
Aerospace Science and Technology 114 (2021) 106727

Contents lists available at ScienceDirect

Aerospace Science and Technology

www.elsevier.com/locate/aescte

RFlySim: Automatic test platform for UAV autopilot systems with 

FPGA-based hardware-in-the-loop simulations

Xunhua Dai a, Chenxu Ke b, Quan Quan b,∗, Kai-Yuan Cai b

a School of Computer Science and Engineering, Central South University, Changsha 410000, China
b School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 January 2020
Received in revised form 3 February 2021
Accepted 6 April 2021
Available online 20 April 2021
Communicated by Roberto Sabatini

Keywords:
Automatic test
Safety
Autopilot
HIL
UAV
Simulation

Autopilot systems on unmanned aerial vehicles (UAVs) are safety-critical systems whose requirements 
on reliability and safety are ever-increasing. However, testing a complex autopilot control system 
is an expensive and time-consuming task, which requires massive outdoor flight tests during the 
whole development stage. This paper presents an indoor automatic test platform for autopilot systems 
aiming to significantly improve the development efficiency and safety level of UAVs. First, a unified 
modeling framework is proposed for different types of aerial vehicles to make it convenient to share 
common modeling experience and failure modes. Then, a real-time simulation platform is developed by 
using automatic code generation and FPGA-based hardware-in-the-loop simulation methods to ensure 
simulation credibility on software and hardware levels. Finally, an automatic test framework is proposed 
to traverse test cases during real-time flight simulation and assess the test results. In the verification 
part, the accuracy and credibility of the simulation platform are verified by comparing the obtained 
results with experimental results, and several successful applications on multicopters demonstrate the 
practicability of the proposed platform.

© 2021 Elsevier Masson SAS. All rights reserved.
1. Introduction

Unmanned aerial vehicles (UAVs), including fixed-wing [1], tilt-
wing [2], and multicopters [3], are becoming increasingly popular 
in both civil and military fields [4]. For all types of UAVs, safety is 
always the most basic requirement, and the concern over potential 
safety issues remains the biggest challenge for their practical ap-
plications. For most small-scale UAVs, there is usually not enough 
space or payload to carry more hardware redundancy (such as 
backup engines, actuators, or motors) due to the limitation of cost 
and performance, so the autopilot control systems are becoming 
increasingly complex to ensure both reliable operation under nor-
mal conditions and safety decision under failure scenarios. To ver-
ify the safety of a UAV autopilot system, continuous outdoor flight 
tests are required during the whole development stage, but tra-
ditional test methods are usually too expensive and inefficient to 
cover all normal and failure cases. As a result, more efficient real-
time simulation and test methods [5] for autopilot systems of UAVs 
are urgently needed for the ever-increasing system complexity as 
well as high safety requirements in complex environments.

* Corresponding author.
E-mail address: qq_buaa@buaa.edu.cn (Q. Quan).
https://doi.org/10.1016/j.ast.2021.106727
1270-9638/© 2021 Elsevier Masson SAS. All rights reserved.
According to [6], more than 80% of the development tasks of 
an autopilot system are in the decision-making layer to guaran-
tee safety under various possible faults. However, most potential 
fatal faults are rare to be encountered in normal operations, so 
massive repeated experimental tests are essential to ensure that 
the autopilot system can correctly detect and handle unexpected 
faults. In recent years, many experimental test methods are pro-
posed to comprehensively test and assess the safety of UAV sys-
tems. For example, in [7], the experimental test method for UAV 
autopilot systems is studied based on the airworthiness frame-
work of manned aerial vehicles. However, since the amount and 
types of UAVs are much larger than manned aerial vehicles and 
the development circles are required to be shorter, the experi-
mental test methods in the current airworthiness framework are 
becoming increasingly inefficient for UAVs. Besides, for small-scale 
commercial UAVs, the experiments (e.g., outdoor flight tests) are 
usually high-cost, dangerous, and regulatory restricted. Therefore, 
new simulation test and safety assessment methods (e.g., the real-
time simulation methods [8], high-precision modeling and system 
identification methods [9], model-based safety assessment meth-
ods [10]) are becoming the trend for UAVs. Although experimental 
tests cannot be completely abandoned, simulation testing tech-
niques are undertaking more and more safety testing and assess-
ment tasks [11].

https://doi.org/10.1016/j.ast.2021.106727
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aescte
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ast.2021.106727&domain=pdf
mailto:qq_buaa@buaa.edu.cn
https://doi.org/10.1016/j.ast.2021.106727


X. Dai, C. Ke, Q. Quan et al. Aerospace Science and Technology 114 (2021) 106727
Fig. 1. Comparisons between common simulation methods.

Simulation methods for UAV autopilot systems can be divided 
into Software-In-the-Loop (SIL) simulation and Hardware-In-the-
Loop (HIL) simulation [12]. As shown in Fig. 1(b), by running the 
control algorithms in the same computer with the vehicle simula-
tion model, SIL simulation can quickly test the control algorithms 
with the simulation speed much faster than the real world, but it 
is built on the expense of losing simulation credibility (control al-
gorithms are not running on real onboard hardware). To improve 
the simulation credibility, as shown in Fig. 1(c), HIL simulation is 
proposed by using real autopilot system hardware and real-time 
simulation computers to reflect the real operating environment of 
the control algorithms. However, traditional HIL simulation plat-
forms usually require to modify the source code to disable drivers 
and add interface programs of the autopilot system to exchange 
sensor data and control signals to close a loop, which may affect 
the operating environment and performance of the original system 
(unstable and unreliable).

In recent years, with the utilization of Field Programmable 
Gate Array (FPGA) [13], real-time simulation computers (e.g., OPAL-
RT�/OP series and NI�/PXI series) start to have the simula-
tion performance of nanosecond-level real-time update frequency 
[8,14]. This makes it possible to simulate almost everything (in-
cluding vehicle motion, sensor chips, electric circuits, and high-
frequency interfaces) outside the main processor of the autopilot 
systems. The system structure of the FPGA-based simulation plat-
form is presented in Fig. 1(d) which is closet to a real UAV system 
as shown in Fig. 1(a). Besides, the tested autopilot systems can 
be treated as black boxes in HIL simulation systems with no need 
for accessing the code or adding interface programs. Therefore, by 
simply replacing the sensor models, the HIL simulation system can 
also be applied to perform comprehensive tests for different brands 
of autopilot systems.

For all simulation methods, the primary challenge is to ensure 
simulation credibility [15], namely making people believe the sim-
ulation results are as real as experiments in the real world. The 
simulation credibility (compared with real systems) is mainly de-
termined by two aspects: platform credibility and model credibil-
ity. The platform credibility can be further divided into hardware 
credibility and software credibility. As previously mentioned, the 
hardware credibility can be guaranteed by the FPGA-based HIL 
simulation method, while the software credibility and the model 
credibility are still challenges for simulation methods. The Model-
Based Design (MBD) [16] method is an effective means to solve the 
above credibility problems by using modular visual programming 
2

technology and automatic code generation technology to standard-
ize the modeling, developing, and testing procedures of complex 
autopilot systems. The MBD method can ensure the software cred-
ibility by eliminating the disturbance factors such as manual pro-
gramming negligence and nonstandard development process. For 
example, the MathWorks�/MATLAB (the most widely used MBD 
software) can ensure the generated code meet the requirements of 
standards and guidelines such as DO-178C. In MBD methods, the 
whole simulation systems can be divided into many small subsys-
tems (modules), such as kinematic modules, GPS modules, ground 
modules, and propeller modules. Certification authorities can ver-
ify and validate these modules to build a standard product model 
database for companies to develop the vehicle prototype and the 
corresponding vehicle simulation system. Then, the model credibil-
ity can be guaranteed by using well-validated standard component 
models. What is more, with MBD methods, the same component 
model can be applied to different types of vehicles and autopilot 
systems, which may significantly improve the design, verification, 
validation, and certification process of the unmanned vehicle filed. 
For ensuring model credibility, in our previous research [17], a 
credibility assessment method is proposed based on experiments 
to assess the model credibility of HIL simulation platforms from 
multiple aspects, such as key performance indices, time-domain 
characteristics, and the frequency-domain characteristics. By com-
bining the above methods, the credibility of the simulation plat-
form can be guaranteed from the model, development process, and 
platform hardware aspects.

In this paper, an automatic test platform is proposed for au-
topilot systems of UAVs based on FPGA-based HIL simulation, MBD 
methods, and high-fidelity 3D engines, aiming to significantly im-
prove the test efficiency and safety level of autopilot software 
systems on unmanned vehicles. In summary, the main research 
contents and the corresponding contributions are listed as follows.

(i) Unified Modeling Method. There are so many in common 
among different types of unmanned vehicles. They should not be 
treated separately as more and more composite vehicles (e.g., mul-
ticopter + fixed-wing and car + fixed-wing) emerged. Therefore, a 
unified modeling method is proposed for different types of un-
manned vehicles along with parameter measurement and identifi-
cation methods to validate the obtained model and ensure simula-
tion credibility.

(ii) Real-time HIL Test Platform with MBD. A real-time HIL test 
platform is built for the testing and assessment of autopilot sys-
tems. The platform is capable of simulating real-world flight situ-
ations (e.g., 3D environment, wind disturbance, air density, faults) 
that can be described by analytic or numerical models, and it has 
advantages in obtaining the true states and controlling the testing 
variables for quantitative assessment of test results. The utilization 
of MBD methods can ensure that the testing results are credible 
and standard-compliant.

(iii) Automatic Test Framework. An automatic test framework is 
proposed to traverse test cases during real-time flight simulation 
and assess the test results by using the proposed Platform. The 
proposed simulation-based safety assessment framework is a novel 
and original method, which is a huge improvement compared with 
the experiment-based assessment framework, and it is urgently 
needed by the UAV field as the increasing complexity of autopi-
lot systems.

There are also many simulation test platforms released in re-
cent years for UAV autopilot systems, such as the Airsim [18]
from Microsoft� and the FlightGoggles [19] from Google� . Both of 
them provide SIL and HIL simulations as presented in Figs. 1(b)(c) 
with the latest three-dimensional (3D) engines (e.g., Unreal Engine 
4 and Unity) to generate high-fidelity rendered visual data, which 
have been proven to be convenient and efficient in accelerating 
the development speed of upper-level algorithms such as Com-



X. Dai, C. Ke, Q. Quan et al. Aerospace Science and Technology 114 (2021) 106727
puter Vision (CV) and Artificial Intelligence (AI). Similar to them, 
the platform proposed in this paper also uses the latest 3D engine 
(Unreal Engine 4) to ensure fidelity in visual scene rendering. Com-
pared with Airsim, FlightGoggles, and other simulation platforms, 
the proposed automatic test platform uses: i) the FPGA-based HIL 
simulation as shown in Fig. 1(d) to provide higher real-time per-
formance and hardware credibility; ii) the MBD methods to ensure 
the simulation credibility of the vehicle dynamics models; iii) the 
automatic testing framework to improve the test efficiency. With 
the proposed simulation-based safety assessment platform, fault 
and accident cases can be automatically generated for the autopi-
lot to improve safety design and fail-safe algorithms. Then, the 
fault test data and safety design experience can be shared with 
other vehicle types and companies to improve the development of 
autonomous driving technology. In summary, the significant advan-
tages of the proposed test platform are listed in four aspects:

(i) Extensibility. By changing the parameters (e.g., weight, size, 
and aerodynamic coefficients) of specific subsystem modules, it 
is easy to extend a simulation system to other vehicle systems 
with similar structures. Moreover, by replacing a whole subsystem 
module (e.g., a propeller module to a tire module), the vehicle sim-
ulation system can be extended to other types of vehicles.

(ii) Comprehensiveness. The current simulation systems mainly 
focus on functional testing, i.e., whether the vehicles can work 
properly in normal situations. However, unmanned vehicles are 
safety-critical systems, and most of the effects are focused on 
safety testing, i.e., whether the vehicles can work safely when ac-
cidents or faults happen. With the modular programming method, 
the fault modes, the aging process, and the probabilistic reliability 
property can be modeled for each subsystem module to improve 
the comprehensiveness of the simulation platform. Mathematically, 
the fault injection simulations (or other safety simulations) can be 
realized by online changing the module parameter or functional 
expressions of a subsystem module while the simulation program 
is running.

(iii) Verification. In practice, it is difficult to verify and validate 
the simulation accuracy and credibility of a complex simulation 
system. However, it is relatively simple to verify a small subsystem. 
Therefore, the modular programming method can divide a complex 
simulation system into many small subsystems, and verify it from 
lower levels to the top level. More importantly, if all subsystems 
used in a simulation system are well-verified modules from certi-
fication authorities, the verification efficiency can be significantly 
improved.

(iv) Standardization. A standard certification framework is ur-
gently needed for unmanned vehicles to improve testing and cer-
tification efficiency. The modular programming method is a fea-
sible way to solve this problem with the certification framework 
presented in Fig. 2. In this framework, the manufactures should 
provide the product hardware along with a simulation model that 
should be fully verified and certified by authority agencies based 
on the simulation data and experimental data. That coincides with 
the idea of Digital Twin [20] for the efficient design and testing of 
complex systems. Then, the vehicle companies can use the certified 
models for simulation system development and prototype design. 
Finally, the simulation results and experimental results can be ap-
plied for the certification of the unmanned vehicle.

2. Unified modeling method

Although different UAVs have different shapes, configurations, 
or flight environments, they have a similar system structure pre-
sented in Fig. 3 and share many common model features and fault 
modes. The common faults include actuator faults (e.g., blocked, 
failed, or unhealthy), sensor and communication faults (e.g., loss 
of signal, delays, GPS failed, and transmitting interference), envi-
3

ronment faults (e.g., obstacles, collisions, and wind disturbances) 
and vehicle model faults (e.g., vibration and loss of weight). Thus, 
a unified framework compatible with different types of UAVs will 
be beneficial to share fault mode information and safety design 
experience to improve the safety level of the whole unmanned 
vehicle field. Besides, the modeling framework is also compatible 
with the latest idea of Digital Twin [20], which advocates each 
component/product/subsystem should provide a high-fidelity nu-
merical model (digital twin) to make it possible to simulate and 
predict the behavior in the whole lifecycle. Then, it can also help to 
increase the exchange of design experience among different com-
panies, manufacturers, and certification authorities, and decrease 
the repetitive work during testing and assessment processes, which 
is also beneficial to the rapid development requirements and bet-
ter response to the rules and regulations of governments.

To make the maximum utilization of these common features, a 
unified modeling framework is developed with the system struc-
ture presented in Fig. 4 for all UAV systems. The core idea of the 
unified modeling framework is to decompose the whole vehicle 
system into many subsystems (e.g., motors), and each subsystem 
should have standard input/output/parameter interfaces to make it 
easier to extend to different types of UAVs. In this section, the uni-
fied modeling framework for the simulation system in Fig. 4 will 
be introduced in detail. The hardware structure and development 
process for the simulation system in Fig. 4 will be introduced in 
Section 3. Since the modeling methods for dynamics, flight envi-
ronment and disturbances, forces and moments, and sub-system of 
UAVs are well-studied in many references [21–23], this paper will 
focus more on the modeling framework of each subsystem instead 
of the modeling method details.

2.1. Overall vehicle model

2.1.1. Model abstraction
In practice, a complex dynamic system usually consists of many 

small subsystem systems (e.g., body system and propulsion sys-
tems). Every subsystem includes input signals u∗ , output signals 
y∗ , parameters �∗ , dynamic states x∗ , and dynamic state and out-
put functions f∗ (·) and h∗ (·), which can be mathematically de-
scribed by the following dynamic equations{

ẋ∗ = f∗ (x∗,�∗,u∗)
y∗ = h∗ (x∗,�∗,u∗)

. (1)

For simplicity, a dynamic subsystem in Eq. (1) is further simplified 
to the following input/output form as

y∗ = S∗ (u∗) . (2)

The system description form in Eq. (2) will be applied in the fol-
lowing content to describe the connection relationships among 
different subsystems. The subscript symbol “∗” in Eqs. (1)(2) can 
be replaced by different abbreviation words to represent different 
dynamic systems, such as the control software system Sctrl and the 
sensor simulation subsystem Ssens.

2.1.2. Main framework of simulation system
As presented in Fig. 4, the whole simulation system can be 

divided into three main subsystems: the vehicle simulation sub-
system Svehi (generating vehicle states according to the control 
signals), the 3D environment simulation subsystem S3d (generating 
vision data according to the vehicle states), and the sensor simu-
lation subsystem Ssens (generating sensor signals according to the 
vehicle states and vision data). Besides, there is an autopilot sys-
tem Sctrl (generating control signals according to the sensor data) 
to be tested. The above connection relationships among the above 
four systems are mathematically described by



X. Dai, C. Ke, Q. Quan et al. Aerospace Science and Technology 114 (2021) 106727

Fig. 2. Certification framework for unmanned vehicles.
Fig. 3. System structure of unmanned aerial vehicles.

yctrl = Sctrl (uctrl) , uctrl = ysens
yvehi = Svehi (uvehi) , uvehi = {yctrl,y3d}
y3d = S3d (u3d) , u3d = yvehi
ysens = Ssens (usens) , usens = {yvehi,y3d}

(3)

which is consistent with the connection relationships in Fig. 4. In 
the following, the unified modeling methods for the above three 
main subsystems will be introduced sequentially.

2.2. Vehicle simulation subsystem

The vehicle simulation subsystem Svehi in Fig. 4 can be fur-
ther divided into four main subsystems: the actuator subsystem 
Sact, the environment subsystem Senv, the force&moment subsys-
tem Sfm, and the vehicle body subsystem Sbody. As shown in Fig. 5, 
the connection relationships of the four subsystems are mathemat-
ically described as

ybody = Sbody (uctrl) , uctrl = yfm
yfm = Sfm (ufm) , ufm = {

ybody,yact,yenv
}

yenv = Senv (uenv) , uenv = {
ybody,y3d

}
yact = Sact (uact) , uact = {

yctrl,ybody,yenv
} (4)

where ybody contains vehicle motion states (e.g., position, veloc-
ity, and attitude), yfm denotes all the forces and moments acting 
on the vehicle, yenv includes environment parameters (e.g., gravity, 
air density, terrain, and obstacle distribution), yact denotes actuator 
states (e.g., rotating speed of rotors, and deflection angle of control 
surface). By combining the output signals in Eq. (4), the output set 
yvehi for the vehicle simulation subsystem Svehi is given by
4

yvehi �
{

ybody,yfm,yenv,yact
}
.

The key modeling methods for the four subsystems in Eq. (4) will 
be introduced as follows.

2.2.1. Vehicle body subsystem
As shown in Fig. 5, the vehicle body subsystem Sbody computes 

the vehicle states ybody according to the force and moment yfm

acting on the vehicle. In practice, based on the flat-earth assump-
tion (ignoring the curvature of the earth in a small range) and the 
rigid-body assumption (the body is rigid and not flexible), most ve-
hicle body subsystem Sbody can be described by nonlinear dynamic 
equations [24, pp. 25-54], [25, pp. 99-143] as

ẋbody = fbody
(
xbody,�body,ubody

)
ybody = hbody

(
xbody,�body,ubody

) (5)

where the state set is xbody �
{

ep, bv,Re
b,

bw
}

, the input set is 
ubody = yfm �

{
bF, bM

}
, the parameter set is �body � {J,m}, and 

the output set is ybody �
{

xbody,
ev, bv̇, bω,Re

b, · · ·
}

. Noteworthy, 
the right-superscript symbols “e” and “b” denote the North-East-
Down (NED) earth frame and the Head-Right-Down body frame 
[24, pp. 25-54] respectively; ep ∈R3 is the position vector defined 
in the earth frame; bv ∈ R3 and bω ∈ R3 are the velocity vector 
and the angular velocity vector defined in the body frame; bF ∈R�

and bM ∈R� are the force vector and the moment vector defined 
in the body frame; Re

b ∈ R3×3 is the rotation matrix to transform 
a vector from body frame to earth frame; J ∈R3 × 3 and m are the 
moment of inertia matrix and the mass of the vehicle. Then, the 
dynamic equations in Eq. (5) can be applied to describe the vehicle 
body module ybody = Sbody (yfm) in Eq. (1).

2.2.2. Environment subsystem
As shown in Fig. 5, the environment subsystem Senv gener-

ates environment parameters yenv (e.g., air density, temperature, 
terrain, wind, and magnetic field) based on the position of the ve-
hicle ep ∈ ybody. In practice, the World Geodetic System (WGS84) 
model [26] is widely used to describe the shape of the earth, 
which can convert the position vector ep to the earth Latitude-
Longitude-Altitude (LLA) global position epg � [μιh]T, where μ, ι
(unit: degree) are the latitude and longitude, and h (unit: m) is the 
altitude. Then, the acceleration of gravity g can be estimated by 
the WGS model [26] based on the vehicle global position epg. Sim-
ilarly, the air density and temperature are estimated by the Inter-
national Standard Atmosphere (ISA) model [27], and the magnetic 
field vector is estimated by the World Magnetic Model (WMM) 
[28]. Besides, according to the Military Specification MIL-F-8785C 
[29], the wind velocity disturbance vector evwind ∈ R3 (defined in 



X. Dai, C. Ke, Q. Quan et al. Aerospace Science and Technology 114 (2021) 106727

Fig. 4. System structure of the simulation test platform for UAV autopilot systems.

Fig. 5. The structure of the vehicle simulation subsystem.
the earth frame) can be described by the following superposition 
form

evwind = evturb + evcons + evsheer + evgust (6)

where evturb denotes the atmospheric turbulence field, evcons de-
notes the prevailing wind field, evsheer denotes the wind shear 
field, and evgust denotes the wind gust field. There are many widely 
used mathematical models for the wind components in Eq. (6). For 
example, the wind turbulence evturb can be described by the Dry-
den Wind Turbulence Model [29].

2.2.3. Actuator subsystem
As shown in Fig. 5, the actuator subsystem Sact outputs actuator 

state yact according to the control input yctrl from the autopi-
lot system. In practice, it is difficult to obtain the mathematical 
model of an actuator system because it is usually composed by 
complex mechanical components along with programmable con-
trol units, such as the Electronic Speed Controller (ESC) for UAV 
brushless motors, and the Electronic Control Unit (ECU) for car 
engines and steering systems. These control units have feedback 
control to ensure that the actuator steady output δss,i satisfy the 
preprogrammed function of the input control signal σi ∈ yctrl un-
der different operating environments. According to [25], a complex 
actuator system can be linearized to a steady-state process fss,i (·)
and a dynamic response process Gss,i (s) around the rated opera-
tion condition. For example, a motor-propeller system with an ESC 
can be simplified as a first-order or second-order inertial process 
Gss,i (s) and a steady-state function fss,i (σi) as

δi = Gss,i (s) · fss,i (σi) . (7)

Noteworthy, fss,i (·) can be measured by static testing, and Gss,i (s)
can be measured by system identification methods through frequ-
5

ency-response testing [30]. By using Eq. (7), it is easy to obtain 
the actuator output signal δi (t) (propeller rotating speed) under 
the given control signal σi (t) (throttle control signal). Then, the 
control force and torque generated by the state of an actuator δi
can be obtained by the ground friction model, aerodynamic model, 
or other mechanical models [25,31,32].

2.2.4. Force & moment subsystem
As shown in Fig. 5, the force&moment subsystem Sfm outputs 

the force and moment yfm �
{

bF, bM
}

to the vehicle body subsys-
tem Sbody. The total force bF and moment bM acting on a vehicle 
can be divided into many components from different sources. Tak-
ing the force vector bF ∈ yfm (defined in the body frame) as an 
example, it can be described by the following superposition form

bF = bFaero + bFgrav + bFcont +
∑

bFact,i (8)

where bFaero ∈ R3 denotes the aerodynamic force vector, bFgrav ∈
R3 denotes the force of gravity vector, bFcont ∈ R3 denotes the 
contact force vector from ground supporting or physical collision, 
and bFact,i ∈ R3 denotes the control force vector generated by an 
actuator. Noteworthy, the above force vectors should be all trans-
formed to the body center and projected to the body frame.

The aerodynamic force vector bFaero is a nonlinear function de-
termined by the relative speed of the surrounding air evrel as

evrel � evwind − ev

where evwind is the wind speed from the environment subsystem 
in Eq. (6) and ev is the vehicle speed from the body subsystem 
in Eq. (5). The high-precision aerodynamic modeling method has 
been well studied in [24], which is compatible with all types of 
vehicles such as multicopters [25], helicopters [31] and cars [32].



X. Dai, C. Ke, Q. Quan et al. Aerospace Science and Technology 114 (2021) 106727
Fig. 6. Actuator force models for different types of UAVs.

The contact force bFcont caused by the ground supporting or 
physical collision can be modeled by simplifying the vehicle body 
shape to a cuboid or a cylinder and simplifying the contact surface 
to a spring-loaded system. By adjusting the spring stiffness, it is 
convenient to simulate physical contact on objects with different 
surface hardness. The terrain and obstacle information comes from 
the environment subsystem output yenv, which further comes from 
the 3D environment subsystem S3d.

The actuator force vector bFact,i can be unified described by the 
following nonlinear expression

bFact,i = fact,i
(
�fm,yenv,ybody, δi

)
(9)

where δi ∈ yact is the instantaneous state of an actuator (the ro-
tating speed of a propeller, deflection angle of a servo system, or 
driving torque of a tire) from the actuator module Sact. Notewor-
thy, the expression of fact,i (·) is also related to the vehicle state 
ybody and the environment state yenv, and the methods to obtain 
the force model fact,i (·) have been well studied in [25,31,32].

As shown in Fig. 6, the different types of vehicle simulation 
models are mainly distinguished by the actuator types and config-
urations. In a similar way, the actuator force models for different 
types of vehicles in Fig. 6 can be easily obtained with proper actu-
ator system modeling methods.

2.3. 3D environment simulation subsystem

The 3D environment subsystem S3d in Eq. (3) aims to generate 
vision data y3d based on the vehicle states yvehi from the vehicle 
simulation subsystem. The vision data will be sent to the sensor 
subsystem to generate data for vision sensors such as cameras, 
radars, range finder sensors, etc.

Currently, many widely used 3D environment engines can be 
applied for vehicle vision modeling. For example, the Simulink 3D 
Animation Toolbox provides interfaces to conveniently access the 
video stream for image process and controller design in Simulink; 
the Airsim [18] is developed by Microsoft� to generate high-
fidelity visual and physical simulation environment using Epic 
Games�/Unreal Engine 4 (UE4). Both Simulink 3D Animation Tool-
box and Airsim can be applied to different types of vehicles, in-
cluding aircraft and cars. There are also many 3D simulation envi-
ronments exclusively developed for specific types of vehicles. For 
example, the Gazebo HIL simulator [33] for visual simulation of 
autonomous cars, and the FlightGear [34] for aircraft simulations.

These 3D simulation engines can be applied to develop the 3D 
environment subsystem to generate vision data (cameras), obsta-
cle distance information (rangefinders, radars), or point cloud data 
(Lidar). With the development of GPU performance and 3D mod-
eling technology, the obtained vision data y3d will be more and 
more high-fidelity and realistic in the future, which will signifi-
cantly improve the credibility of visual simulations.

2.4. Sensor simulation subsystem

The sensor subsystem Ssens in Eq. (3) describes the process to 
transform the vehicle state yvehi and vision data y3d to the elec-
tric signals ysens for the autopilot system. Concretely, it can also 
6

be divided into three small subsystems, including the sensor data 
subsystem Sdata, the sensor product subsystem Sprod and the com-
munication subsystem ysens. As shown in Fig. 4, their connection 
relationships are mathematically described as

ydata = Sdata (udata) , udata = usens = {yvehi,y3d}
yprod = Sprod

(
uprod

)
, uprod = ydata

ysens = ycom = Scom (ucom) , ucom = yprod

(10)

where ydata contains ideal data for sensors (e.g., the acceleration 
of accelerometers, the magnetic field of magnetometers, and the 
image or point cloud data of vision sensors), and yprod is the sen-
sor signals after adding detailed product features (e.g., noise level, 
temperature drift, failure mode, and camera distortion), and ysens
is the binary electrical signals transmitted to the autopilot system 
for position and attitude estimation.

2.4.1. Sensor data subsystem
As described in Eq. (10), the sensor data subsystem Sdata gener-

ates the sensor data ydata (applicable for a class of sensor products) 
based on the vehicle state yvehi and vision data y3d. Transforma-
tions are usually required to obtain the sensor data from the ve-
hicle states and vision data. For example, accelerometers measure 
the specific force (the difference between the acceleration of the 
aircraft and the gravitational acceleration) [35, p. 122] instead of 
the vehicle acceleration bv̇ ∈ yvehi. Similar computation expressions 
are applied to other types of sensors, such as the GPS Modules 
(longitude and latitude obtained from the vehicle position), elec-
tronic compasses (the magnetic field intensity obtained from the 
attitude and global position of the vehicle), optical flow sensors 
(relative velocity obtained from image stream), etc.

2.4.2. Sensor product subsystem
The sensor product subsystem Sprod is developed to add prod-

uct features (e.g., noise, vibration, and calibration) to the sensor 
data ydata obtained from the above sensor data subsystem Sdata. 
Given the same sensor data, different sensor products may obtain 
different results due to product features, so the senor product sub-
system is necessary.

In most cases, given the ideal sensor data xm ∈ ydata, the noise 
feature is mainly reflected in the noise na and bias drift ba of the 
measured value x′

m, which can be described as [25, p. 151]{
x′

m = xm + ba + na

ḃa = nb
(11)

where na ∼ N
(
0, σ 2

a

)
and nb ∼ N

(
0, σ 2

b

)
are zero-mean Gaussian 

noise vectors for inertial sensors. The standard deviation param-
eters σa, σb can be found in the datasheet document of a sensor 
product or obtained by system identification with the actual sen-
sor output signals.

If the system is not affected by vibrations, σa can be modeled as 
a constant value. When the vibration feature of a sensor is consid-
ered, the measuring noise na may also be affected by the vibration 
from many sources (e.g., engines, motors, and fuselage). Therefore, 
the standard deviation σa is not always a constant value, which 
should be modeled based on the actual system characteristics.

The calibration feature is mainly determined by the working 
environment of the installation configuration a sensor, which can 
be described as [25, p. 149]

x′′
m = TeKe

(
x′

m + pe
)

(12)

where pe is a constant vector for the position installation devia-
tion, Te is a rotation matrix for the installation deviation, Ke is a 
diagonal matrix for the scale deviation, and x′′

m ∈ yprod is the final 



X. Dai, C. Ke, Q. Quan et al. Aerospace Science and Technology 114 (2021) 106727
Fig. 7. Communication subsystem model for SPI buses.

output data of a sensor. Eqs. (11)(12) are applicable to most types 
of sensors to simulate the properties of real sensor products.

There are also many methods to add product features for vision 
sensors. For example, the methods to add camera features (e.g., 
blurs, distortions, and noises) to an ideal image are introduced in 
[36]. Other environmental factors (e.g., lighting, reflection, and fog-
ging) can be simulated by the latest 3D engines, such as UE4.

2.4.3. Communication subsystem
The communication subsystem is developed to transform the 

sensor data with product features yprod to binary electronic signals 
ysens for the autopilot system. The outputs yprod of the above sen-
sor product subsystem Sprod are decimal numerical signals, but bi-
nary electronic signals are required for the communication require-
ments between the autopilot system and other hardware. There are 
many communication interfaces and protocols widely used in the 
autopilot systems, such as SPI, Inter-Integrated Circuit (I2C) [37], 
Controller Area Network (CAN), Universal Asynchronous Receiver-
Transmitter (UART), and Pulse-Width Modulation (PWM).

The mathematical model for a communication interface is usu-
ally simple, but it is hard to be simulated by a CPU-based simu-
lation computer due to the extremely high real-time update fre-
quency and bandwidth requirements. Taking the SPI interface as 
an example, the SPI interface uses four signal wires to exchange 
information between the master device (the main processor of 
the autopilot system) and the slave device (onboard sensors). As 
shown in Fig. 7, the sensor has to finish the command recognition, 
measured data computation, and output data preparation within 
a small interval (after the previous byte data received and be-
fore the following byte data to be sent). In a real sensor chip, the 
above process is instantaneously realized by analog circuits whose 
time consumption can be treated as infinitely small. However, for a 
real-time simulation system, it usually requires a real-time update 
frequency at the nanosecond level to ensure that the sensor signals 
are correctly computed, prepared, and transmitted. For the perfor-
mance requirements, this paper uses the FPGA system to simulate 
all sensor communication features (e.g., data transmission, chip 
recognition, programmable setting functions), which ensures all 
the sensor hardware related low-level test cases can be simulated 
by the simulation platform.

3. Real-time HIL test platform with MBD

This section presents the hardware structure and development 
framework of the proposed HIL test platform in Fig. 4 successively.

3.1. Hardware structure of the HIL platform

The platform hardware consists of three parts.
7

3.1.1. Real-time simulation computer
A real-time simulation computer (also called real-time simu-

lator) is a special type of computer, running Real-Time Operation 
System (RTOS) to ensure the simulation systems run at the same 
speed as the actual physical system. The latest COTS simulation 
computers usually provide a CPU-based system and an FPGA-based 
system for different requirements of real-time update frequency; 
the CPU-based system is better at running complex simulation 
models with moderate frequency requirements (usually smaller 
than 100 KHz); the FPGA-based system is better at running simple 
simulation models with extremely high frequency (usually larger 
than 100 MHz). By combining the advantages of the above two 
systems, the hardware structure of the proposed test platform is 
presented in Fig. 4, where the CPU-based system is applied to run 
the vehicle simulation subsystem presented in Section 2.2 and the 
FPGA-based system is applied to run the sensor simulation subsys-
tem presented in 2.4.

3.1.2. Autopilot system
The autopilot system is the test object of the proposed test plat-

form. The autopilot system computes control signals for driving the 
actuators according to the vehicle states measured and estimated 
by different sensors. To ensure the autopilot system can normally 
work in the proposed test platform, the original sensors should 
be blocked (or removed), and the sensor pins on the autopilot 
system should be reconnected to the FPGA-based system of the 
real-time simulation computer. Then, the autopilot system can re-
ceive the simulated sensor chip signals for full-function operation. 
The above process only needs to know the brands and models of 
sensors used in the autopilot system and has no requirement to 
access the source code or internal hardware structure. Therefore, 
it is practical to perform black-box testing for different autopilot 
system products from different UAV companies.

3.1.3. Host computer
A high-fidelity 3D simulation environment is also essential for 

training or testing the top-level algorithms, including computer vi-
sion, machine intelligence, and decision making systems. Therefore, 
a host computer with high-performance Graphics Processing Units 
(GPUs) and realistic 3D engines are used in this paper to gener-
ate vision signals to the real-time simulation computer. The latest 
high-end consumer GPUs (such as NVIDIA GTX2080) have been 
powerful enough to generate high-resolution (larger than 4K) video 
streaming with an update frequency more than 100 Hz, which is 
capable of simulating most vision sensors. Besides, the host com-
puter also takes responsibility for running other auxiliary programs 
such as model parameter configuration program, 3D display pro-
gram, ground control program, etc. Noteworthy, for different data 
bandwidth and real-time requirements, the connection and com-
munication among the simulation computer and the host com-
puter can be realized by optical fibers, network cables, serial ports, 
etc.

3.2. Development framework with MBD

3.2.1. Modular programming
In practice, developing a complex simulation software through 

hand-coding is a difficult and unreliable task due to too many 
mathematical operations. Any coding mistake, logical mistake, or 
unknown vulnerability may lead to wrong or inaccurate simula-
tion results. The types and amounts of UAVs will be far more than 
manned aerial vehicles, and the development cycles are required 
to be much shorter, so the traditional hand-coding methods are 
no longer suitable for developing simulation software for UAVs. As 
a result, modular (also described as graphical or visual) program-
ming methods have been widely used in many MBD tools (e.g., 



X. Dai, C. Ke, Q. Quan et al. Aerospace Science and Technology 114 (2021) 106727

Fig. 8. Code generation and deployment framework for simulation software of HIL testing platforms.
MathWorks�/Simulink and NI�/LabVIEW). The whole simulation 
system presented in Section 2 has been divided into many simple 
and independent subsystems, and each subsystem can be easily re-
alized by a visual module or block in the above MBD tools, which 
makes it easy to develop and test a complicated vehicle simulation 
system.

3.2.2. Automatic code generation
Modular programming and automatic code generation are two 

of the most significant features of MBD tools such as Simulink, 
LabVIEW, and UE4. Simulink is better at developing complex simu-
lation systems (such as vehicle simulation systems), and LabVIEW 
is better at developing hardware-closed simulation systems (such 
as sensors, circuits, and communication signals) and deploying 
the simulation program to the real-time simulator. For example, 
the Aerospace Blockset in Simulink [38] provides many demos 
for quickly developing vehicle simulation systems, such as aircraft 
and multicopter. There are many 3D engines for developing high-
fidelity vehicle 3D simulation environments. Among these engines, 
UE4 provides modular visual programming functions, so the UE4 
environment is selected to develop 3D simulation scenes for the 
HIL platform.

To take full advantage of both MBD tools, the development 
process for simulation system software is shown in Fig. 8. The 
development process is divided into the following steps: (i) de-
veloping and verifying the vehicle simulation model in Simulink 
Environment; there are many powerful verifying tools in Simulink 
such as requirements traceability, code coverage check, document 
generation, etc., which guarantee the simulation software meets 
the standards and guidelines such as DO-178C; (ii) compiling the 
vehicle simulation subsystem into code, and importing it to the 
LabVIEW environment; (iii) building the sensor subsystem in Lab-
VIEW and building the interfaces to communicate with other sys-
tems; (iv) generating code and executable files to deploy them to 
the real-time simulation computer; (v) developing the 3D simu-
lation environment in UE4 and deploy it to the host computer. 
The whole development process in Fig. 8 is efficient and reliable 
because all coding and deploying operations are automatically fin-
ished by MBD tools without much human intervention. Therefore, 
it is convenient to replace some models and rebuild the simulation 
system for different types of UAVs or autopilot systems.

3.3. Platform implementation

3.3.1. Hardware composition
Based on the hardware structure presented in Fig. 4, a real-time 

HIL test platform is developed as shown in Fig. 9. The real-time 
simulation computer adopted in the platform is the NI�/PXI sim-
ulator with CPU board: PXIe-8133 (Intel Core I7 Processor, PharLap 
8

ETS Real-Time System) and FPGA I/O Module: PXIe-7846R. The 
host computer is a high-performance workstation PC with profes-
sional GPUs. The autopilot system is a Pixhawk autopilot, which is 
one of the most popular open-source autopilot hardware systems 
for small-scale UAVs. All the onboard sensors (IMU, magnetome-
ter, barometer, etc.) and external sensors (GPS, rangefinder, camera, 
etc.) of the Pixhawk hardware are blocked, and the sensor pins are 
reconnected to the FPGA I/Os to receive the simulated sensor sig-
nals through interfaces including SPI, PWM, I2C, UART, UBX, etc. In 
the real-time simulation computer, the update frequency of the ve-
hicle simulation model is up to 5 kHz, and the update frequency of 
the sensor simulation model is up to 100 MHz, whose performance 
is fast enough for HIL simulations of most commercial autopilot 
systems. The communication between the host computer and the 
real-time simulation computer is realized by network cables with 
TCP and UDP protocols.

3.3.2. Software development
The simulation software of the real-time HIL test platform is 

developed based on the MBD method in Section 3.2. The Simulink 
is selected to develop the vehicle simulation model because it is 
the most professional and widely used software for vehicle dy-
namic system development; the LabVIEW is selected to develop 
the sensor simulation model because it is efficient and convenient 
in real-time simulation system development; the UE4 (version: 
4.22) is selected to develop the 3D environment model because it 
is one of the most realistic 3D engines in the development of sim-
ulation systems, games and VR systems. The Simulink, LabVIEW, 
and UE4 developing environments all provide convenient modular 
visual programming environments (see Fig. 10) and automatic code 
generation technology for the development of simulation systems, 
which are perfect for the implementation of the model-based de-
sign method. After the simulation models are all developed, the 
code generation and deployment framework in Fig. 8 is applied to 
deploy the simulation software to the real-time HIL test platform 
presented in Fig. 9.

3.3.3. High-fidelity 3D simulation environment
The fidelity of the 3D simulation model is important for test-

ing the vision-related functions of autopilot systems, such as visual 
data processing, obstacle avoidance, safety decision-making, etc. 
With UE4, it is easy to develop high-fidelity 3D scenes for different 
types of UAVs in different environments. For example, as shown in 
Fig. 11, we have developed several 3D simulation scenes in UE4 
for the HIL test platform. According to the comparisons with ex-
periments, the display effect presented in Fig. 11 has been realistic 
enough for most UAV systems to simulate the real indoor or out-
door scenes.



X. Dai, C. Ke, Q. Quan et al. Aerospace Science and Technology 114 (2021) 106727

Fig. 9. Hardware composition of the real-time HIL test platform.

Fig. 10. Modular visual programming environments in (a) Simulink, (b) LabVIEW, and (c) UE4.

Fig. 11. 3D simulation scenes developed by UE4 for different types of UAVs.
9



X. Dai, C. Ke, Q. Quan et al. Aerospace Science and Technology 114 (2021) 106727

Table 1
A test case demo for the automatic testing framework.

ID Case description Control command 
sequence

Data required Desired performance

C1 Motor #2 failed 
during hovering 
flight

• 5s: Arm the drone
• 10s: Take off to 10 m 
above ground and start 
hovering flight
• 20s: Inject the fault by 
stopping motor #2
• 25s: Stop simulation 
and record flight data

Position, velocity, 
attitude, angular 
velocity curves

• Maximum attitude 
fluctuation ≤ 10◦
• Maximum impact speed 
on ground ≤ 5 m/s
• · · ·
3.4. Automatic testing and assessment framework

3.4.1. Fault modeling and test cases
With the fault modes (e.g., sensor failure, wind disturbances, 

and motor fault) being well modeled, the proposed HIL test plat-
form can also be applied to perform automatic safety testing for 
autopilot systems. Most faults appear as the change of model pa-
rameters or dynamics functions, which can be described by ana-
lytic mathematical models or data-driven numerical models. Mod-
eling a test case requires lots of historical data and regulations 
from UAV authority agencies, which still needs to be studied and is 
not the main content of this paper. For simplicity, we assume that 
a test case database has been developed with all concerned fail-
ure modes being well modeled based on real experimental data. 
Each test case should include detailed information as shown in Ta-
ble 1 for the requirements of automatic testing. The detailed case 
information should include the vehicle command scripts, the fault 
injection triggering time, the test stop time, the desired vehicle 
flight performance, and so on.

Note that, by referring to the airworthiness framework of civil 
aircraft, the testing items and assessment indexes of UAVs should 
be obtained from the regulations, guidelines, or standards from the 
authorities, so that the test results can be applied to the future 
safety assessment of UAV autopilot systems. Then the test case 
databases can be obtained from these testing items and indexes, 
where the logically related test cases can be described by for-
mal modeling language (e.g., UML, SysML), and the process-related 
testing cases can be modeled in the Simulink Requirements tool-
box.

Note that, by referring to the airworthiness framework of civil 
aircraft, the testing items and assessment indexes of UAVs should 
be obtained from the regulations, guidelines, or standards from the 
authorities, so that the test results can be applied to the future 
safety assessment of UAV autopilot systems. Then the test case 
databases can be obtained from these testing items and indexes, 
where the logically related test cases can be described by for-
mal modeling language (e.g., UML, SysML), and the process-related 
testing cases can be modeled in the Simulink Requirements tool-
box.

3.4.2. Automatic testing and assessment framework
An automatic safety testing framework (see Fig. 12) has been 

developed based on the proposed HIL test platform. In each testing 
case, the autopilot system and the simulation models are automat-
ically reinitialized to default states, and then the autopilot system 
automatically controls the vehicle model in the HIL test platform 
to the desired state. At this moment, a fault case is injected to the 
HIL test platform to simulate a vehicle failure. After a period of 
time, the vehicle and autopilot system states are automatically an-
alyzed and recorded to a report. Finally, the next testing case is 
tested in the same way until all the testing cases are tested and 
evaluated.

By comparing the flight data (true states from simulation com-
puter and estimated states from autopilot) after fault injection with 
10
Fig. 12. Automatic safety testing and assessment framework.

the desired performance as presented in Table 1, the safety and 
reliability can be assessed by quantitative or qualitative analysis 
methods by certification authorities. For example, assuming that 
the safety specification requires that a multicopter UAV should be 
able to remain hovering flight with altitude fluctuation ≤ 10◦ af-
ter one motor is failed if the tested autopilot drives the multicopter 
to crash on the ground with maximum attitude fluctuation = 90◦ , 
then the safety test is failed and the designers should modify the 
fail-safe algorithms.

4. Verification and application

In this section, the real-time HIL test platform is applied to 
open-source autopilots of small UAVs. Then, the simulation cred-
ibility is verified through a series of experiments. In the end, sev-
eral successful applications are presented to verify the feasibility 
and practicability of the proposed methods in this paper.

4.1. Platform verification

4.1.1. Platform function verification
The Pixhawk autopilot supports for running different types of 

flight control software systems (e.g., PX4, Ardupilot, and other em-
bedded control software systems) in it, and also supports for con-
trolling different types of unmanned vehicles (e.g., multicopters, 
fixed-wing aircraft, or even small cars). Besides, the Pixhawk au-
topilot has a series of available hardware configurations for certain 
performance requirements, such as Pixhawk 1, Pixhawk 4, etc. To 
verify the proposed modeling method and test platform, we first 
apply the proposed unified modeling method in Section 2 to de-
velop the simulation models for different types of UAVs. Then, 
these simulation models are deployed to the HIL test platform 
with the MBD framework presented in Section 3. Finally, a se-
ries of tests are performed for the Pixhawk systems with various 
combinations of hardware configurations, software systems, and 
vehicle types. In our experimental tests, the four advantages of the 
proposed method (including extensibility, comprehensiveness, ver-
ification, and standardization) concluded in Section 3.2 are verified 
with the proposed modeling method and simulation test platform.



X. Dai, C. Ke, Q. Quan et al. Aerospace Science and Technology 114 (2021) 106727
Fig. 13. Verification equipment for the proposed HIL test platform.

Owing to the adoption of FPGA for sensor product simula-
tions, the proposed RflySim platform has also been successfully 
applied to test different UAV autopilot hardware products (e.g., 
Pixhawk series and self-designed autopilot boards) in our exper-
iments by changing the sensor chip models. Given space limita-
tions, a quadcopter autopilot system will be selected as the rep-
resentative tested object in this section to perform quantitative 
verification for the proposed methods. The autopilot system is the 
most widely used open-source autopilot system for small-scale 
unmanned vehicles, and the detailed configuration is Pixhawk 1 
hardware (MCU: STM32F427, sensor: MPU6000, MS5611, LSM303D, 
L3GD20H, Ublox-M8N, etc.) with the PX4 control software. The 
quadcopter UAV is selected because it is the most representative 
vehicle type that covers the model characteristics (e.g., aerody-
namics, ground collision, kinematics, and dynamics) and operating 
environments (e.g., near-ground, mid-air, indoor, outdoor, hovering 
flight, and forward flight) of most UAVs.

4.1.2. Experimental verification for simulation credibility
The experimental setup is presented in Fig. 13, where an F450 

quadcopter airframe (diagonal length: 450 mm, weight: 1.4 kg, 
propulsion system: DJI E310, battery: LiPo 3S 4000 mAh) is se-
lected as the experimental subject whose component diagram is 
shown in Fig. 13(a). To test the dynamics and aerodynamics of 
quadcopter, an indoor test bench as shown in Fig. 13(b) is devel-
oped with the quadcopter fixed to a stiff stick (through the center 
of mass) with smooth bearings to minimize friction. The quad-
copter is free to smoothly rotating along one axis, which makes it 
possible to perform sweep-frequency testing for system identifica-
tion and uniform rotation testing for roll damping coefficient mea-
surement. Fig. (c) presents the outdoor flight test scenario, where 
the body aerodynamic parameters and overall performance of mul-
ticopters are measured or obtained by system identification meth-
ods. Besides, we had also proposed other experimental equipment 
[39] to certificate the modeling accuracy of UAV propulsion sys-
tems. For example, Fig. 14 presents the result comparison between 
experiments and simulations of the tested quadcopter propulsion 
system, where it can be observed that the proposed simulation 
system has high accuracy from a qualitative point of view.

Based on the above experiment setup, the quantitative simula-
tion credibility assessment method proposed in our previous work 
[17] is applied in this paper to assess and improve the simulation 
credibility of the HIL platform. The key idea is to use the same au-
topilot system (see Fig. 15) in both simulations and experiments, 
11
then the simulation errors caused by hardware and software dif-
ferences of control systems can be controlled to the utmost extent, 
which significantly improves the credibility of the simulation plat-
form compared with other simulation methods. The experiment 
results in [17] demonstrate that the proposed FPGA-based HIL sim-
ulation platform can reach a high matching degree (the credibility 
index in [17]) larger than 90% (where 60% presents the minimum 
accuracy requirement, and 100% presents a perfect match) by ana-
lyzing the results between the test platform and real experimental 
system from the quantitative perspective.

4.1.3. Videos and source code
Four videos have been published to demonstrate the devel-

opment, experimental verification, and application process in this 
section for the proposed platform. The first video gives an overall 
introduction of the proposed platform along with several applica-
tions on different multicopter autopilot systems:

https://youtu.be/nXAoLdPzz_I

The second video presents several demos of applying the proposed 
HIL platform to different types of vehicles with complex traffic en-
vironment simulation:

https://youtu.be/xQUnkqH29qU

The third video presents the automatic fault injection, safety test-
ing, and safety assessment demos:

https://youtu.be/MHieyE3hbHY

The fourth video introduces the MBD modeling and development 
process of the platform with experiments to quantitatively verify 
its simulation credibility:

https://youtu.be/ChNtkb5rrQs

We have also published the MATLAB/Simulink source code and the 
detailed modeling tutorial to Github:

https://github.com/RflySim/CopterSim

Readers can use it to rapidly develop SIL or HIL simulation sys-
tems for different types of unmanned vehicles by modifying the 
aerodynamic model and the actuator model.

4.2. Method applications

This subsection presents several successful applications with 
the proposed test platform to increase the development, testing, 
and validation efficiency of UAVs.

4.2.1. Rapid prototyping
To take maximum advantage of the proposed test platform with 

MBD methods, a component model database is developed for the 
rapid development of electric multicopters. The database covers 
the common products on the market for multicopter propulsion 
systems with model parameters obtained by their product spec-
ifications and experimental data. With this model database, an 
online toolbox is released (URL: https://flyeval.com/) based on our 
previous studies [39–41] for the automatic design and performance 
estimation of multicopter UAVs, and a screenshot of the online 
toolbox is presented in Fig. 16. Users can select component prod-
ucts from the database to quickly assemble a multicopter to es-
timate its flight performance and model parameters. The toolbox 
has been released for more than two years, and the user feedback 
indicates that it can significantly improve the multicopter model 
development efficiency with decent simulation accuracy.

https://youtu.be/nXAoLdPzz_I
https://youtu.be/xQUnkqH29qU
https://youtu.be/MHieyE3hbHY
https://youtu.be/ChNtkb5rrQs
https://github.com/RflySim/CopterSim
https://flyeval.com/


X. Dai, C. Ke, Q. Quan et al. Aerospace Science and Technology 114 (2021) 106727

Fig. 14. Modeling accuracy verification of propulsion system with experiments and simulations.
Fig. 15. Simulation credibility assessment experiments [17].

Fig. 16. Screenshot of the online toolbox flyeval.com.

4.2.2. Algorithm comparison
Another important advantage of the proposed HIL test plat-

form is that it can obtain the true states of the simulated vehicle, 
which is significant for comparing performance differences of con-
trol algorithms. In Fig. 17, two simulations are performed on the 
HIL test platform with two different estimation filter algorithms 
in the Pixhawk autopilot. They are the Extended Kalman filter al-
gorithm in Fig. 17(a) and the complementary filter algorithm in 
Fig. 17(b), respectively. It can be observed from the result in Fig. 17
that the extended Kalman filter has a better estimation effect than 
complementary, which is consistent with the theoretical analysis. 
This conclusion is hard to obtain through experiments because a 
12
higher more precise external measuring devices (e.g., differential 
GPS or visual positioning systems with centimeter-level precision) 
are required to measure the true states of the vehicle. These ex-
ternal measuring devices are usually expensive and restrained. For 
example, the differential GPS is easy to be disturbed by flight en-
vironment factors, and its data frequency is too low (usually 5 Hz), 
and the visual positioning system cannot be used outdoors. There-
fore, the proposed test platform is a better way to acquire the true 
states of the vehicle for comparative analysis and performance as-
sessment.

4.2.3. Normal flight tests
The proposed HIL test platform makes it possible to compre-

hensively test the autopilot system indoor only with computers, 
which is significant in reducing cost and time relative to outdoor 
experiments. Fig. 18 presents an autonomous mission flight test 
with the proposed HIL test platform, which usually should be per-
formed by outdoor flight tests in traditional test methods. Besides, 
more comparative simulation tests and experiments demonstrate 
that all flight tests (indoor or outdoor, manual or automatic) can 
be tested on the HIL test platform if the vehicle modeling is com-
prehensive and accurate enough.

4.2.4. Automatic fault injection tests
An automatic fault injection case (one motor blocked) is applied 

to the experimental set in Fig. 18 during the autonomous mission 
flight state, where the autopilot control command sequences are 
similar to Table 1. The recorded data from the simulation com-
puter (truth values) and the autopilot (the estimated states based 
on sensor data) are shown in Fig. 19, where the altitude, velocity, 
and roll angle, and autopilot output curves are presented in 0-8 
test phases. The results indicate that: i) the quadcopter is losing 
control (according to the autopilot output curves) and crashed on 
the ground (according to the altitude curve) when one motor is 
blocked, which means the fault is not recognized and handled by 
the fail-safe logic of the autopilot; ii) the ground impact speed and 
attitude fluctuation are exceed expected safe indexes (5 m/s and 
10 degrees for impact speed and attitude requirements in Table 1), 
so the fault may hurt people on the ground and the safety test is 
failed; iii) the simulated motor failure effect (losing control and 
crashed) is consistent with our experimental results whose test 
process is far more dangerous and high-cost than the HIL simu-
lation; iv) according to our previous study [42], the crash can be 
avoided if the motor fault is recognized and well controlled by the 
autopilot, which may help to improve the safety level of the multi-
copter UAV systems; v) the estimated states by autopilot are quite 
different from the truth values when the fault is injected in Phase 
6-7 of Fig. 19, which means the data logged by the control system 
may not be accurate after fault injection, and the truth values from 

http://flyeval.com


X. Dai, C. Ke, Q. Quan et al. Aerospace Science and Technology 114 (2021) 106727

Fig. 17. Comparing estimation performance of different filter algorithms in turning flight stage.

Fig. 18. Autonomous mission flight test with the proposed HIL test platform.
the proposed HIL simulation platform provide more accurate data 
for quantitative safety assessment. Since all test and assessment 
procedures are automatically finished by the proposed automatic 
test platform, the test efficiency is significantly improved during 
our actual testing process, and the safety level of UAV systems is 
improved because more potential failures are revealed and quickly 
fixed by fail-safe logic of autopilot systems.

5. Conclusion and future work

This paper presents a unified simulation and test platform, aim-
ing to significantly improve the development speed and safety 
level of unmanned vehicle autopilot systems. A unified modular 
modeling framework is proposed by abstracting the common fea-
tures of different types of unmanned vehicles. The application ex-
amples demonstrate this framework is efficient in developing a ve-
hicle simulation model with compatibility for the future safety as-
13
sessment and certification standards. Another key problem solved 
in the paper is to develop a HIL simulation test platform to en-
sure simulation credibility. With the model-based design method, 
the developing process of the simulation software can be autom-
atized and standardized, which ensures different developers can 
obtain the same simulation software with credibility guaranteed 
by the automatic code generation tools. With the FPGA-based real-
time hardware-in-the-loop simulation technology, the operating 
environment of the control algorithms is guaranteed by using the 
same autopilot system in both experiments and simulations. After 
the credibility of the simulation test platform is well guaranteed, 
we can focus on verifying and validating the simulation models 
with the quantitative assessment method proposed in our previ-
ous work. The proposed test platform is applied to a multicopter 
autopilot system, where the accuracy and fidelity of the simulation 
testing are verified by comparing the results with experiments. The 
successful applications present the advantages in the multicopter 



X. Dai, C. Ke, Q. Quan et al. Aerospace Science and Technology 114 (2021) 106727
Fig. 19. Automatic test results of one motor failed case during the flight mission.

rapid prototyping, estimation algorithm verification, autonomous 
flight testing, and automatic safety testing with automatic fault in-
jection and result evaluation of unmanned vehicles.

Since the test platform can provide high-fidelity and credibility 
simulation results, it will help to improve the training efficiency 
of artificial intelligence algorithms. Besides, the airworthiness for 
unmanned aerial vehicles requires more formal, quantitative, and 
efficient testing methods to assess the safety level, and we will ap-
ply the proposed test platform for the safety assessment of UAV 
systems. It is also an interesting research topic to design test cases 
for the automatic testing platform to achieve higher testing effi-
ciency and coverage.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Funding

This work was supported by the National Natural Science Foun-
dation of China under Grant 61973015, and by the Aeronautics 
Power Foundation under Grant 6141B09050377.
14
References

[1] M. Lungu, Backstepping and dynamic inversion combined controller for auto-
landing of fixed wing UAVs, Aerosp. Sci. Technol. 96 (2020) 105526, https://
doi .org /10 .1016 /j .ast .2019 .105526.

[2] Y. Wang, Y. Zhou, C. Lin, Modeling and control for the mode transition of a 
novel tilt-wing UAV, Aerosp. Sci. Technol. 91 (2019) 593–606, https://doi .org /
10 .1016 /j .ast .2019 .05 .046.

[3] N.A. Vu, D.K. Dang, T.L. Dinh, Electric propulsion system sizing methodology 
for an agriculture multicopter, Aerosp. Sci. Technol. 90 (2019) 314–326, https://
doi .org /10 .1016 /j .ast .2019 .04 .044.

[4] X. Dai, Q. Quan, J. Ren, K.-Y. Cai, Iterative learning control and initial value 
estimation for probe-drogue autonomous aerial refueling of UAVs, Aerosp. Sci. 
Technol. 82–83 (2018) 583–593, https://doi .org /10 .1016 /j .ast .2018 .09 .034.

[5] H. Ji, R. Chen, P. Li, Real-time simulation model for helicopter flight task anal-
ysis in turbulent atmospheric environment, Aerosp. Sci. Technol. 92 (2019) 
289–299, https://doi .org /10 .1016 /j .ast .2019 .05 .066.

[6] H. Lipson, M. Kurman, Driverless: Intelligent Cars and the Road Ahead, Mit 
Press, 2016.

[7] C.M. Belcastro, D.H. Klyde, M.J. Logan, R.L. Newman, J.V. Foster, Experimental 
flight testing for assessing the safety of unmanned aircraft system safety-
critical operations, in: 17th AIAA Aviation Technology, Integration, and Oper-
ations Conference, AIAA 2017-3274, 2017.

[8] S.S. Noureen, V. Roy, S.B. Bayne, An overall study of a real-time simulator and 
application of RT-LAB using MATLAB simpowersystems, in: 2017 IEEE Green 
Energy and Smart Systems Conference, 2018, pp. 1–5.

[9] M.B. Tischler, System identification methods for aircraft flight control develop-
ment and validation, in: Advances in Aircraft Flight Control, 2018, pp. 35–69.

[10] O. Lisagor, T. Kelly, R. Niu, Model-based safety assessment: review of the dis-
cipline and its challenges, in: ICRMS’2011 - Safety First, Reliability Primary: 
Proceedings of 2011 9th International Conference on Reliability, Maintainabil-
ity and Safety, 2011, pp. 625–632.

[11] D. Jung, P. Tsiotras, Modeling and hardware-in-the-loop simulation for a small 
unmanned aerial vehicle, in: AIAA Infotech@Aerospace 2007 Conference and 
Exhibit, AIAA 2018-2768, May 2007.

[12] D.B. Worth, B.G. Woolley, D.D. Hodson, SwarmSim: a framework for model-
ing swarming unmanned aerial vehicles using hardware-in-the-loop, J. Defense 
Model. Simul., Appl. Methodol. Technol. (2017) 1–20.

[13] H. Saad, T. Ould-Bachir, J. Mahseredjian, C. Dufour, S. Dennetiere, S. Nguefeu, 
Real-time simulation of MMCs using CPU and FPGA, IEEE Trans. Power Electron. 
30 (1) (2015) 259–267.

[14] S. Mikkili, A.K. Panda, J. Prattipati, Review of real-time simulator and the 
steps involved for implementation of a model from MATLAB/SIMULINK to real-
time, J. Inst. Eng. (India), Ser. B 96 (2) (2015) 179–196, https://doi .org /10 .1007 /
s40031 -014 -0128 -6.

[15] U.B. Mehta, D.R. Eklund, V.J. Romero, J.A. Pearce, N.S. Keim, Simulation cred-
ibility: Advances in verification, validation, and uncertainty quantification, 
Tech. Rep. jannaf/gl-2016-0001, NASA Ames Research Center, Moffett Field, CA, 
United States, 01 Nov 2016.

[16] I. MathWorks, Model-based design - MATLAB & Simulink, https://www.
mathworks .com /solutions /model -based -design .html. (Accessed 24 May 2019).

[17] X. Dai, C. Ke, Q. Quan, K.-Y. Cai, Simulation credibility assessment methodol-
ogy with FPGA-based hardware-in-the-loop platform, IEEE Trans. Ind. Electron. 
68 (4) (2021) 3282–3291, https://doi .org /10 .1109 /TIE .2020 .2982122.

[18] S. Shah, D. Dey, C. Lovett, A. Kapoor, AirSim: high-fidelity visual and physi-
cal simulation for autonomous vehicles, in: Field and Service Robotics, 2018, 
pp. 621–635.

[19] W. Guerra, E. Tal, V. Murali, G. Ryou, S. Karaman, FlightGoggles: photorealis-
tic sensor simulation for perception-driven robotics using photogrammetry and 
virtual reality, in: 2019 IEEE/RSJ International Conference on Intelligent Robots 
and Systems (IROS), Macau, China, 2019, pp. 6941–6948.

[20] A.M. Miller, R. Alvarez, N. Hartman, Towards an extended model-based defi-
nition for the digital twin, Comput-Aided Des. Appl. 15 (6) (2018) 880–891, 
https://doi .org /10 .1080 /16864360 .2018 .1462569.

[21] A. Aminzadeh, M.A. Atashgah, A. Roudbari, Software in the loop framework 
for the performance assessment of a navigation and control system of an un-
manned aerial vehicle, IEEE Aerosp. Electron. Syst. Mag. 33 (1) (2018) 50–57.

[22] M.A. Atashgah, S. Malaek, A simulation environment for path and image gen-
eration in an aerial single-camera vision system, proceedings of the institution 
of mechanical engineers, part G, J. Aerosp. Eng. 225 (5) (2011) 541–558.

[23] M.A. Atashgah, S. Malaek, Prediction of aerial-image motion blurs due to the 
flying vehicle dynamics and camera characteristics in a virtual environment, 
proceedings of the institution of mechanical engineers, part G, J. Aerosp. Eng. 
227 (7) (2013) 1055–1067.

[24] B.L. Stevens, F.L. Lewis, Aircraft Control and Simulation, 2nd edition, Wiley, New 
Jersey, 2004.

[25] Q. Quan, Introduction to Multicopter Design and Control, Springer, Singapore, 
2017.

[26] R.W. Smith, Department of Defense World Geodetic System 1984: Its Definition 
and Relationships with Local Geodetic Systems, Defense Mapping Agency, 1987.

https://doi.org/10.1016/j.ast.2019.105526
https://doi.org/10.1016/j.ast.2019.105526
https://doi.org/10.1016/j.ast.2019.05.046
https://doi.org/10.1016/j.ast.2019.05.046
https://doi.org/10.1016/j.ast.2019.04.044
https://doi.org/10.1016/j.ast.2019.04.044
https://doi.org/10.1016/j.ast.2018.09.034
https://doi.org/10.1016/j.ast.2019.05.066
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib41AAE752F2744E7D627233509A088DEBs1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib41AAE752F2744E7D627233509A088DEBs1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib6E418D25B48AC766A9BD7BFA267AF5CCs1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib6E418D25B48AC766A9BD7BFA267AF5CCs1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib6E418D25B48AC766A9BD7BFA267AF5CCs1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib6E418D25B48AC766A9BD7BFA267AF5CCs1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib8939849F2AE3F37CF59CE881A9FB01A6s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib8939849F2AE3F37CF59CE881A9FB01A6s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib8939849F2AE3F37CF59CE881A9FB01A6s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib4DA3723E4EB6514C5F2B7CE66C6E9858s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib4DA3723E4EB6514C5F2B7CE66C6E9858s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib4D94DB3445172BCC71AD7FCFF85DCAD0s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib4D94DB3445172BCC71AD7FCFF85DCAD0s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib4D94DB3445172BCC71AD7FCFF85DCAD0s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib4D94DB3445172BCC71AD7FCFF85DCAD0s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib096717BFCF494C1CDE2D9C5DBDEAC99Cs1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib096717BFCF494C1CDE2D9C5DBDEAC99Cs1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib096717BFCF494C1CDE2D9C5DBDEAC99Cs1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bibFA10D83E66B46A9EA89C7710675EDB52s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bibFA10D83E66B46A9EA89C7710675EDB52s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bibFA10D83E66B46A9EA89C7710675EDB52s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bibA999384EE855C713D49727E69BF51E34s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bibA999384EE855C713D49727E69BF51E34s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bibA999384EE855C713D49727E69BF51E34s1
https://doi.org/10.1007/s40031-014-0128-6
https://doi.org/10.1007/s40031-014-0128-6
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib758260937A16610C8BCF227067D1E460s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib758260937A16610C8BCF227067D1E460s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib758260937A16610C8BCF227067D1E460s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib758260937A16610C8BCF227067D1E460s1
https://www.mathworks.com/solutions/model-based-design.html
https://www.mathworks.com/solutions/model-based-design.html
https://doi.org/10.1109/TIE.2020.2982122
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib64FE9B4EBCF972195BF5445F3832B235s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib64FE9B4EBCF972195BF5445F3832B235s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib64FE9B4EBCF972195BF5445F3832B235s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bibD3A1AD4156D7851AA983410DF8F9BC96s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bibD3A1AD4156D7851AA983410DF8F9BC96s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bibD3A1AD4156D7851AA983410DF8F9BC96s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bibD3A1AD4156D7851AA983410DF8F9BC96s1
https://doi.org/10.1080/16864360.2018.1462569
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib3CE0ED09A970B0C9EC32CC4E6A9C45FAs1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib3CE0ED09A970B0C9EC32CC4E6A9C45FAs1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib3CE0ED09A970B0C9EC32CC4E6A9C45FAs1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bibE9FA7BF58509047DB4A243DA65256E6Es1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bibE9FA7BF58509047DB4A243DA65256E6Es1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bibE9FA7BF58509047DB4A243DA65256E6Es1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bibBE97CB69FA7AFBA5D2494A56FBDE7D38s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bibBE97CB69FA7AFBA5D2494A56FBDE7D38s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bibBE97CB69FA7AFBA5D2494A56FBDE7D38s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bibBE97CB69FA7AFBA5D2494A56FBDE7D38s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib0560BC511C93C87104C64785CC761C23s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib0560BC511C93C87104C64785CC761C23s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib897FC48FD3BEB25E20187166C6AD9013s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib897FC48FD3BEB25E20187166C6AD9013s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib1C4F83B649FDB54ED1B30B2A6C8A083Fs1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib1C4F83B649FDB54ED1B30B2A6C8A083Fs1


X. Dai, C. Ke, Q. Quan et al. Aerospace Science and Technology 114 (2021) 106727
[27] M. Cavcar, The international standard atmosphere (ISA), vol. 30, Anadolu Uni-
versity, Turkey, 2000, p. 9.

[28] A. Chulliat, S. Macmillan, P. Alken, C. Beggan, M. Nair, B. Hamilton, A. Woods, V. 
Ridley, S. Maus, A. Thomson, The US/UK world magnetic model for 2015-2020, 
BGS and NOAA, 2015.

[29] D.J. Moorhouse, R.J. Woodcock, Background information and user guide for 
MIL-F-8785C, military specification-flying qualities of piloted airplanes, Tech. 
Rep. AFWAL-TR-81-3109, U.S. Air Force Wright Aeronautical Labs, Wright-
Patterson AFB, OH, July 1982.

[30] R.K. Remple, M.B. Tischler, Aircraft and rotorcraft system identification: engi-
neering methods with flight-test examples, AIAA J. (2006).

[31] G. Cai, B.M. Chen, T.H. Lee, Unmanned Rotorcraft Systems, Springer Science & 
Business Media, 2011.

[32] R. Rajamani, Vehicle Dynamics and Control, second edition, Springer Science & 
Business Media, 2011.

[33] Y. Chen, S. Chen, T. Zhang, S. Zhang, N. Zheng, Autonomous vehicle testing and 
validation platform: integrated simulation system with hardware in the loop, 
in: 2018 IEEE Intelligent Vehicles Symposium (IV), 2018, pp. 949–956.

[34] A.I. Hentati, L. Krichen, M. Fourati, L.C. Fourati, Simulation tools, environments 
and frameworks for UAV systems performance analysis, in: 2018 14th Inter-
national Wireless Communications and Mobile Computing Conference, IWCMC 
2018, 2018, pp. 1495–1500.

[35] R.W. Beard, T.W. McLain, Small Unmanned Aircraft: Theory and Practice, 
Princeton University Press, 2012.

[36] M. Kučiš, P. Zemčík, Simulation of camera features, in: Proceedings of the 16th 
Central European Seminar on Computer Graphics, 2012, pp. 117–123.

[37] F. Leens, An introduction to I2C and SPI protocols, IEEE Instrum. Meas. Mag. 
12 (1) (2009) 8–13.

[38] S. Gage, NASA HL-20 lifting body airframe modeled with Simulink and 
the aerospace blockset, https://www.mathworks .com /help /aeroblks /nasa -hl -20 -
lifting -body-airframe .html. (Accessed 24 May 2019).

[39] D. Shi, X. Dai, X. Zhang, Q. Quan, A practical performance evaluation 
method for electric multicopters, IEEE/ASME Trans. Mechatron. 22 (3) (2017) 
1337–1348, https://doi .org /10 .1109 /TMECH .2017.2675913.

[40] X. Dai, Q. Quan, J. Ren, K.-Y. Cai, An analytical design-optimization method 
for electric propulsion systems of multicopter UAVs with desired hovering en-
durance, IEEE/ASME Trans. Mechatron. 24 (1) (2019) 228–239, https://doi .org /
10 .1109 /TMECH .2019 .2890901.

[41] X. Dai, Q. Quan, J. Ren, K.-Y. Cai, Efficiency optimization and component selec-
tion for propulsion systems of electric multicopters, IEEE Trans. Ind. Electron. 
66 (10) (2019) 7800–7809, https://doi .org /10 .1109 /TIE .2018 .2885715.

[42] Q. Quan, X. Dai, S. Wang, Multicopter Design and Control Practice: A Series 
Experiments based on MATLAB and Pixhawk, Springer, Singapore, 2020.
15

http://refhub.elsevier.com/S1270-9638(21)00237-6/bib33D31E96B03BBCB688049B369228DAB5s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib33D31E96B03BBCB688049B369228DAB5s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib3496114747C0EBE297B115CF8591F14Fs1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib3496114747C0EBE297B115CF8591F14Fs1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib3496114747C0EBE297B115CF8591F14Fs1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib7453C2194632B8C078B0F774B481BE71s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib7453C2194632B8C078B0F774B481BE71s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib7453C2194632B8C078B0F774B481BE71s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib7453C2194632B8C078B0F774B481BE71s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib0DE2D4638FEC717AA94CBCFA86B23260s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib0DE2D4638FEC717AA94CBCFA86B23260s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib92300D5054576B644E7E20C18B7B0CFDs1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib92300D5054576B644E7E20C18B7B0CFDs1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib58E5A9A10BFA3999EC734513EADA39E6s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib58E5A9A10BFA3999EC734513EADA39E6s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bibC3722B049E28B0AD66FD3AAF8E135FE1s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bibC3722B049E28B0AD66FD3AAF8E135FE1s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bibC3722B049E28B0AD66FD3AAF8E135FE1s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib9245FD82C3CC0F2A6C6431236A6B78DAs1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib9245FD82C3CC0F2A6C6431236A6B78DAs1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib9245FD82C3CC0F2A6C6431236A6B78DAs1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib9245FD82C3CC0F2A6C6431236A6B78DAs1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib3DEC1A1343CCBA255499640FD06B107Ds1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib3DEC1A1343CCBA255499640FD06B107Ds1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib21D776EC21D0A9F8A20408DE379393C2s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib21D776EC21D0A9F8A20408DE379393C2s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib7527A42188123CFA83C3F376C7A1AD9Cs1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bib7527A42188123CFA83C3F376C7A1AD9Cs1
https://www.mathworks.com/help/aeroblks/nasa-hl-20-lifting-body-airframe.html
https://www.mathworks.com/help/aeroblks/nasa-hl-20-lifting-body-airframe.html
https://doi.org/10.1109/TMECH.2017.2675913
https://doi.org/10.1109/TMECH.2019.2890901
https://doi.org/10.1109/TMECH.2019.2890901
https://doi.org/10.1109/TIE.2018.2885715
http://refhub.elsevier.com/S1270-9638(21)00237-6/bibA1D0C6E83F027327D8461063F4AC58A6s1
http://refhub.elsevier.com/S1270-9638(21)00237-6/bibA1D0C6E83F027327D8461063F4AC58A6s1

	RFlySim: Automatic test platform for UAV autopilot systems with FPGA-based hardware-in-the-loop simulations
	1 Introduction
	2 Unified modeling method
	2.1 Overall vehicle model
	2.1.1 Model abstraction
	2.1.2 Main framework of simulation system

	2.2 Vehicle simulation subsystem
	2.2.1 Vehicle body subsystem
	2.2.2 Environment subsystem
	2.2.3 Actuator subsystem
	2.2.4 Force & moment subsystem

	2.3 3D environment simulation subsystem
	2.4 Sensor simulation subsystem
	2.4.1 Sensor data subsystem
	2.4.2 Sensor product subsystem
	2.4.3 Communication subsystem


	3 Real-time HIL test platform with MBD
	3.1 Hardware structure of the HIL platform
	3.1.1 Real-time simulation computer
	3.1.2 Autopilot system
	3.1.3 Host computer

	3.2 Development framework with MBD
	3.2.1 Modular programming
	3.2.2 Automatic code generation

	3.3 Platform implementation
	3.3.1 Hardware composition
	3.3.2 Software development
	3.3.3 High-fidelity 3D simulation environment

	3.4 Automatic testing and assessment framework
	3.4.1 Fault modeling and test cases
	3.4.2 Automatic testing and assessment framework


	4 Verification and application
	4.1 Platform verification
	4.1.1 Platform function verification
	4.1.2 Experimental verification for simulation credibility
	4.1.3 Videos and source code

	4.2 Method applications
	4.2.1 Rapid prototyping
	4.2.2 Algorithm comparison
	4.2.3 Normal flight tests
	4.2.4 Automatic fault injection tests


	5 Conclusion and future work
	Declaration of competing interest
	Funding
	References


