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Dear editor,

Aerial refueling (AR) is an effective method of increasing

the endurance and range of aircraft by refueling them in

flight [1, 2]. Station-keeping control is the basis of au-

tonomous aerial refueling (AAR). The station-keeping con-

trol for AAR is a difficult task for two main reasons. First,

the receiver is disturbed by the atmospheric turbulence and

the wake vortex of the tanker. Secondly, owing to the fuel

injection in the refueling process, the mass and the center

of mass of the receiver will change.

Many researches have focused on developing station-

keeping control methods for AAR, for example, the lin-

ear quadratic regulator (LQR) method [3], the L1 adap-

tive control method [4], the proportional-integral-derivative

(PID) control method, and active disturbance rejection con-

trol (ADRC) technique [5]. Among these existing meth-

ods, most station-keeping controllers are designed by using

some control methods for linear systems after linearizing

the nonlinear receiver system directly. However, abandon-

ing the nonlinear term directly may limit the control ef-

fect and make the final closed-loop system fragile to system

perturbation and external disturbances. If the nonlinearity

information of the nonlinear receiver system can be consid-

ered properly, better control effect would be expected. Thus,

in this study, an additive-state-decomposition-based (ASD-

based) [6] station-keeping control method is proposed for the

probe-and-drogue AAR, which is a typical representative of

AAR.

Problem formulation. Because of fuel transfer in refuel-

ing, the receiver aircraft is a system of varying mass and

moments of inertia. For station-keeping control, taking the

variable mass receiver model into account is a big difference

from other conventional control. Readers can refer to [7]

for the variable mass receiver model. In the tanker frame,

the variable mass receiver model can be represented by a

compact form:

ẋr = f (xr,ur,d) , (1)

where xr = [ xr yr hr φ θ ψ ur vr wr p q r ]
T is the state

vector, ur = [ δt δe δa δr ]T is the input vector, and d de-

notes various aerodynamic disturbances including the atmo-

spheric turbulence and the tanker vortex.

Suppose that, in the level and forward flight, ur = vr =

wr = p = q = r = 0. Under this trim condition, the

trimmed state and trimmed input are x∗

r and u∗

r . By defin-

ing the disturbed state and disturbed input as x̃r = xr−x∗

r ,

ũr = ur − u∗

r , the disturbed system can be written as

˙̃xr = Ax̃r +Bũr + g (x̃r) + d (x̃r, ũr) ,

ỹr = Cx̃r, x̃r (0) = x̃r0,
(2)

where A ,
∂f(xr,ur)

∂xr
|xr=x∗

r ,ur=u∗
r
, g (x̃r) denotes nonlinear

terms, B ,
∂f(xr,ur)

∂ur
|xr=x∗

r ,ur=u∗
r
, and d (x̃r, ũr) includes

unmodelled dynamics and disturbances. The output ma-

trix C ∈ R
3×12, and ỹr = pr − p*

r with p*
r for the trimmed

position. x̃r0∈ R
12 is the initial state value.

Control objective. Design a station-keeping controller ur

for the receiver system (1) such that pr (t) − pd
r (t) → 0 or

pr (t)−pd
r (t) → B (03×1, δ) 1) as t → ∞, δ ∈ R+ ∪ {0}.

Equivalently, design a tracking controller ur for the sys-

tem (2) such that ỹr (t) − ỹd
r (t) → 0 or ỹr(t)−ỹd

r (t) →

B (03×1, δ) as t → ∞ when there exist disturbances, where

pd
r is the reference trajectory, and ỹd

r = pd
r − p*

r is the dis-

turbed reference trajectory.

ASD-based station-keeping controller design. ASD [6]

is a decomposition method for nonlinear systems just like

superposition principle for linear systems. In the follow-

ing, ASD is introduced to decompose the aforementioned

receiver model into two subsystems.

Consider system (2) as the original system. By applying

ASD, the primary system is chosen as

˙̃xr,p = Ax̃r,p +Bũr,p + d (x̃r, ũr) ,

ỹr,p = Cx̃r,p, x̃r,p (0) = x̃r0.
(3)

Then, subtracting the primary system (3) from the original
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1) B (o, δ) , {ξ ∈ R
3 |‖ξ − o‖ 6 δ }, and the notation x (t) → B (o, δ) means miny∈B(o,δ) ‖x (t) − y‖ → 0.
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system (2) gives

˙̃xr − ˙̃xr,p = A (x̃r − x̃r,p) +B (ũr − ũr,p) + g (x̃r) ,

ỹr − ỹr,p = C (x̃r − x̃r,p) , x̃r (0) − x̃r,p (0) = 0.
(4)

Next, by defining

x̃r,s = x̃r − x̃r,p, ỹr,s = ỹr − ỹr,p, ũr,s = ũr − ũr,p,

systems (3) and (4) become

˙̃xr,p = Ax̃r,p +Bũr,p + d (x̃r,s + x̃r,p, ũr,p + ũr,s) ,

ỹr,p = Cx̃r,p, x̃r,p (0) = x̃r0,
(5)

˙̃xr,s = Ax̃r,s +Bũr,s + g (x̃r,s + x̃r,p) ,

ỹr,s = Cx̃r,s, x̃r,s (0) = 0.
(6)

Conversely, the original system (2) can be replaced by

putting the primary system (5) and the secondary system

(6) together.

It is clear that if the controller ũr,p drives ỹr,p (t) −

ỹd
r (t) → 0 or ỹr,p(t)−ỹd

r (t) → B (03×1, δ) as t → ∞

and the controller ũr,s drives x̃r,s → 0 as t → ∞, then

ỹr (t)− ỹd
r (t) → 0 or ỹr(t)−ỹd

r (t) → B (03×1, δ) as t→ ∞.

The strategy here is to assign the tracking subtask to the

primary system (5) and the stabilization subtask to the sec-

ondary system (6). Because system (5) is a linear time-

invariant (LTI) system including all disturbances, standard

design methods in either frequency domain or time domain

can be used. On the other hand, because system (6) is a

deterministic nonlinear system, many nonlinear stabilizing

control methods can be adopted.

Next, the controller design is investigated in the form

of two problems with respect to two subtasks, respectively.

Because the system dimension of the receiver is high, con-

trollers are often designed for the decoupled longitudinal

channel and lateral channel respectively. In the following,

the controller design for the longitudinal channel is taken

into consideration for an illustration (a subscript ‘lon’ is

added to every variable in the following).

Problem 1 (Tracking problem). For (5), design a

proportional-integral (PI) tracking controller such that

erlon,p = ỹrlon,p (t) − ỹd
rlon (t) → 0 as t → ∞, meanwhile

keeping x̃rlon,p bounded.

Intuitively, to remove the tracking error, an integral ac-

tion must be employed in the controller

qrlon,p =

∫ t

0
erlon,p (s) ds. (7)

According to [8], a state feedback controller can be designed

as

ũrlon,p = −Kxlonx̃rlon,p −Kelonqrlon,p, (8)

where Kxlon ∈ R
2×6,Kelon ∈ R

2×2. The LQR method

is utilized to determine the feedback matrices Kxlon and

Kelon.

Theorem 1. For system (5), if the controller is designed

as

ũrlon,p = −Kxlonx̃rlon,p −Kelonqrlon,p, (9)

then ỹrlon,p (t) − ỹd
rlon (t) → 0 as t → ∞, and x̃rlon,p is

bounded.

Proof. See [8].

Problem 2 (Stabilization problem). For (6), design a sta-

bilizing controller such that x̃rlon,s → 0 as t→ ∞.

In the following, a feedback linearization controller will

be designed. In order to make the controller design easier,

a virtual output variable is defined as

ȳrlon,s = Cslonx̃rlon,s, (10)

where Cslon ∈ R
2×6. If the new output matrix Cslon makes

the system from ũrlon,s to ȳrlon,s be a minimum-phase sys-

tem, then ȳrlon,s → 0 implies x̃rlon,s → 0. A method for

determining the output matrix Cslon is given in [9]. Differ-

entiating (10), one has

˙̄yrlon,s = CslonAlonx̃rlon,s +CslonBlonũrlon,s

+Cslong
(

x̃rlon,s + x̃rlon,p

)

.

A control input can be designed as

ũrlon,s = (CslonBlon)
−1

(

vrlon,s − h
)

, (11)

where vrlon,s is a virtual input, and h = CslonAlonx̃rlon,s −

Cslong(x̃rlon,s+ x̃rlon,p). The choice of Cslon needs to make

CslonBlon invertible. Then, it can be obtained that

˙̄yrlon,s = vrlon,s.

Design

vrlon,s = −Krlonȳrlon,s,

where Krlon ∈ R
2×2 is the controller parameter. Then, one

has

˙̄yrlon,s = −Krlonȳrlon,s,

which can guarantee that ȳrlon,s → 0 exponentially, and

further can guarantee that x̃rlon,s → 0 exponentially.

Theorem 2. For system (6), if there exists a control in-

put:

ũrlon,s = (CslonBlon)
−1 (−Krlonȳrlon,s − h

)

, (12)

where Krlon ∈ R
2×2 and Cslon = PBlon, such that

˙̄yrlon,s = −Krlonȳrlon,s (13)

is stable, then x̃rlon,s → 0 as t→ ∞.

Proof. See [9].

Controller design for the decomposed systems (5) and

(6) requires their states and outputs as feedback variables.

However, they are virtual and unknown. For such a purpose,

an observer is designed.

Theorem 3. Suppose that an observer is designed to es-

timate x̃rlon,p, x̃rlon,s and ỹrlon,p in (5) and (6) as

˙̂
x̃rlon,s = Alon

ˆ̃xrlon,s +Blonũrlon,s + g (x̃rlon) ,

ˆ̃xrlon,p = x̃rlon − ˆ̃xrlon,s, (14)

ˆ̃yrlon,p = Clon
ˆ̃xrlon,p, ˆ̃xrlon,s = 0.

Then ˆ̃xrlon,p ≡ x̃rlon,p, ˆ̃xrlon,s ≡ x̃rlon,s, and ˆ̃yrlon,p ≡

ỹrlon,p.

Proof. See [6].

With the solutions to the two problems in hand, one is

ready to claim Theorem 4.
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Theorem 4. Suppose (i) Problems 1 and 2 are solved; (ii)

the controller for system (2) is designed as

ũr =

[

ũrlon

ũrlat

]

=

[

ũrlon,p + ũrlon,s

ũrlat,p + ũrlat,s

]

. (15)

Then, the output of system (2) satisfies ỹr (t) − ỹd
r (t) → 0

as t→ ∞.

Proof. See Appendix A in the supplementary file.

Simulation results are shown in Appendix B in the sup-

plementary file.

Conclusion. In this study, the station-keeping prob-

lem for AAR has been addressed by an ASD-based control

method. Based on ASD, the original receiver system is de-

composed into a primary system and a secondary system.

Through designing a PI controller and a feedback lineariza-

tion controller for these two decomposed systems respec-

tively, the final control input can be obtained by combining

these two controllers. While PI control and feedback lin-

earization control are not new, the salient feature of the

proposed control method lies in the fusion of them by using

ASD to solve a challenging nonlinear tracking problem.
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