, a stable
L(z) cannot satisfy T(z)L(z) = 1 exactly. Here, Tay-
lor expansions of the transfer function inverse is used
to design L(z). When there are zeros outside the unit
circle for T(z), one can rewrite T(z) in the following
form

T (z) = kT
Tn (z)
Td (z)

= kT
T+
n (z)T−

n (z)
Td (z)

where T+
n (z) is the cancelable part containing only the

stable zeros, T−
n (z) is the noncancelable part contain-

ing only the unstable zeros, and kT is the gain. Based
on the decomposition, the filter L(z) is designed as

L (z) = 1
kT

Td (z)
T+
n (z)

T̂−
n,inv (z) (17)

where T̂−
n,inv(z) is the Taylor expansions of 1

/
T−
n (z) .

Although the designed L(z) is noncausal, (12) can be
realised, thanks to the one-period delay term z−N .
Such a design can often assure |1−T(eiωTs)L(eiωTs)| ≈
0 at least for low frequency band, or for all frequencies
ω ∈ [0,π

/
Ts ]. The detailed design above and other

related designs are presented in Longman (2010, pp.
468–470).

Remark 3.3 (design of Q(z)): The design of L(z) has
assured that T(z)L(z) ≈ 1 in low frequency band so
that the stability criterion (13) holds in low frequency
band. However, the stability criterion may be violated
in high-frequency band. Based on the choice of L(z),
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the filter Q(z) is chosen to be a zero-phase low-pass
filter (Longman, 2010; Smith, 2007, pp. 473–475)

Q (z) =
k=nq∑
k=−nq

akzk

which aims to attenuate the term |Q(z)W(z)z−N(1 −
T(z)L(z))| in high-frequency band. Similarly, although
Q(z) is noncausal, (12) can be realised because
of the one-period delay term z−N . On the other
hand, by (14), the term 1 − Q(z)W(z)z−N will deter-
mine the tracking performance directly. Especially,
if |1 − T(eiωTs)L(eiωTs)| ≈ 0 for all frequencies ω ∈
[0,π

/
Ts ], then the ideal design is Q(z) = 1.

Remark 3.4 (design of W(z)): W(z) is the gain
adjusting or the higher-order RC function, given by

W (z) =
p∑

i=1
wiz−(i−1)N (18)

with
∑p

i=1wi = 1. For a traditional RC, W(z) = 1.
With the redundant freedom, one can design appro-
priate weighting coefficients w1,w2, . . .wp to improve
the robustness of the tracking accuracy with respect to
the period variation of r − dr (Steinbuch, 2002; Stein-
buch et al., 2007). An approach was further proposed
in Pipeleers et al. (2008) to design higher-order RCs
that yield an optimal trade-off between the robust-
ness for period-time uncertainty and the sensitivity for
non-periodic inputs.

Remark 3.5: Remarks 3.2–3.4 introduce the design
of L(z),Q(z),W(z) separately. Unlike it, Kurniawan
et al. (2014a) and Kurniawan and Cao (2014b) pro-
posed a comprehensive design and analysis method.
Only the parameters of L(z) is optimised by taking the
RC problem with time-varying sampling periods as a
robust control problem for an uncertain system.

3.2.2. Problem 3.2 on secondary system (6)
So far, Problem 3.1 has been solved. In the following,
the design of a sampled-data controller for the nonlin-
ear system (6) is discussed. Before proceeding further,
a lemma is introduced.

Definition 3.1 (Nesić & Teel, 2001): The system

ẋ = f (x, u (x) , dc) (19)

is ISS with respect to dc if there exist β ∈ KL and γ ∈
K such that the solutions of the system satisfy ‖x(t)‖
≤β(‖x(0)‖, t) +γ (‖dc‖∞), ∀x(0), dc ∈ L∞, ∀t ≥ 0.

Suppose that the feedback is implemented by a
sample-and-hold as

u (t) = u (x (kTs)) , t ∈ [kTs, (k + 1)Ts) , k ∈ N.
(20)

Lemma 3.2 (Nesić & Teel, 2001): If the continuous-
time system (19) is ISS, then there existβ ∈ KL and γ ∈
K such that given any triple of strictly positive numbers
(�x,�dc , ν), there exists T∗ > 0 such that for all Ts ∈
(0,T∗), ‖x(0)‖ ≤ �x, ‖dc‖∞ ≤ �dc , the solutions of
the sampled-data system ẋ = f (x, u(x(k)), dc) satisfy:

‖x (k)‖ ≤ β (‖x (0)‖ , kTs) + γ (‖dc‖∞) + ν, k ∈ N.
(21)

Lemma 3.2 states that if the continuous-time closed-loop
system is ISS, then the sampled-data system with the
emulated controller will be semiglobally practically ISS
with a sufficiently small Ts. With Lemma 3.2 in hand,
Problem 3.2 will be introduced.

problem 3.2: For (6), design a controller

us(t) = κ(xs(kTs)), t ∈ [kTs, (k + 1)Ts) (22)

such that the closed-loop system is ISS with respect to
the input ep, namely

‖xs (t)‖ ≤ β (‖xs (0)‖ , t) + γ

(
sup
t≥0

∥∥ep (t)
∥∥)+ ν,

(23)
where t ≥ 0, γ is a class K function, β is a class KL
function, ν > 0 can be made small by reducing the
sampling period Ts.

According to the emulation design, a continuous-
time controller us(t) is first designed based on the
continuous-time plant model (6). Then, the obtained
continuous-time controller is discretised according to
the sampling period. For the secondary system (6), a
locally Lipschitz static state feedback is designed as

us(t) = κ(xs(t)) (24)

whose discretisation form is (22). Then, substitut-
ing (24) into (6) yields

ẋs = f
(
t, xs, ep

)
(25)

where f (t, xs, ep) = Axs + bκ(xs) + φ(r + cTxs + ep)
− φ(r).
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With respect to the ISS problem for (25), one has the
following result.

Proposition 3.2: For (25), suppose that there exists
a continuously differentiable function V1 : [0,∞) ×
R
n → R such that

α1 (‖xs‖) ≤ V1 (t, xs) ≤ α2 (‖xs‖)
∂V1

∂t
+ ∂V1

∂xs
f
(
t, xs, ep

) ≤ −V2 (xs) , ∀ ‖xs‖

≥ ρ
(∥∥ep∥∥) > 0

∀(t, xs, ep) ∈ [0,∞) × R
n × R, where α1,α2 are class

K∞ functions, ρ is a class K function, and V2(x) is a
continuous positive definite function onR

n. Then, given
any triple of strictly positive numbers (�xs ,�ep , ν), there
exist a class K function γ , a class KL function β and
T∗ > 0 such that for all Ts ∈ (0,T∗), ‖xs(0)‖ ≤ �xs ,
supt≥0 ‖ep(t)‖ ≤ �ep , the solutions of the sampled-
data system formed by (6) and (22) satisfy (23), where
γ = α−1

1 ◦ α2 ◦ ρ.

Proof: One can imitate the proof of Khalil (2002,
Theorem 4.19, p. 176) to show that the continuous-
time system (25) is ISS with γ = α−1

1 ◦ α2 ◦ ρ. Then,
based on Lemma 3.2, it can be concluded that the
solutions of the sampled-data system formed by (6)
and (22) are semiglobally practically ISS. �

Remark 3.6: Since the structure of nonlinear term
φ is not specified, then it will be complex or con-
servative to establish an explicit Lyapunov function
for Problem 3.2 through a constructive method. To
avoid discussion case-by-case, we turn to conditions
on Lyapunov functions to establish a general solvabil-
ity condition.

3.3. Controller integration

With the two designed controllers (12) and (22) for
the two subsystems, one can combine them together
to solve the original problem. The result is stated in
Theorem 3.1.

Theorem 3.1: Suppose (i) Problems 3.1 and 3.2 are
solved; (ii) the observer-controller for system (1) is
designed as:

ŷp (kTs) = y (kTs) − cTx̂s (kTs)

x̂s ((k + 1)Ts) = Fx̂s (kTs) + Hbus (kTs)

+
∫ Ts

0
eAs
(
y (kTs+s)−r (kTs+s)

)
× ds, x̂s (0) = 0 (26)

and the controller for system (1) is designed as:

up (t) = up (kTs) = Z−1 (C (z)
(
r (z) − ŷp (z)

))
us (t) = κ(x̂s(kTs))

u (t) = up (t) + us (t)
(27)

for t ∈ [kTs, (k + 1)Ts), k ∈ N. Then the output of
system (1) satisfies that y(kTs) − r(kTs) → B(δ +
‖c‖γ (δ) + ‖c‖ν) as k → ∞,where δ is defined in Prob-
lem 3.1, and ν, γ are defined in Problem 3.2. Further-
more, if ‖φ̇(yd(t))‖ ≤ lφ̇ and ‖ḋ(t)‖ ≤ lḋ, ∀t ≥ 0, then
y(t) − r(t) →B(δ + ‖c‖γ (δ) + ‖c‖ν + ‖c‖ν′) as t →
∞, where ν′ = ∫ Ts

0 ‖eA(Ts−s)‖(lφ̇ + lḋ)dsTs.

Proof: See Appendix 6.3. �

Remark 3.7: According to Theorem 3.1, the ultimate
bound de� ≤ δ + ‖c‖γ (δ) + ‖c‖ν + ‖c‖ν′, which is
determined by the property of the original system,
the reference/disturbance, the controller, and also the
sampling period. The robust RC is designed for the
primary system in order to reduce δ.

4. An illustrative example

4.1. Problem formulation

In this paper, a single-link robot arm with a revolute
elastic joint rotating in a vertical plane is served as an
application (Marino & Tomei, 1995):

ẋ = A0x + bu + φ0
(
y
)+ d, x (0) = x0

y = cTx.
(28)

Here

A0 =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0

−K
Jl

−Fl
Jl

K
Jl

0

0 0 0 1
K
Jm

0 − K
Jm

−Fm
Jm

⎤
⎥⎥⎥⎥⎥⎦ , b =

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ ,
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c =

⎡
⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎦ ,φ0

(
y
) =

⎡
⎢⎢⎢⎣

0
−Mgl sin y

Jl
0
0

⎤
⎥⎥⎥⎦ , d =

⎡
⎢⎢⎣
0
d1
0
d2

⎤
⎥⎥⎦ (29)

where x = [x1 x2 x3 x4]T are the link displacement
(rad), link velocity, rotor displacement and rotor veloc-
ity, respectively; d1 and d2 are unknown disturbances.
The parameters in (29) are Jl = 2, Jm = 0.5, k = 0.05,
M = 0.5, g = 9.8, l = 0.5, Fl = Fm = 0.2. The con-
trol u is the torque delivered by the motor. It is
found that A0 is unstable. Choose p = [−2.10 −1.295
−9.36 3.044]T. Then the system (28) can be formulated
as (1) with A = A0 + pcT and φ(y) = φ0(y) − py,
where A is stable. Assume that the desired trajectory is
r(t) = 0.05 + 0.1 sin(2π t

/
T ), while the periodic dis-

turbances are d1(t) = 0.04 sin(2π t
/
T ) and d2(t) =

0.02 cos(2π t
/
T ) sin(2π t

/
T ), where T = 20π/3 s.

Let the sampling period be Ts = 0.1 s. Then N = 209.

4.2. Controller design

4.2.1. Controller design for primary system
Under the sampling period Ts = 0.1 s, the discrete-
time transfer function T(z) is

T (z) = (z + 9.399)Tm (z)

where

Tm (z) = 9.8895 ∗ 10−8(z + 0.9493)(z + 0.09589)
(z2 − 1.819z + 0.8279)
(z2 − 1.929z + 0.9314)

and there exists an unstable zero −9.399 in T(z).
Therefore, T(z) is non-minimum phase. According
to (17), L(z) is designed as

L (z) = T̂−
n,inv (z)
Tm (z)

(30)

where T̂−
n,inv(z) is the Taylor expansions of

1/(z + 9.399) and is designed as

T̂−
n,inv (z) = 1

9.399
− z

9.3992
+ z2

9.3993
≈ 1

z + 9.399
.

It is easy to check that |1 − T(eiωTs)L(eiωTs)| ≤
0.0013 for all frequenciesω ∈ [0,π

/
Ts ]. Then choose

Q(z) = 1. According to Steinbuch et al. (2007), a sim-
pler second-order RC function is chosen as

W (z) = 1.85 − 0.85z−N (31)

to improve robustness against the period variation.
The amplitude of the transfer function in (14) with
bothW(z) = 1 andW(z) = 1.85 − 0.85z−N are plot-
ted in Figure 2. As shown, if a small variation around
the given period occurs (corresponding to frequencies
at 0.3, 0.6, 0.9, . . . ), then the magnitude variation by
the higher-order RC is less than that by the RC. There-
fore, the higher-order RC is less sensitive to the period
variation. So, the higher-order RC can improve the
robustness of the tracking accuracy against the period
variation. This will be further confirmed next.

4.2.2. Controller design for secondary system
For the system (4), by the backstepping technique
(Khalil, 2002), design

us (xs) = μ1 + Jl
K

(v + μ2) (32)

where v = −7.5xs,1 − 19xs,2 − 17η3 − 7η4,μ1 = −η3
+ (K/Jm)xs,1 − (K/Jm)xs,3 − (Fm/Jm)xs,4, μ2 =
(Fl/Jl)η4 + (Mgl/Jl)(η3 + r̈) cos(xs,1 + r) − (Mgl/Jl)
((xs,2 + ṙ)2 sin(xs,1 + r) + r̈ cos(r) − ṙ2 sin(r)), η3 =
−(Fl/Jl)xs,2 − (K/Jl)(xs,1 − xs,3) − (Mgl/Jl)(sin(xs,1
+ r) − sin(r)), η4 = −(Fl/Jl)η3 − (K/Jl)(xs,2 − xs,4)
− (Mgl/Jl)((xs,2 + ṙ) cos(xs,1 + r) − ṙ cos(r)), xs =
[xs,1xs,2xs,3xs,4]T. The controller (32) can solve
Problem 3.2.

4.3. Controller integration and simulation

The final controller is given by (27), where L(z), Q(z)
in up are chosen as in Section 4.2, while us is cho-
sen as in (32). The variables yp and xs are estimated
by the observer (26) with the sensor sampling rate
Tss = 0.01s. In the controller combination, the vari-
ables yp and xs will be replaced by ŷp and x̂s. To com-
pare the robustness of the tracking accuracy against the
period variation, both W(z) = 1 and W(z) = 1.85 −
0.85z−N are taken into consideration, and the true
period is assumed to be 20π(1 + α) /3 , where α is the
perturbation. First, the transient response and track-
ing performance are shown in Figure 3. The tracking
error is uniformly ultimately bounded. At the begin-
ning, the traditional RC and the second-order RC both
have a big overshooting, because, at the first period,
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Figure 2. The amplitude of (1/(1 + P(z)))((1 − Q(z)W(z)z−N)/(1 − Q(z)W(z)z−N(1 − T(z)L(z)))).

the RC does not work. Compared with the traditional
RC, the second-order RC takes more time to adjust
because it uses the previous two-period tracking error
rather than one period by the traditional RC. How-
ever, after several periods, the output corresponding
to each controller tracks the reference gradually with
a satisfied steady-state tracking error. In the simula-
tion, the convergence rate of the second-order RC is
slower compared to that of the traditional RC. This is
because the second-order RC is not optimised based
on the system. Interested readers can refer to Kurni-
awan et al. (2014a) and Kurniawan and Cao (2014b)
for optimisation methods. In order to examine the
robustness against the period variation quantitatively,
the ultimate bound is plotted as a function of the per-
turbation α. As shown in Figure 4, the ultimate bound
is small if α is small. This implies that the proposed
sampled-data RC can drive y to track r. More impor-
tantly, the ultimate bound of the steady-state tracking
error produced by the proposed second-order RC is
less sensitive to the perturbation α in comparison with
that produced by the traditional RC. Therefore, our
initial goal is achieved that a discrete-time output-
feedback RC is designed for the nonlinear system (1)

such that y can track r and the robustness against the
period variation is improved.

4.4. Comparison

To demonstrate the effectiveness of the proposed
method, a comparison ismade. The considered system
is (28) with parameters (29) except for

φ0
(
y
) =

⎡
⎢⎢⎢⎢⎣

0

−Mgl
(
sin y + y2

)
Jl
0
0

⎤
⎥⎥⎥⎥⎦ (33)

where the new nonlinear term has the term y2 addi-
tionally to make the comparison obvious. The other
is the same as that in Section 4.1. The compared con-
trol is based on linearisation by Taylor’s expansion. By
linearisation, the system (28) becomes

ẋ = Ax + bu + d, x (0) = x0

y = cTx
(34)
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Figure 3. The transient response and tracking performance of the period-mismatch with traditional RC and second-order RC.

Figure 4. The ultimate bound as function of the period-mismatch with traditional RC and second-order RC.

where

A = A0 + ∂φ0
(
cTx
)

∂x

∣∣∣∣∣
x=0

.

Since only y rather than x is available and A is stable
for this case, the poles of A are not assigned here by

feedback. Under the sampling period Ts = 0.1 s, the
sampled-data RC is designed for comparison based
on (34) following the procedure in Section 4.2.1. The
proposed method is designed similar to Section 4.2,
but the controller for the secondary system is designed
based on (33). The transient response and tracking
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Figure 5. The transient response and tracking performance for comparison with traditional RC.

performance are shown in Figure 5. As shown, the
compared control based on linearisation cannot track
the period reference any more, but the proposed con-
trol method can achieve satisfying tracking perfor-
mance. This demonstrates the effectiveness of the pro-
posed method.

5. Conclusions

In this paper, a sampled-data output-feedback robust
RC problem for a class of non-minimum phase sys-
tems with measurable nonlinearities was solved under
the additive-state-decomposition-based tracking con-
trol framework. Existing controller design methods
in both the frequency domain and the time domain
were employed to make the robustness and discretisa-
tion for a continuous-time nonlinear system tractable.
From the given illustrative example, our initial goal
was achieved that, compared a discrete-time output-
feedback RC using a simpler second-order filter with
a classical RC, the output could track the refer-
ence and the robustness against the period varia-
tion was improved. Moreover, the proposed method

outperformed the RC based on linearisation. Since
the sampled-data control (sample-and-hold control)
is a type of hybrid control, the sampled-data con-
troller for the secondary nonlinear systems can be
also designed under the framework of hybrid control
(Goebel et al., 2012). Also, observer-based sampled-
data control methods can also apply on the secondary
nonlinear systems (Mao et al., 2018).

Notes

1. The neutral-type system in the critical case is in the form of
ẋ(t) −ẋ(t − T) = A1x(t) +A2x(t − T), where x(t) ∈ Rn,
T > 0, and A1,A2 ∈ Rn×n (Hale & Verduyn, 1993; Quan
et al., 2010).

2. A continuous-time controller is first designed based on a
continuous-time plant model. The sampling is completely
ignored at this step. Then, the obtained continuous-time
controller is discretised and implemented using a sample-
and-hold device (Nesić & Teel, 2001).

3. By (9) and (10), ŷp and x̂s are obtained instead of the true
state x. So far, x or xp is still unknown. In fact, we avoid
solving x by using the additive-state decomposition.

4. Here,B(δ) � {ξ ∈ R|‖ξ‖ ≤ δ}, δ > 0; the notation x(t) →
B(δ) means min

y∈B(δ)
|x(t) − y| → 0 as t → ∞.
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Appendix

A.1 An example

An example is presented to show that output feedback makes
feedback linearisation difficult. Consider the following uncer-
tain non-minimum phase system

ẋ1 = x1 + x2 + x22
1 + x22

− 0.5d

ẋ2 = −5x1 − 4x2 + u − 0.5d

y = x2 (A1)

where only x2 ∈ R is available from measurement, and d ∈ R

is unknown for controller designer. In the following, (A1) is
transformed into a linear system subject to a periodic distur-
bance term. Let

z2 = x2 + x22
1 + x22

(A2)

whose derivative is

ż2 =
(
1 + 2x2(

1 + x22
)2
)

(−5x1 − 4x2 + u − 0.5d) .

By designing

u = 5x1 + 4x2 +
(
1 + 2x2(

1 + x22
)2
)−1

v, (A3)

one has
ż2 = v + d̃ (A4)

where v ∈ R is a virtual control input, and

d̃ = −0.5

(
1 + 2x2(

1 + x22
)2
)
d ∈ R (A5)

is a new disturbance. On the other hand, substituting (A2)
into (A1) results in

ẋ1 = x1 + z2 − 0.5d (A6)

Combining (A4) and (A6) yields

ẋ1 = x1 + z2 − 0.5d

ż2 = v + d̃.
(A7)

In the process, there exist two problems: (i) In (A3), the state x1
is used. However, only x2 (output) is available from measure-
ments. So, the feedback linearisation cannot be realised directly.
(ii) In addition, the new disturbance d̃ in (A5) involves state
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2x2/(1 + x22)
2. So, (A7) is in fact not a linear system. There-

fore, from this simple example, it is not easy to transfer (1) into
a linear system with a periodic disturbance term.

A.2 Proof of Proposition 2.1

According to Khalil (2002, Theorem 13.1, p. 516), for (2), there
exists a diffeomorphism transformation

z =
[
η

ξ

]
= T (x) =

[
T1 (x)
T2 (x)

]

and γ : Rn → R, α : Rn → R such that[
η̇

ξ̇

]
=
[

f0 (η, ξ)

Acξ + bcγ (x) (u − α (x))

]

y = cTc ξ

where η ∈ Rρ , ξ ∈ Rn−ρ , (Ac, bc, cc) is a canonical form repre-
sentation of a chain of ρ ∈ N integrators;

f0 (η, ξ) = ∂T1 (x)
∂x

(Ax + bu)
∣∣∣∣
x=T −1(z)

Acξ + bcγ (x) (u − α (x)) = ∂T2 (x)
∂x

(Ax + bu)
∣∣∣∣
x=T −1(z)

.

The system (2) is said to beminimum phase, if the zero dynam-
ics η̇ = f0(η, 0) has an asymptotically stable equilibrium point.
Otherwise, it is non-minimum phase. By using the same trans-
formation T (x) for system (1) without external signals, we can
get

[
η̇

ξ̇

]
=

⎡
⎢⎢⎢⎣

∂T1 (x)
∂x

(
Ax + bu + φ

(
cTx

))∣∣∣∣
x=T −1(z)

∂T2 (x)
∂x

(
Ax + bu + φ

(
cTx

))∣∣∣∣
x=T −1(z)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣
f0 (η, ξ) + ∂T1 (x)

∂x
φ
(
cTx

)∣∣∣∣
x=T −1(z)

Acξ + bcγ (x) (u − α (x))

+ ∂T2 (x)
∂x

(
φ
(
cTx

))∣∣∣∣
x=T −1(z)

⎤
⎥⎥⎥⎥⎦

y = cTc ξ

whose zero dynamics is

η̇ = f0 (η, 0)

as well because
∂T1 (x)

∂x
φ
(
cTx
)∣∣∣∣

x=T −1(z),ξ=0

= ∂T1 (x)
∂x

φ
(
cTc ξ

)∣∣∣∣
x=T −1(z),ξ=0

= ∂T1 (x)
∂x

∣∣∣∣
x=T −1(z),ξ=0

φ (0)

= 0.

Based on the analysis above, the system (2) and system (1)with-
out external signals have the same zero dynamics. According
to the definition, if the linear system (2) being non-minimum
or minimum phase is equivalent to the system (1) with-
out external signals being non-minimum or minimum phase,
respectively.

A.3 Proof of Theorem 3.1

ByLemma3.1, the estimates in the observer (26) satisfy x̂p ≡ xp
and x̂s ≡ xs. Then the controller up in (27) can drive ep(kTs) =
yp(kTs) − r(kTs) → B(δ) as k → ∞ thanks to Problem 3.1
being solved. On the other hand, suppose that Problem 3.2 is
solved. According to (23), one has

‖xs (kTs)‖ ≤ β ′ (∥∥xs (k′Ts
)∥∥ , (k − k′)Ts

)
+ γ

(
sup
t≥k′T

∥∥ep (t)
∥∥)+ ν,

where β ′ is a classKL function and k′ ≤ k. Then∥∥ys(kTs)
∥∥ ≤ ‖c‖ ‖xs(kTs)‖

≤ ‖c‖ β ′ (∥∥xs (k′Ts
)∥∥ , (k − k′)Ts

)
+ ‖c‖ γ

(
sup
t≥k′T

∥∥ep (t)
∥∥)+ ‖c‖ ν.

According to Problem 3.1, ep(kTs) → B(δ) as k → ∞. This
implies that, for a given ε ∈ R+, there exists aN0 ∈ N such that
supt≥k′T ‖ep(t)‖ ≤ δ + ε when k′ � N0. Then ‖ys(kTs)‖ ≤
‖c‖β ′(‖xs(N0Ts)‖, (k − N0)Ts) + ‖c‖γ (δ + ε) + ‖c‖ν, k �
N0. Since ‖c‖β ′(‖xs(N0Ts)‖, (k − N0)Ts) → 0 as k → ∞ and
ε can be chosen arbitrarily small, it can be concluded that
ys(kTs) → B(‖c‖γ (δ) + ‖c‖ν) as k → ∞.

Furthermore, let us consider the behaviour of the sampled-
data system during a sampling interval. By using (23), ys(t) →
B(‖c‖γ (δ) + ‖c‖ν) as t → ∞. In the following, we further
consider the primary system. Let

x̃p,k (�t) = xp (kTs + �t) − xp (kTs) , ỹp,k (�t) = cTx̃p (�t)

where �t ∈ [0,Ts]. Then, by using Lagrange mean value
theorem, one has

˙̃xp,k (�t) = Ax̃p,k (�t) + φ̇
(
yd (ξ1)

)
�t + ḋ (ξ2) �t

where kTs ≤ ξ1, ξ2 ≤ kTs + �t. Since ‖φ̇(yd(t))‖ ≤ lφ̇ and
‖ḋ(t)‖ ≤ lḋ, one has∥∥ỹp,k (�t)

∥∥ ≤ ‖c‖ ∥∥x̃p,k∥∥
≤ ‖c‖

∫ �t

0

∥∥∥eA(�t−s)
∥∥∥ (lφ̇ + lḋ

)
ds�t

≤ ‖c‖ ν′

for all k ∈ N. Therefore, y(t) − r(t) → B(δ + ‖c‖γ (δ) +
‖c‖ν + ‖c‖ν′).
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