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Accurate and Flexible Calibration Method
for a Class of Visual Sensor Networks

Heng Deng , Kun Yang, Quan Quan , and Kai-Yuan Cai

Abstract—Accurate and flexible calibration is a prerequi-
site for visual sensor networks to retrieve metric information
from image data. This paper presents the design and imple-
mentation of an accurate and flexible calibration method for a
class of visual sensor networks intended for 3D measurement
and tracking in large volumes. The proposed method employs
a generic camera model that is applicable for wide-angle lens
cameras as well as for conventional cameras. It does not
require all the employed cameras to share a common field of
view, and only pairwise overlap is needed. In the calibration
process, the poses betweenstereo cameras are first initialized
using essential matrix decomposition and then optimized by
the Levenberg-Marquardt algorithm. A weighted vision graph
is proposed to select optimal transformation paths among cameras by using Dijkstra’s shortest path algorithms for
multi-camera calibration. Then, the global coordinates are constructed using a four-marker calibration triangle. Finally,
a Unity3D-based virtual platform, in which the total number and configurations of cameras, as well as the environment
scene, can be arbitrarily edited, is designed to test the proposed calibration algorithms. Extensive experiments based on
synthetic and real data are performed to demonstrate the effectiveness of the proposed multi-camera calibration method.
Experimental results show that the multi-camera calibration method is accurate and easy-to-implement in the presence
of noise.

Index Terms— Visual sensor networks, multi-camera calibration, 1D calibration pattern, vision graph, bundle
adjustment.

I. INTRODUCTION

NOWADAYS, Visual Sensor Networks (VSNs) have
emerged as an important class of multi-camera networks

that can detect, monitor, and track events of interest areas with
a number of large-scale applications, ranging from security
to monitoring [1]–[3]. As pointed out in [4], current optical
motion capture systems are a successful example of how useful
the multi-camera system can be. In typical applications in
these systems, some markers can be detected by cameras,
and their positions are easily reconstructed by matching and
triangulation algorithms.

Camera calibration is a necessary task, and a key part
of the VSNs intended for applications involving accurate
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metric measurements, the major goal of which is to revive the
positions and orientations of all the cameras in the network.
It is essential for camera calibration to choose an appropriate
camera model. Note that the camera can be considered as a
ray-based sensing device, and the camera model defines how
the observed rays of light are mapped onto the 2D image.
Perspective camera model, i.e., the pinhole camera model,
is the most common model, and it is applicable for most
conventional cameras with a small Field Of View (FOV) and
little distortion. A highly flexible technique to calibrate the
perspective cameras has been proposed by Zhang [5] and
widely used in a variety of applications [6], [7]. Nevertheless,
some applications such as visual surveillance and monitoring
require cameras with fish-eye lenses or wide FOV, in which
perspective camera models are not suitable. For such a pur-
pose, Kannala has proposed a generic camera model which is
suitable and easily expandable for conventional, wide-angle
and fish-eye lenses [8], and the generic camera model is
employed and evaluated by our previous works [9], [10] as
well as in this paper.

Usually, during the calibration process, the camera captures
images from an object with known dimensions and shape (also
considered as a calibration pattern). For 3D or 2D calibration
[11], [12], it may require an expensive calibration apparatus

1558-1748 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 25,2020 at 06:50:34 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1878-2066
https://orcid.org/0000-0001-8216-8998


3258 IEEE SENSORS JOURNAL, VOL. 20, NO. 6, MARCH 15, 2020

and an elaborate setup, and the calibration objects might
not be simultaneously observed by all the cameras due to
self-occlusion [13]. Therefore, like the method employed in

common optical motion capture systems, a 1D calibration pat-
tern is used in this paper. 1D calibration was firstly proposed
by Zhang [14] by using a 1D object consisting of three or
more collinear points on a straight line. The main advantage
of 1D calibration is that there is no self-occlusion problem.
Thus, the 1D calibration object is especially suitable for a
multi-camera system. The work of Wang et al. [15] was the
first to propose a multi-camera calibration algorithm based on
a 1D pattern that moves freely and without prior knowledge
of the parameters of any of the cameras. De Franca et al. [16]
took the results of a normalized linear algorithm as initial
values and performed nonlinear optimization with bundle
adjustment. Authors in [17] proposed a new 1D calibration
without imposing any restrictions on the movement of the
pattern and without any prior information about the cameras
or motion, and the method was shown to have a good accuracy
suitable for practical applications.

Furthermore, most of the calibration methods are designed
to calibrate the cameras with a common FOV, which are not
applicable to solving the case of non-overlapping. Thus, accu-
rate global calibration of cameras with a non-overlapping FOV
is a very challenging task. Kurillo et al. [18] combined the idea
of vision graphs for wide-area camera networks with small
working volume overlap and calibration methods using virtual
calibration objects. Xia et al. [19] reviewed a variety of global
calibration of non-overlapping multi-camera methods based on
different types of techniques such as large-range measuring
devices, large-scale calibration targets, optical mirrors, motion
model, laser projection, visual measuring instruments, etc.
However, most global calibration methods for non-overlapping
multi-camera systems have a small effective range with a
small number of cameras employed, which shortly limits the
applications for a large-scale space [15], [20]–[22].

Our previous work [9] also employed a 1D calibration
object, i.e., a freely-move wand with three collinear LEDs
under general motions. However, the algorithm is demon-
strated with at most three cameras. Besides, the point extrac-
tion method does not exhibit satisfactory behavior for LEDs,
and the calibration results rely heavily on the moving of the
wand. Therefore, this paper proposes an accurate and flexible
approach to the geometric calibration of a VSN by using a
1D wand under general motions. The proposed method does
not require all the cameras to share a common FOV, and
only pairwise overlap is needed. The proposed calibration
method is demonstrated and applied in real multi-camera based
testbed for 3D tracking and control of UAVs [10]. As noted
in [10], it is hopeful for the testbed to extend to a large-
scale VSN in which a large number of cameras are employed.
Based on our previous works, this paper aims to clarify the
detailed calibration method for a class of VSNs with extensive
simulation and real experimental results.

The contributions of this paper are: i) a flexible approach
to calibrate multiple cameras of a large-scale visual sen-
sor network by using a 1D wand under general motions
is proposed; ii) a k-means++ based selection algorithm to

Fig. 1. Overview diagram of the visual sensor network.

optimized k clusters among a large number of point corre-
spondences, which improves the effectiveness of employed
points, is proposed; iii) no requirements for all the cameras
to share a common FOV, and only pairwise overlap
is needed; iv) a MATLAB-based Graphical User Inter-
face (GUI) is developed to visualize and simplify the
intrinsic calibration and the source code is available at
https://github.com/DengMark/CameraCalibrator; v) a virtual
platform based on Unity3D technology1 is designed to test
the calibration method (it is the first time as far as we know).

The remainder of this paper is organized as follows.
Section II gives a problem formulation of the proposed
multi-camera calibration, including some preliminaries and
the objective, followed by the main calibration algorithms
described in Section III. Section IV shows the experimental
results based on a synthetic and real multi-camera setup.
Finally, Section V gives the conclusions and future research
plan.

II. PROBLEM FORMULATION

A. Preliminaries

1) Notations and Definitions: Some necessary notations and
coordinate definitions are described in the following, which
are the basic notions of perspective projective geometry, such
as homogeneous coordinates and multi-view geometry for
cameras. Let R

m×n denote a real matrix with m rows and n
columns while R

n an n-dimensional real column vector. Define
AT and A−1 as transpose and inverse of matrix A, respectively.
The symbol x̄ is used to denote the homogeneous coordinate
of x by adding 1 as the last element.

The overview diagram of the VSN is shown in Fig. 1.
There are mainly two coordinate frames involved: Earth-Fixed
Coordinate Frame (EFCF) and Camera Coordinate Frame
(CCF). The EFCF {e} = {oexeyeze} denotes a right-hand frame

1Unity3D (https://unity3d.com) is a cross-platform game engine developed
by Unity Technologies. The engine can be employed to create 2D, 3D, virtual
reality, and augmented reality games, as well as simulations.
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with the coordinate origin oe located on the horizontal ground
plane. The CCF {ci } = {

oci xci yci zci

}
, (i = 0, 1, · · · , M − 1)

is attached to each external camera with its origin oci located
in the camera optical center and the oci zci axis aligned with
the optical axis. The system consisting of M ∈ Z+ cameras
captures a 1D calibration pattern with three collinear markers,
i.e., the points A j , B j , C j . The subscript j denotes the index
of the image frame. When the calibration pattern is moved
freely in the working volumes, the projections of each marker(
Aj, Bj, Cj

)
in the j th frame from the i th camera are denoted

as
(
aij, bij, cij

)
in spherical coordinate. The 3D spherical

coordinates are finally transformed into 2D image coordinates
which are given by the generic camera model in the following.

In this paper, a generic camera model is employed, which
is applicable for conventional, wide-angle, and fish-eye lens
cameras. The model description can be found in [9], [10].
To simplify, the mapping from a 3D world point eP =
[ pxe pye pze ]T∈ R

3 to a 2D pixel point p = [ u v ]T ∈ R
2

can be summarized as

p = G
(
k1, k2, mu, mv , u0, v0, k3, k4, k5, Rc

e, tc
e,

e P
)

(1)

where (u0, v0) is the principal point and (mu, mv ) are
the total number of pixels per unit distance in horizontal
and vertical direction, respectively. As for the parame-
ters of the function G (·), the first nine parameters
(k1, k2, mu, mv , u0, v0, k3, k4, k5) are called the intrinsic para-
meters which describe the mapping from the point cP ∈ R

3

w.r.t. the CCF to the image point p while the remaining
parameters

(
Rc

e ∈ R
3×3, tc

e ∈ R
3
)

are corresponding extrin-
sic parameters which are the rotation and translation trans-
formation matrices from the EFCF to the CCF. Besides,
the calibration patterns employed are the same as those in
our previous work [10], including a 1D wand with three
identical reflective markers and a 2D triangle board with four
markers.

B. Objective

Without loss of generality, the 0th camera is regarded as
the reference camera. There are some necessary assumptions
in the proposed method needed to be claimed.

Assumption 1: Only the radian distortion is considered in
the camera model.

Assumption 2: Cameras are synchronized at fixed Frames
Per Second (FPS).

Assumption 3: Camera intrinsic parameters remain
unchanged during calibration.

Assumption 4: At least two cameras share a common
overlap.

Based on the assumptions above, the objective is to calibrate
the intrinsic parameters

(
ki

1, ki
2, mi

u, mi
v , ui

0, v
i
0, ki

3, ki
4, ki

5

)
and

extrinsic parameters (Ri , ti ) of each camera provided the point
correspondences

(
pi j k ↔ eP j k

)
, and i = 0, 1, . . . , M − 1

denotes the index of camera, j = 1, 2, . . . , N denotes the
image frame index, while k = 1, 2, 3 denotes the three markers
mounted on the calibration pattern. To be more specific,
assume pi j k as the actual projection of markers, the calibration
is to estimate the complete parameters by solving the nonlinear

minimization function defined as

min
Ri ,ti

M−1∑
i=0

N∑
j=1

3∑
k=1

∥∥∥pi j k − G
(

ki
1, ki

2, mi
u, mi

v ,

ui
0, v

i
0, ki

3, ki
4, ki

5, Ri , ti ,
e P j k

)∥∥∥2
. (2)

C. Problem Analysis

For each observation, we have two independent equations
for each marker according to (1). Thus, each observation of the
calibration pattern with three markers will yield in total known
six equations. Besides, considering that the three markers for
each observation must be collinear, there are only five indepen-
dent equations for each observation. Without loss of generality,
the CCF is chosen to define the 1D calibration pattern. Then,
we only need five parameters to define the positions of the
three collinear markers with known distances. For example,
we need three parameters to define the coordinates of one
marker in the CCF and two parameters to define the orientation
direction of the line. Thus, the nine parameters of the three
markers are cut down to five parameters.

Since the points of the 1D calibration object are not simul-
taneously captured by all the cameras due to non-overlapping,
For total N observations, define there are Ni observations for
the i th camera. Note that Ni ≤ N . Then, the total number

of independent equations is
M∑

i=1
5Ni . Since the three markers

have different coordinates in each observation, the unknown
point positions to be estimated is 5N . Since there are nine
intrinsic parameters and six extrinsic parameters (except the
extrinsic parameters of the reference camera) to describe a
camera, the total number of the camera parameters is 15M−6.
Thus, the total number of unknowns is 5N + 15M − 6. Thus,

the solution to the problem (2) exists if
M∑

i=1
5Ni ≥ 5N+

15M − 6 holds. Besides, the total number of observations
is usually a big number such as 3000, then the solution
exists. To speed up the optimization process, the nine intrinsic
parameters need to be calibrated prior to deployment. Thus
the number of unknowns is decreased to 5N + 6M − 6, and

the solution exists if
M∑

i=1
5Ni ≥ 5N + 6M − 6 holds.

Similarly, for situations with four or more collinear markers
with known distances, there are more markers for each obser-
vation. It seems that there are more independent equations,
but in fact it is not. As pointed in [14], the addition of
the fourth marker or even more markers does not increase
the total number of independent equations. It will always be
5N for four or more collinear markers since the collinearity
and cross ratio are preserved under perspective projection.
Since the total camera number is not changed, the number of
unknowns remains the same. In practice, since three points
with different distances are sufficient for marker detection
and matching algorithms, we usually intend to employ three
collinear markers to calibrate multiple cameras.

In spite of simplification above, the number of parameters
to be optimized for the problem remains great. Furthermore,
the structure of the visual sensor network is complicated with
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Fig. 2. Flow diagram of the proposed multi-camera calibration algorithm.

multiple cameras and overlapping. In this paper, we tend to
divide the multi-camera calibration problem to many pairwise
calibration problems. Subsection III-C in the following solves
the optimization in pairwise calibration. Then, combined with
a vision graph with the pairwise calibration results, Subsec-
tion III-D give the optimal path of each camera and a solution
based on the bundle adjustment. The problem can be optimized
by using Levenberg-Marquardt (LM) algorithm [23]. Due to
the sparse nature of the problem, where there is a lack of
interaction between cameras with great reprojection errors,
spare bundle adjustment is applied [24].

III. PROPOSED METHOD

An outline of the flow diagram is shown in Fig. 2, and
it is shown that the proposed method is mainly divided
into three parts: intrinsic calibration, extrinsic calibration, and
global coordinate determination. The intrinsic calibration is
to calibrate the intrinsic parameters, including focal length,
principal point, and lens distortion of each camera. Afterwards,
the external calibration is performed to define how the local
CCF is related to the EFCF, i.e., to determine the position and
orientation of each camera. It can be roughly divided into pair-
wise calibration and multi-camera calibration. Furthermore,
the proposed extrinsic calibration can be summarized in the
following.

(a) Image acquisition and marker detection on multiple
cameras.

(b) Marker selection based on the collinear principle and
fixed-length structure, during which each marker is guaranteed
to be captured by at least two cameras.

(c) Computation of the essential matrix between two cam-
eras based on epipolar geometry.

(d) Initial extrinsic calibration by decomposing the essential
matrix into rotational and translational terms and determining
the scale factor through triangulation and optimization.

(e) Bundle adjustment to obtain the external parameters
between two cameras.

(f) Construction of adjacency matrix for vision graph
describing interconnections among the cameras and optimal
path determination using Dijkstra’s algorithm.

(g) Initialization of intrinsic and extrinsic parameters based
on the optimal path and pairwise calibration.

(h) Global optimization of all the extrinsic parameters based
on bundle adjustment.

Different from most multi-camera calibration algorithms,
the last step of our calibration is to determine the EFCF by
using a triangle. This step is to transform the position and
orientation of each camera including the reference camera to
the EFCF, so that 3D measurement and tracking are realized
easily.

A. Intrinsic Calibration

In this paper, it is assumed that the camera intrinsic para-
meters are needed to be separately estimated prior to calibra-
tion process since the parameters remain unchanged during
calibration and the intrinsic parameters are not dependent on
the EFCF. The goal of the intrinsic calibration is to esti-
mate the nine parameters

(
ki

1, ki
2, mi

u, mi
v , ui

0, v
i
0, ki

3, ki
4, ki

5

)
,

i = 0, 1, . . . , M − 1 of each camera.
As shown in Fig. 3, a MATLAB-based GUI of the intrinsic

calibration is developed to visualize and simplify the whole
process, in which we can easily modify the camera configura-
tion and as well as the projection model type as described
in [9]. Before running the intrinsic calibration algorithm,
a high-precision checkerboard with a size of 30 mm square
is used as the calibration plane, and a few images of the
plane under different positions and orientations are captured
by moving either the plane or the camera. Then, in the
GUI, the camera configuration needs to be edited, including
the focal length, the FOV, pixel size, and image resolution.
Besides, we choose the calibration model only to consider the
radial effects, and the projection type is chosen as the equidis-
tance projection. After loading all the images, the detection
and extraction of feature points are automatically executed
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Fig. 3. MATLAB-based GUI of the intrinsic calibration process.

and shown in the top right of the GUI. Finally, the calibration
process is finished, and the nine internal parameters are shown
as below. The reprojection errors of each view are shown in the
below right bar, and it is found that the errors are so small that
the calibrated camera intrinsic parameters can be employed in
the following.

B. Marker Detection and Selection

Marker detection is to detect and extract the subpixel
locations of the three collinear markers, which significantly
influences calibration accuracy. In practice, the marker detec-
tion process is implemented in real-time on each camera client.
Infrared reflective markers are employed as the calibration
pattern, and they are easily observed and detected by the
camera with an infrared-pass filter. The markers are first
detected by thresholding, smoothing and segmenting, Then the
centers of markers are extracted and synchronously transferred
to the server as the main inputs of the calibration algorithm.
To calculate the subpixel marker center precisely, image
moment Mpq is employed with the definition as [25]

Mpq =
∑

u

∑
v

u pvq I (u, v) (3)

where p, q ∈ R+ ∪ {0}. I (u, v) is the intensity of image
point (u, v) after thresholding and smoothing procedure. Thus,
the center of the marker is computed as{

û = M10
/

M00

v̂ = M01
/

M00.
(4)

After obtaining the subpixel locations of the three markers,
some noise points or outliers are eliminated based on colin-
earity. Besides, considering that there may be many points
distributing mainly in the same area such as the center of the
volume with common overlap, a k-means++ based selection
algorithm is proposed to choose optimal matching points. The
k-means++, an augmented algorithm of the classical k-means
method, is a widely used clustering technique to minimize
the average squared distance between points in the same
cluster [26]. Note that in our instance, two sets of N matching

Fig. 4. Results of selecting markers based on the k -means++ based
selection algorithm.

points from two cameras are given defined as X1 ⊂ R
2 and

X2 ⊂ R
2 and we need to select the optimal matching points

for both point sets simultaneously. Thus, the augmented vector
is proposed by combining the two point sets together to obtain
a new set of data points X ⊂ R

4. Thus, the k-means++ is
used to group the data points into fixed clusters. The procedure
of the k-means++ based selection algorithm is summarized
as follows.

Algorithm 1 Procedure of the k-Means++ Based Selection
Algorithm
1. Initialization: fixed number k ∈ Z+, obtain the augmented
point set X from the two points sets X1 and X2.
2. Choose one center c1 uniformly at random from X .
3. Compute the shortest distance from each data point to the
closest center we have already chosen, denoted as D (x); Then,
compute the probability with D(x)2∑

x⊂X D(x)2 for each data point

x ∈ X . Finally, choose a new center ci based on a roulette-
wheel selection [27].
4. Repeat Step 3 until k centers altogether have been chosen.
5. Refine the data points: obtain the 2D points w.r.t. each
camera from the 4D points ci , i = 1, . . . , k chosen above.

We record the original data points and selected points based
on k-means++ selection algorithm from two cameras in real
experiments. The number k is fixed as 100, and the results
are shown in Fig. 4. One test has been done with the number
of original points being 14178. Results show that the selected
points spread out as far as possible in the fixed resolution of
640 × 480 pixels.

C. Pairwise Calibration

Pairwise calibration is a fundamental step of multi-
camera calibration. It is to calculate the relative pose
between two cameras through epipolar geometry given two
images from stereo cameras. First, the pixel coordinates of
points from two cameras are transformed into normalized
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hemispherical coordinates. Then, it is found that an essential
matrix can be estimated through epipolar geometry constraints
between two cameras. Through decomposition of the essential
matrix, an initial relative pose of the two cameras can be
obtained up to a scale factor, and the factor is then computed
from the actual length constraints of the 1D wand based on
3D reconstruction algorithm. Finally, the solution is globally
refined by bundle adjustment.

1) Epipolar Geometry and 3D Reconstruction:
a) Epipolar geometry: Without loss of generality, assume

that a 3D point M j is projected to m0 j , m1 j ∈ R
3 on the

unit hemisphere centered at oc0 and oc1 , respectively. Thus,
the epipolar geometric constraint is formulated as [9]

mT
1 j E

c1
c0

m0 j = 0 (5)

where Ec1
c0 = [

tc1
c0

]
× Rc1

c0 is defined as the essential matrix
between the two cameras, Rc1

c0 ∈ R
3×3, tc1

c0 ∈ R
3 are the

rotation and translation matrices from the left camera {c0} to
the right camera {c1}, respectively.

The point correspondences
(
M j , m0 j , m1 j

)
can be(

A j , a0 j , a1 j
)
,
(
B j , b0 j , b1 j

)
or
(
C j , c0 j , c1 j

)
for instances

as shown in Fig. 1. According to equation (5), the epipolar
geometric constraint depends only on the intrinsic parameters
and relative pose of the cameras while it does not rely at all
on the scene structure.

b) 3D reconstruction: In this subsection, a linear recon-
struction algorithm based on the epipolar geometric constraint
above is proposed to solve the problem of how the position of a
feature can be recovered from a set of point correspondences
of two cameras. Without loss of generality, assume that the
homogeneous coordinates of a 3D point M j ∈ R

3 are

M̄0 =

⎡
⎢⎢⎣

X0
Y0
Z0
1

⎤
⎥⎥⎦ , M̄1 =

⎡
⎢⎢⎣

X1
Y1
Z1
1

⎤
⎥⎥⎦ = [

Rc1
c0 tc1

c0

]
M̄0

in
{
oc0 xc0 yc0 zc0

}
and

{
oc1 xc1 yc1 zc1

}
, respectively. The 3D

point is then projected into

m0 =
⎡
⎣ sin θ0 cos ϕ0

sin θ0 sin ϕ0
cos θ0

⎤
⎦ , m1 =

⎡
⎣ sin θ1 cos ϕ1

sin θ1 sin ϕ1
cos θ1

⎤
⎦

on the unit hemisphere centered at oc0 and oc1 , respectively.
Then, one has equations as follows.{

s0m0 = P0M̄0

s1m1 = P1M̄0
(6)

where s0, s1 are scale factors and P0 = [I3 03×1] ∈ R
3×4,

P1 = [Rc1
c0 tc1

c0 ] ∈ R
3×4. Suppose the detailed form of the

matrices are

P0 =
⎡
⎢⎣

P0
11 P0

12 P0
13 P0

14

P0
21 P0

22 P0
23 P0

24

P0
31 P0

32 P0
33 P0

34

⎤
⎥⎦ , P1 =

⎡
⎢⎣

P1
11 P1

12 P1
13 P1

14

P1
21 P1

22 P1
23 P1

24

P1
31 P1

32 P1
33 P1

34

⎤
⎥⎦.

For each image point on the unit hemisphere, the scale
factors in equation (6) can be eliminated through a cross
product. Thus, one has the abstract form as

AM0 = b.

Therefore, given m0, m1, Rc1
c0 , tc1

c0 , the homogeneous
coordinates of a 3D point M j w.r.t.

{
oc0 xc0 yc0 zc0

}
is

reconstructed by a least square method

M0 =
(

ATA
)−1

ATb. (7)

It is noted that equation (7) provides a linear solution,
which is subject to noises. Thus, the solution could be refined
by minimizing the reprojection errors or Sampson errors.
Furthermore, the linear reconstruction algorithm could be
extended to N-view (N > 2) triangulation for the calibration
of multiple cameras.

2) Essential Matrix Estimation: Given a set of point
correspondences between two cameras,

{
m0 j ↔ m1 j

}
, j =

1, . . . , N , the objective is to estimate the essential matrix
Ec1

c0 = [
tc1
c0

]
× Rc1

c0 such that the epipolar geometry constraints
(5) is fulfilled. The essential matrix has only five degrees of
freedom: both the rotation matrix and the translation vector
have three degrees of freedom, but there is a single unknown
scale factor. These properties makes the essential matrix have
two equal singular values and a third singular value equal to
zero. The problem of estimating the essential matrix is then
formulated as

He = 0 (8)

where H ∈ R
N×9 contains the spherical coordinates of the N

measurement point correspondences and e ∈ R
9 contains the

essential matrix coefficients by stacking operation. Because
of the scale ambiguity, the last term of the coefficient vector
e is set to 1 to determine e up to scale. Thus the unknown
number of terms is reduced to eight. Thus, equation (8) can be
solved by the 8-point algorithm [28]. Considering the existence
of estimation error, the derived matrix does not meet the
properties of an essential matrix, it is proposed to compute
the closest matrix E1 to the obtained matrix E in the sense of
Frobenius norm subject to the condition det (E1) = 0.

Remark 1: Given at least 8 point correspondences, it is
possible to solve linearly for the solving of e up to scale,
but the solution is sensitive to image noises. With more than
8 point correspondences, the coefficient matrix H is usually
with column rank due to noises, and the linear solution does
not exist. Then, the least-squares solution for e is the singular
vector corresponding to the smallest singular value of H.
Consider one extreme situation where all the points are imaged
onto the center of the image plane, and the corresponding
angle θ0 = 0 for an instant. It is calculated that the matrix H
has six zero columns, and the rank is only three. Therefore,
there are infinitely many solutions to equation (8). However,
this situation is almost impossible. On the other hand, when
most points are imaged onto the edges of the image plane,
the values of the angles θ are close to half of FOV, and the
solution still exists. In all, when the 1D object moves freely,
the solution to equation (8) always exists as long as the three
markers of the object are accurately captured by synchronous
cameras.

3) Initial Extrinsic Calibration: Once the essential matrix Ec1
c0

is obtained by solving the problem (8), the rotation matrix and
translation vector of the two cameras may be retrieved through
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an essential matrix decomposition. This decomposition is
implemented by means of a Singular Value Decomposition
(SVD). It is supposed that the rotation matrix of the reference
camera equals a unit matrix while the translation vector
remains zero. The decomposition of the essential matrix has
four possible solutions with a scale ambiguity of the transla-
tion vector. The solution can be concluded in the following
theorem.

Theorem 1: Recovering the camera matrix from the essen-
tial matrix. Suppose that the essential matrix is defined as
E = [t]× R. Let the singular value decomposition of the
essential matrix be E = Udiag (1, 1, 0) VT, and assume

W =
⎡
⎣ 0 1 0

−1 0 0
0 0 1

⎤
⎦ .

Then, the four possible solutions for the camera matrix
P = [R t] are:

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

P1 =
[

UWVT U
[

0 0 1
]

T
]

P2 =
[

UWVT −U
[

0 0 1
]

T
]

P3 =
[

UWTVT U
[

0 0 1
]

T
]

P4 =
[

UWTVT −U
[

0 0 1
]

T
]

It is noted that only one of the four solutions satisfy the
condition that a 3D point reconstructed from both camera
views must be in front of both cameras, namely, the value
of the third term of the reconstructed coordinates must be
positive. Thus, the solution is found by testing with a single
point to determine whether it is in front of both cameras.
Finally, the scale ambiguity λ of the essential matrix is
simultaneously resolved from the known geometry of the 1D
calibration pattern, defined as

λ = 1

N

N∑
j=1

L AC∥∥∥Ar
j − Cr

j

∥∥∥ (9)

where N is the total number of frames, L AC is the actual
length of the markers A, C, and Ar

j , Cr
j represent the recon-

structed coordinates of the markers A, C based on the 3D
linear reconstruction solution (7) from two views of cameras
with the intrinsic and extrinsic parameters obtained above.
Finally, the translation vector is initialized as tc1

c0 = λt̃c1
c0 .

4) Bundle Adjustment: Up to now, the relative position and
orientation of the two cameras are obtained in a closed-form
solution which is therefore prone to errors. This subsection
is to refine the extrinsic parameters using bundle adjustment
algorithm. Given the initial pose of cameras based on the
Theorem 1, define x as the calibrated extrinsic parameters
between two cameras, one can minimize the following repro-
jection error

min
x,A j ,B j ,C j

1∑
i=0

N∑
j=1

(
�2

a + �2
b + �2

c

)
(10)

Here,

�a =
∥∥∥ai j − G

(
ki

1, ki
2, mi

u , mi
v , ui

0, v
i
0, ki

3, ki
4, ki

5, x, A j

)∥∥∥
�b =

∥∥∥bi j − G
(

ki
1, ki

2, mi
u, mi

v , ui
0, v

i
0, ki

3, ki
4, ki

5, x, B j

)∥∥∥
�c =

∥∥∥ci j − G
(

ki
1, ki

2, mi
u, mi

v , ui
0, v

i
0, ki

3, ki
4, ki

5, x, C j

)∥∥∥ .

Before the nonlinear optimization, the reconstructed dis-
tance between the two 3D points A, C is compared with the
known length L AC to removed outliers. If∣∣∣∣∣∣

L AC −
∥∥∥Ar

j − Cr
j

∥∥∥
L AC

∣∣∣∣∣∣ > 1%

holds, then the j th image pair is removed from the measure-
ments.

Besides, the number of the parameters to be optimized
could be reduced if the collinear constraints within the three
points are taken into account. The positions of B j , C j can
be expressed by the starting point A j with the normalized
direction vector n j and their fixed distance. They have the
relation as follows{

B j = A j + L AB n j

C j = A j + L AC n j
(11)

where n j = [ sin φ j cos θ j sin φ j sin θ j cos φ j ]T ∈ R
3

denotes the normalized direction of the 1D wand, and it is
known that the

(
φ j , θ j

)
are the spherical coordinates centered

at A j . Substituting equation (11) into the optimization problem
(10) will reduce the number of input parameters from nine to
five. Since Ar

j , Br
j , Cr

j is known from the linear reconstruction
algorithm, the normalized direction vector n j can be obtained
based on equation (11). Thus, the initialization of all the neces-
sary parameters is finished. Finally, the nonlinear minimization
problem (10) can be solved by bundle adjustment using the
sparse LM algorithm.

D. Multi-Camera Calibration

Multi-camera calibration in this section involves more than
two cameras. In this paper, the structure of the VSN is repre-
sented by a weighted vision graph as in [18], the determination
of the vision graph will be described in detail first, followed
by the initialization of intrinsic and extrinsic parameters of
multiple cameras in the VSN. Finally, the total parameters are
refined by bundle adjustment.

1) Vision Graph Determination: In terms of vision graph
theory, the layout of M cameras can be represented by a
graph G consisting of M vertices Vi , i = 0, . . . , M − 1
which represents individual cameras. The edges of the graph
G represent the overlap between different camera pairs, and
the weights ai j are assigned to the edges corresponding to the
reprojection error of stereo calibration between the i th and j th
camera. If the reprojection error is too large since there is a
small number of common points, the corresponding vertices
are not connected. To describe the graph clearly, adjacency
matrix A (G) = {

ai j
} ∈ R

M×M is defined. It is known that
A (G) is a symmetric matrix. The weights then represent the

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 25,2020 at 06:50:34 UTC from IEEE Xplore.  Restrictions apply. 



3264 IEEE SENSORS JOURNAL, VOL. 20, NO. 6, MARCH 15, 2020

accuracy of the internal calibration between two cameras. The
adjacency matrix is updated after finishing pairwise calibration
between each camera pair and obtaining the corresponding
reprojection error. Note that using the reprojection errors as
the weights is a different method from that in [9] where
the number of common points is related to the weights.
Next, to find the optimal path for transformation from the
reference camera to other cameras, the Dijkstra’s shortest path
algorithm [29] on the weighted vision graph is employed. The
algorithm solves the single-source shortest path problem for a
graph with positive weights, and it will succeed as long as the
graph is connected [18].

2) Initialization of Intrinsic and Extrinsic Parameters: Assume
that i, j, k are indices of consecutive cameras on the shortest
path of the vision graph. According to pairwise calibration in
Subsection III-C, the transformations from the i th camera to
the j th camera and from the j th camera to the kth camera are
[Rc j

ci t
c j
ci ] and [Rck

c j tck
c j ], respectively. Then, the transformation

from the i th camera to the kth camera can be obtained as
follows. {

Rck
ci = Rck

c j R
c j
ci

tck
ci = Rck

c j t
c j
ci + tck

c j .
(12)

If a path from the reference camera has a length longer
than two, equation (12) is employed sequentially to cover the
entire path. Therefore, combined with the intrinsic parameters
already calibrated in Subsection III-A, the initialization of
intrinsic and extrinsic parameters of all cameras in the VSN
is finished.

3) Bundle Adjustment: Similarly, the objective is to refine
all parameters using bundle adjustment by minimizing the
reprojection. Given the initial pose of cameras based on vision
graph and pairwise calibration described above, define y as the
extrinsic parameters of all the cameras except the reference
camera, one can minimize the following reprojection error

min
y,A j ,B j ,C j

M−1∑
i=0

N∑
j=1

(
�2

a + �2
b + �2

c

)
(13)

Here,

�a =
∥∥∥ai j − G

(
ki

1, ki
2, mi

u, mi
v , ui

0, v
i
0, ki

3, ki
4, ki

5, y, A j

)∥∥∥
�b =

∥∥∥bi j − G
(

ki
1, ki

2, mi
u , mi

v , ui
0, v

i
0, ki

3, ki
4, ki

5, y, B j

)∥∥∥
�c =

∥∥∥ci j − G
(

ki
1, ki

2, mi
u, mi

v , ui
0, v

i
0, ki

3, ki
4, ki

5, y, C j

)∥∥∥ .

Besides, the positions of B j , C j can be expressed by the
point A j with the normalized direction vector n j and their
fixed distance in equation (11). Similarly, n j is obtained
from the reconstructed points Ar

j , Br
j , Cr

j by N-view tri-
angulation algorithm extended from equation (7). After all
the optimization variables are initialized, the multi-camera
calibration problem (13) can be effectively optimized by using
the sparse LM algorithm which simultaneously refines the
camera parameters and the 3D structure w.r.t. the reference
camera.

E. Global Coordinate Determination

In general, we can obtain the intrinsic parameters(
ki

1, ki
2, mi

u , mi
v , ui

0, v
i
0, ki

3, ki
4, ki

5

)
, i = 0, 1, . . . , M − 1of

each camera, and their extrinsic parameters [Rci
c0 tci

c0], i =
1, . . . , M − 1 with regards to the 0th camera. Different from
most literature, one more step is added after multi-camera
calibration to determine the EFCF {e} = {oexeyeze} defined by
a triangle. In practice, the triangle board is placed horizontally
on the ground floor (it is better to be at the center of the
volume of multiple cameras), where the four markers are
employed to retrieve the transformations of each camera w.r.t.
the EFCF, denoted as [Rci

e tci
e ], i = 0, · · · , M − 1. Therefore,

given the spatial position relation of the four markers and the
extrinsic parameters of each camera w.r.t. the reference camera
based on multi-camera calibration algorithm described above,
the objective is to calculate{

Rci
e = Rci

c0 Rc0
e

tci
e = Rci

c0 tc0
e + tci

c0 .
(14)

According to equation (14), Rci
c0 and tci

c0 are already cal-
ibrated according to the multi-camera calibration describe
above. Thus, the problem is transformed into the determination
of the rotation matrix and the translation vector of the 0th cam-
era w.r.t. the EFCF, i.e., [Rc0

e tc0
e ]. The main idea is as follows.

Given the global coordinates of the four markers, denoted as
M j , j = 1, 2, 3, 4, combined with the transformations of each
camera w.r.t. the 0th camera, the corresponding CCF on i th
camera is built as

ci M j = Rci
e · M j + tci

e (15)

where the form of [Rci
e tci

e ] are given by equation (14). Then,
the estimated variables become only the [Rc0

e tc0
e ]. Thus, com-

bining equation (15) with the camera model, the reprojected
pixels of the points M j can be obtained. And the parameters
are optimized by minimizing the reprojection error by using
the LM algorithm.

Note that the global coordinate determination process
involves the accurate matching of each marker on the triangle.
According to the special angular relation, the four markers can
be easily detected and classified into two groups, one with only
a single point like the marker D, the other group with three
collinear markers E, F, G. Then, the matching of the three
collinear markers is the same as that of the 1D calibration
wand described in Subsection III-B.

IV. EXPERIMENTAL RESULTS

In this section, extensive experiments are conducted to
validate the proposed multi-camera calibration algorithm
including simulation experiments using synthetic data and
experiments with real data. The algorithm is evaluated by the
calibration accuracy, i.e., the root mean square reconstructed
errors and the root mean square reprojection errors defined as
follows. A video of thorough experimental tests is available
at https://youtu.be/XmglR4HAsEw and our Reliable Flight
Control Group website http://rfly.buaa.edu.cn.
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Fig. 5. Experiment settings of the proposed visual sensor network.

A. Calibration Accuracy

It is necessary to define suitable error criteria to evaluate
the performance of the multi-camera calibration method.

Let Ar
j , Br

j , Cr
j be the reconstructed Euclidean coordinates

of the three collinear markers of the 1D calibration wand in
j th ( j = 1, . . . N) frame based on 3D reconstructed algorithm.
Then, the root mean square reconstructed distance error is
defined as follows.

εd =

√√√√√√ 1

3N

N∑
j=1

⎡
⎢⎣
(

L AB −
∥∥∥Ar

j −Br
j

∥∥∥)2+
(

L AC −
∥∥∥Ar

j − Cr
j

∥∥∥)2

+
(

L BC −
∥∥∥Br

j − Cr
j

∥∥∥)2

⎤
⎥⎦

(16)

Let Dr
j , Er

j , Fr
j ,G

r
j be the reconstructed Euclidean coordi-

nates of the four markers of the triangle in j th ( j = 1, . . . N)
frame based on 3D reconstructed algorithm. Then, the root
mean square reconstructed Euclidean error of each marker is
defined as follows.

εe (M) =
√√√√ 1

N

N∑
j=1

(∥∥∥Mr
j − M j

∥∥∥)2
, M = D, E, F, G (17)

Let ai j , bi j , ci j be the projected pixels of the three
markers in j th ( j = 1, . . . N) frame captured by the
i th (i = 0, . . . M − 1) camera, âi j , b̂i j , ĉi j are denoted as
the reprojected pixels computed with the camera model and
the known global coordinates. Then, the root mean square
reprojection error is defined as follows.

εr =
√√√√ 1

6M N

M−1∑
i=0

N∑
j=1

((
ai j −âi j

)2+
(

bi j −b̂i j

)2+(ci j −ĉi j
)2)

(18)

B. Simulation Experiments

In order to fulfill various testing requirements and solve the
practical problem that the visual sensor network is difficult to
be installed and adjusted arbitrarily, a Unity3D-based virtual

Fig. 6. Overview of the virtual scene with an eight-camera arrangement.
All the eight cameras are arranged around the view volume, and the right
side is the top view of the main camera in a god’s perspective. Some point
lights are added to the scene to supply lighting in simulation.

Fig. 7. The horizontal layout of the eight cameras in the VSN. The triangle
symbols represent the FOV of each camera as an abstract description.

visual platform, which enables users to modify camera config-
urations and scene settings, is developed to produce synthetic
visual data.

1) Simulation Setting: As shown in Fig. 6, eight cameras
are arranged in the Unity3D scene to cover an area of
10 × 10 × 2.5 m, in which the transforms and rotations of
the cameras can be modified arbitrarily. In the simulation, all
the cameras have the same internal parameters including the
image resolutions of 640 × 480 pixels, the focal lengths of
4 mm, the pixel sizes of 5.3 ×5.3 μm, and the FOV of 58.6◦.
The configurations of the calibration wand and the calibration
triangle are the same as those in real experiments described as
in [10]. In the simulation scene, some wall structures are added
to occlude the vision view of some cameras. The horizontal
layout of the VSN with the FOV of each camera is shown in
Fig. 7. It is clear that the lines of sight of Cam3 and Cam8 are
occluded by the wall.

Corresponding to the multi-camera scene created above,
a simple User Interface (UI) is designed to send connection
request commands to the VSN and to visualize the calibration
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Fig. 8. UI of the virtual platform to make a connection and to visualize
the calibration process.

process as shown in Fig. 8. The top side of the UI shows the
real-time FPS. The main operation panel is arranged on the
right side, in which we can choose the number of cameras and
connect any camera with the VSN, and then set or remove the
wand, triangle and rigid objects.

As described above, it is necessary to calibrate the
intrinsic parameters of the cameras, and the parameters remain
unchanged during the whole calibration process. Therefore,
15 raw images of a checkerboard are captured by one camera
in simulation and used as the inputs of the intrinsic calibration
algorithm in Subsection III-A. The internal parameters are then
obtained as k1 = 3.992, k2 = 1.530, mu = 189.406, mv =
189.345, u0 = 320.642, v0 = 240.745, k3 = −3.82091, k4 =
25.2191, k5 = −31.1443.

2) Simulation Results: Based on the camera arrangement
described in Fig. 6, we have generated 6000 positions of the
calibration wand with no image noises to implemented the
whole calibration process. The calibration errors are small
with the mean reconstructed error of 0.31 mm and the mean
reprojection error of 0.2158 pixels. The vision graph and the
optimal path of the eight cameras are shown in Fig. 9. Simu-
lation results show that the reprojection errors are very small,
indicating that the calibration method is accurate. Besides,
the the vision graph can simplify the structure of the sensor
network.

Furthermore, the comparison of cameras positions between
the truth and calibration results in simulation is conclude in
Table I. Results shown that our calibration method has an
accurate estimation.

Then, the performance of the calibration algorithm w.r.t. the
image noises is tested. Gaussian noises with mean value 0 and
standard deviation σ ∈ R+ ∪{0} are added to the image points
of each camera. The noise level σ varies from 0 to 2 pixels
in delta step of 0.2 pixels. σ = 0 means the ideal condition
without image noise. At least 6000 positions of the calibra-
tion wand are generated, and then we obtain the calibration
accuracy for each test at different noise levels. The results of
the noise analysis are depicted in Fig. 10 and Fig. 11. Based
on the results, it is shown that the calibration errors increase
with the noise levels increase. When the noise level is under
1 pixel for each camera, the calibration results are acceptable.

Fig. 9. Vision graph and the optimal path from the reference
Cam1 obtained based on the Dijkstra’s shortest path algorithm in simu-
lation. Numbers indicate the reprojection error of the pairwise calibration
of the two cameras.

TABLE I
COMPARISON OF CAMERA POSITIONS BETWEEN THE TRUTH AND

CALIBRATION RESULTS IN SIMULATION

Fig. 10. Reconstructed errors at different noise levels in simulation. Black
star curve represents the mean reconstructed error of the four markers.

When the noise level raises to 2 pixels, the reconstructed
Euclidean errors are 10 mm, which is considered to be large for
the multi-camera tracking system. Besides, it is noted that the
total FPS will decrease greatly during the simulation for eight
cameras since all the algorithm and rendering are implemented
in a single PC.
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TABLE II
REPROJECTION ERRORS εR (PIXELS) OF EACH CAMERA AT DIFFERENT NOISE LEVELS IN SIMULATION

Fig. 11. Reprojection errors at different noise levels in simulation.

Finally, we have compared the calibration results of the
proposed method with the method of our previous work [9].
The reprojection errors of each camera are shown in Table II.
Based on the results, our proposed method outperforms the
previous work.

C. Real Experiments

1) Experiment Setting: The real experiments with real
data are performed on five CMOS smart cameras (type:
SCZE130M-GEHD) with the image resolution of 640 × 480
pixels to cover an area of 5 × 5 × 2.5 m. The cameras are
equipped with the infrared light source and infrared-pass filters
to capture marker images, and are synchronized by external
triggers (type: CBAT328-IO602) at 100 FPS. All the cameras
have 4 mm lens (type: AZURE-0420MM) installed with the
FOV of 77.32◦. Image processing to obtain the marker points
is executed using an FPGA module inside the smart cameras.
The main calibration algorithm is run on a PC with Intel Core
i7 processor, 3.6 GHz and 8 GB RAM. The configurations
of the calibration objects are shown in [10]. Before arranging
the VSN, the internal parameters of each camera needs to be
obtained by intrinsic calibration in Subsection III-A.

2) Real Experiment Results: First, we demonstrate the pro-
posed calibration method for the five-camera VSN. Results
show that the calibration errors are small with the mean
reconstructed error of 0.83 mm and the mean reprojection error
of 0.228 pixels. The vision graph and the optimal path of the
five cameras are shown in Fig. 12. Note that the reprojection

Fig. 12. Vision graph and the optimal path from the reference
Cam1 obtained based on the Dijkstra’s shortest path algorithm. Numbers
indicate the reprojection error of the pairwise calibration of the two
cameras.

Fig. 13. Reconstructed Euclidean errors of each marker on the triangle
with a different number of frames in real experiments.

error of calibration between Cam1 and Cam3 is relatively large
so that the optimal path of the Cam3 includes an intermediate
Cam2.

Then, the effect of the total number of frames to the
calibration algorithm is evaluated. Results are shown in
Fig. 13 and Fig. 14. Based on these results, the calibration
algorithm is accurate, and the mean reconstructed Euclidean
error is within 1 mm while the mean reprojection error is
smaller than 0.3 pixels. The error is acceptable and reasonable
with the results of the simulation. As the number of captured
images is increasing, the error does not change much and will
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TABLE III
REPROJECTION ERRORS εR (PIXELS) OF EACH CAMERA WITH A DIFFERENT NUMBER OF FRAMES IN REAL EXPERIMENTS

Fig. 14. Reprojection errors of each camera with a different number of
frames in real experiments.

Fig. 15. Vision graph results of eight cameras: (a) Weighting matrix
of each pairwise cameras, aij represents the reprojection of stereo
calibration of the ith camera and the jth camera. “INF” means the value
is too large. (b) Vision graph and the optimal path from the reference
camera “Cam1” obtained from the above setup based on the Dijkstra’s
shortest path algorithm. Numbers indicate the reprojection error of the
calibration of the two cameras.

converge to a stable value. The conclusion is consistent with
that in simulation.

Finally, we have compared the calibration results of the
proposed method with the method of our previous work [9].
The reprojection errors of each camera are shown in Table III.
Results show that our proposed method outperforms the pre-
vious work.

Furthermore, eight smart cameras with an image reso-
lution of 1280 × 1024 pixels to cover a bigger area of
5 × 8 × 2.7 m. Results shown that the calibration errors are
small with the mean reconstructed error of 0.34 mm and the
mean reprojection error of 0.139 pixels. Similarly, the vision
graph and the optimal path of the eight cameras are depicted
in Fig. 15. The top table shows the results of the adjacency
matrix, and it is clear that the matrix is symmetric with the
elements being positive. Fig. 15(b) shows the vision graph is
based on the adjacency matrix, and the edges between two
vertices are not connected if the weights are too large, such
as the edges between vertex 1 and vertex 5 since the weight
a15 is too large. The paths in the thick line represent the
optimal transformation path based on the vision graph and
the Dijkstra’s shortest path algorithm. Supplemental results are
available at https://youtu.be/Eu3kRMH5n-A.

V. CONCLUSION

In this paper, an accurate and flexible calibration method for
a class of visual sensor networks is proposed and implemented.
The proposed method does not require all the cameras to
share a common FOV, and only pairwise overlap is needed.
Based on the experimental results with synthetic and real
data, the feasibility and accuracy of the proposed multi-camera
calibration method in the presence of noise are demonstrated.
We have made some improvements based on our previous
work [9]. First, infrared- reflective markers (passive vision) are
employed as the target points instead of LEDs (active vision),
thus the detection and extraction of markers are more accurate
and robust. Second, a k-means++ based selection algorithm
is proposed to efficiently choose optimal matching points.
Third, extensive experiments with more cameras (e.g., eight
cameras in simulation) are conducted in this paper to validate
the calibration algorithms. Besides, the proposed Unity3D-
based virtual platform is an effective tool to test vision-based
algorithms for different applications.

However, the proposed method requires all the cameras are
to be synchronized, and the camera internal parameters are
assumed to be unchanged and need to be calibrated prior
to deployment. Besides, the camera arrangement is found
to make a great difference to the final results. Therefore,
in future research, the multi-camera calibration with asyn-
chronous cameras in the visual sensor network needs to be
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studied further. A good camera configuration is needed to
extend the coverage as well as decrease the calibration error.
Based on the fundamentals of this paper, it is hopeful to
construct a large-scale VSN to implement more essential
applications with more cameras and target objects.
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