
RflySim: A Rapid Multicopter Development Platform for Education
and Research Based on Pixhawk and MATLAB

Shuai Wang, Xunhua Dai, Chenxu Ke and Quan Quan

Abstract— In this paper, we propose and open a rapid
development platform−−RflySim based on Pixhawk/PX4 and
MATLAB/Simulink for UAV education and research. This plat-
form adopts model-based development ideas and uses software-
in-the-loop simulation and hardware-in-the-loop simulation to
accelerate physical deployment. With that, beginners and de-
velopers can directly use MATLAB/Simulink to design low-
level controllers (such as attitude control, position control) and
high-level applications (such as decision-making, autonomous
flight), and then deploy them into a multicopter autopilot system
with no need to access the C/C++ underlying code. Three
demonstrations are presented to verify the ease of use and the
high efficiency of the proposed platform.

• Open source:
https://github.com/RflySim/RflyExpCode

• Documentation:
https://rflysim.com/en/index.html

I. INTRODUCTION

Robotic technologies are widely used and growing rapidly
in recent years, and the development of unmanned aerial
vehicle (UAV) is particularly eye-catching. Under such a
circumstance, many platforms related to UAV education
and research have emerged. AR.Drone [1] and Tello [2]
are educational platforms that provide application program
interface (API) for position control, target tracking, etc., but
the core functions are either proprietary or can be accessed
only in part. These commercial platforms do not provide the
simulation function for debugging and data inspecting, so it
is inefficient to perform experiments on real aircraft. PiDrone
[3] focuses on high-level applications, such as SLAM, and
does not involve the development of low-level flight control.
Some research institutions and universities propose many
excellent hardware and software ideas for UAV research [4],
[5], [6], and the proposed platforms are versatile but not open
to use. Pixhawk/PX4 [7], [8] and APM [9] are popular open-
source UAV platforms, where the low-level and high-level
applications can be modified or used directly. They have a
complete set of development systems, including software-in-
the-loop (SIL) and hardware-in-the-loop (HIL) interfaces for
simulation and debugging. But their system architectures are
somewhat complex for beginners to get started with them.
If beginners and developers (called users below) want to

*This work was supported by the National Natural Science Foundation
of China under Grant 61973015 and Beijing Natural Science Foundation
under Grant L182037.

Shuai Wang, Chenxu Ke and Quan Quan(Corresponding Author) are
with the School of Automation Science and Electrical Engineering, Beihang
University, Beijing 100191, China. Email: qq buaa@buaa.edu.cn.

Xunhua Dai is with Computer Science and Engineering, Central South
University, Changsha 410083, China. Email: dai.xh@csu.edu.cn.

modify the source code, they should be familiar with the
C/C++ programming language and Linux system knowledge.

Controller

Design

FlightGear 3D

Simulator

CopterSim

3DDisplay

Real-time HIL

Simulation platform
Code

Generation

Model

Parameters

Outdoor Flight Test

Pixhawk/PX4

Autopilot System

Multicopter

Model

Pixhawk/PX4

Radio Control

Ground Computer

MATLAB/Simulink

Environment

SIL Simulation HIL Simulation

Flight Tests

Fig. 1. System architecture of RflySim.

On the other hand, in recent years, many researchers
have proposed excellent UAV algorithms, like low-level
attitude control methods [10], [11], high performance attitude
estimator [12], position control methods [13], mixers that can
help achieve accurate tracking [14], and high maneuvering
strategy [15]. How to efficiently realize these methods is a
problem. The transplantation of algorithms from theory to
a real aircraft is a complex process, which requires much
programming work. Any minor error or omission in the
programming process may cause unsatisfactory experimental
results. However, in the field of robotics, experimental veri-
fication of the proposed method has become an increasingly
common requirement and will consume a lot of time with a
long trial-and-error cycle.

MATLAB/Simulink [16] is widely used because of its
rich tools, which facilitates the development of the robot
system. Furthermore, MATLAB/Simulink also supports the
automatic code generation of C/C++ language for the deploy-
ment to embedded systems such as Pixhawk, which reduces
the difficulty between simulation testing and physical de-
ployment. With MATLAB/Simulink, UAV dynamic models,
controllers, filters and decision-making logic can be designed
efficiently.

To overcome the shortcomings of existing platforms
and take advantage of existing tools, we design a rapid
development platform based on Pixhawk/PX4 and MAT-
LAB/Simulink. With that, users can directly use Simulink to

2021 International Conference on Unmanned Aircraft Systems (ICUAS)
Athens, Greece. June 15-18, 2021

978-0-7381-3115-3/21/$31.00 ©2021 IEEE 1587

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 U

nm
an

ne
d

Ai
rc

ra
ft

 S
ys

te
m

s (
IC

U
AS

) |
 9

78
-1

-6
65

4-
15

35
-4

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
U

AS
51

88
4.

20
21

.9
47

67
86

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 01,2021 at 01:32:56 UTC from IEEE Xplore. Restrictions apply.

design a low-level controller of multicopter such as attitude
controller, position controller, and high-level applications
such as decision-making, autonomous flight with no need to
master C/C++ programming language. Besides, We provide
an accurate quadcopter model to ensure that the results
obtained by SIL simulation can be directly used in the
real system [17]. Through the automatic code generation
technology, the Simulink model can be automatically de-
ployed to Pixhawk autopilots, and the real flight experiment
can be performed indoor or outdoor. Moreover, due to rich
debugging functions such as online parameter debugging,
offline data recording, and online data inspecting, the process
of UAV algorithm learning, development, and verification
can be greatly accelerated.

To demonstrate the effectiveness of our platform, we
showcase three examples including attitude control, position
control and mode switch. The first is related to the design of
a low-level attitude controller. We use the proposed platform
to quickly complete the active disturbance rejection control
(ADRC) controller design, simulation, debugging, and real
flight test. It has been shown that the ADRC method we
design has a robust anti-disturbance ability. In the second
example, the implementation of fault-tolerance control shows
that our platform can support high-performance control de-
sign for an extreme situation with high control rate. The
last example about a failsafe logic design involves the
design of the high-level decision-making of flight control.
In this example, the multicopter returns home and lands
autonomously when the radio control (RC) is lost.

A general and comprehensive introduction to this platform
has been summarized in the published book [18] you can also
refer to the video https://youtu.be/RTkOHJ0NT0k
for a brief introduction. This paper is a brief introduction and
extension of the work in [18] to support a complete autopilot
development. Specifically, this paper makes the following
contributions: (1) the addition of three debugging functions
to the platform to connect the ground control station, making
the platform more practical in helping developers deploy
new algorithms on real aircraft; (2) the design of a time-
triggered model that ensures different control algorithms run
at the stable frequency respectively; (3) new demonstration of
attitude control by ADRC and fault-tolerance control to show
that the platform can support some advanced controllers.

II. ARCHITECTURE

The overall architecture of the system is shown in Fig.
1. The entire development consists of three steps: SIL
simulation based on MATLAB/Simulink, HIL simulation,
and real flight test.

The SIL simulation system includes a multicopter control
model, a multicopter dynamic model, and a 3D display
model. All three parts are built in the Simulink environment.
The multicopter model sends sensor data or state information
to the controller such as attitude and velocity. The controller
sends each motor’s control signal back to the model to form
a SIL simulation closed-loop system.

HIL simulation means that the multicopter controller runs
in Pixhawk hardware. The sensor data of the multicopter is
similar to that of the SIL simulation and is also generated by
a mathematical model. Besides, to ensure the real-time simu-
lation, we design an application–CopterSim. The multicopter
control model used in the HIL simulation is consistent with
the SIL simulation, and the PSP toolbox can automatically
convert the Simulink control model into C/C ++ code and
integrate it into the Pixhawk/PX4 autopilot. CopterSim sends
sensor data such as accelerometer, barometer, magnetometer,
GPS to the Pixhawk system via a USB serial port. The
Pixhawk/PX4 autopilot will receive the sensor data for state
estimation and send the estimated state information to the
controller through the internal uORB message bus. The
controller sends the control signal of each motor as the output
back to CopterSim via the USB serial port. Thereby a closed
loop is established in the HIL simulation. Compared with the
SIL simulation, the control algorithm can be deployed and
run in a real embedded system.

In the real flight test, CopterSim’s simulation model is
further replaced by a real multicopter. The sensor data is
directly obtained by sensor chips, and the controller signal
is directly delivered to the motor. It is worth noting that
the control model used by three processes is the same, and
only the output module of the model is changed to achieve
different experimental purposes.

Vehicle Setup

->parameters

Automatic code

generation

Create

parameters

Mavlink

protocol

USB, Telemetry

Radios, WIFI

P
a
ra

m
e

te
rs

 in
 S

im
u
lin

k

in
te

ra
c
t w

ith
 Q

G
C

uorb_write()

uorb

Widgets-

>Analyze

Update

custom Uorb

message

S
e
n

d
 d

a
ta

 t
o

Q
G

C
 i
n
 S

im
u

lin
k

Pixhawk_CSC.

Parameter()

Simulink Model

parameters

Pixhawk/PX4

QGC

Fig. 2. The implementation process of online parameter tuning and real-
time data inspecting.

1588

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 01,2021 at 01:32:56 UTC from IEEE Xplore. Restrictions apply.

A. Model

To improve the development efficiency of the flight con-
troller further, we make full use of the functions of the
Pixhawk/PX4 autopilot and add the following functions to
the Simulink model we built.

• Online parameter tuning. Users can modify the parame-
ters in the Simulink model online through a ground con-
trol station, namely QGroundControl (QGC) [19]. There
is no need to recompile and upload the program after
each parameter modification, and it improves the pro-
gram debugging efficiency. The implementation process
is shown in Fig. 2. First, some ’Simulink.Parameter’
objects are created in Simulink, which can be used
to share a value among multiple block parameters.
Then, through automatic code generation, they can be
converted to parameters in PX4, and these parameters
can interact with QGC like parameters in PX4.

• Data recording. In order to facilitate experimental anal-
ysis, any data in the Simulink model can be recorded to
the SD card. The number and frequency of the recorded
data can be flexibly adjusted.

• Real-time data inspecting. If users need to observe the
state of the aircraft or the intermediate variables of the
model in real-time during the flight, it is also very
convenient to add a data observation module to the
Simulink model, and the data can be observed in QGC.
What is more, QGC can record the data to a text file.The
implementation process is shown in Fig. 2. The basic
principle is to write data to the uORB message.

III. CORE COMPONENTS

The following describes the core components used in the
entire system.

A. Pixhawk/PX4 Autopilot System

We choose Pixhawk series as the hardware, PX4 as the
software, RC for remote manual operation, and ground
computer for data inspecting. Pixhawk is an independent
open-source hardware project dedicated to providing easy-
to-use, high-quality and low-cost autopilot hardware for
education, enthusiasts and developers. PX4 [20] is an open-
source flight control software system. It runs on the Pixhawk
series autopilot hardware and constitutes the Pixhawk/PX4
autopilot software and hardware platform. It is a small drone
autopilot platform that is widely used around the world.

B. MATLAB/Simulink and Pixhawk Support Package(PSP)

We choose MATLAB/Simulink as the programming envi-
ronment because it is widely used in aerial vehicles, cars, and
other applications. And it can be easily applied to develop a
simulation system for dynamic system modeling, controller
design, software and hardware simulation, and performance
analysis through a modular programming language. With the
Pixhawk support package (PSP) toolbox [21], the Simulink
model can be deployed to Pixhawk automatically. We have
made some updates and optimizations based on the official

Simulink generated
px4_simulink_app

Kalman
Filter

Attitude
Controller

Position
Controller

Motor
Control

uORB
Message Pool

...

Hardware
Interfaces

PX4 Software

Upload
Firmware

Simulink Control
Algorithm

LED,
PWM, etc.

Code
Generation

PSP
Toolbox

Pixhawk Hardware

Fig. 3. The relationship among PSP toolbox, Pixhawk/PX4 autopilot and
Pixhawk hardware system.

Autonomous Flight

(Run at 50Hz)

Position Controller

(Run at 50Hz)

Attitude Controller

(Run at 250-400Hz)

Autopilot

High-level Applications

Low-level Applications

State Estimator

(Run at 250Hz)

State Machine

(Run at 5Hz)

Fig. 4. Flight control system structure of multicopter. Autonomous flight
contains guidance and navigation. State machine is a decision-making
module that controls the status transition in autopilot such as arming,
disarming. The controllers make the vehicle move towards the setpoint. The
estimator computes states of the multicopter such as attitude and position.

PSP toolbox to make it compatible with wider PX4 and
MATLAB versions.

Fig. 3 shows the relationship among the PSP toolbox, the
PX4 software system, and the Pixhawk hardware system.
After the PSP toolbox generates the algorithm code, it is
embedded into the Pixhawk/PX4 autopilot. A separate mod-
ule (with independent thread) named “px4 simulink app”
will be created, which does not affect the operation of the
native control modules in Pixhawk/PX4 autopilot. Instead, it
runs in parallel with other modules. In this way, the native
modules of the Pixhawk/PX4 autopilot such as filter, attitude
controller can also be replaced.

1589

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 01,2021 at 01:32:56 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Flight control model designed in Simulink.

C. Real-time HIL Simulation Platform

CopterSim and 3DDisplay together constitute a HIL sim-
ulation platform, both of which run on Windows operating
system. CopterSim is a real-time motion simulation soft-
ware developed for the Pixhawk/PX4 autopilot. Users can
configure multicopter model parameters in the software, and
connect it to the Pixhawk autopilot via a USB serial port to
implement HIL simulation. 3DDisplay is a real-time 3D vi-
sual display software. It receives flight data from CopterSim
via UDP to display the attitude and position of multicopter
in real-time. Some simulation tools also support HIL simu-
lation, such as AirSim [22]. However, it has a high entry for
beginners to modify the model parameters of UAV. We have
provided the tools to beginners and researchers for free, and
they can be downloaded at https://rflysim.com/en/index.html.

D. Model

Using Simulink’s graphical user interface, the hierarchical
design of the flight control can be easily carried out, so that
the whole system structure is clear and easy to maintain. The
overall structure of the flight control system is shown in Fig.
4. In general, it can be divided into two levels: high-level
applications include state machine and autonomous flight,
and low-level applications include position control, attitude
control, and state estimator. At the same time, to focus on the
design, we do not need to design each part by ourselves from
scratch. On the other hand, many functions of Pixhawk/PX4
autopilot have been successfully tested and applied. We can
fully use the existing functions of this open-source system.
For example, we only design the controller and state machine
based on the state estimator from the current estimator in
the Pixhawk/PX4 autopilot. The Simulink model is shown
in Fig. 5. Users can open the module and replace it with
their algorithms or add a new module such as filter for their
purpose. It is easy to interact in the GUI interface.

IV. SYSTEM ANALYSIS

When deploying algorithms in an embedded system, real-
time performance of the algorithm is a very noteworthy
issue. For control algorithms, the real-time performance is

state machine

attitude control

position control

autonomous flight

sequence

t(
s
)

Fig. 6. The execution cycle of each module.

particularly important because it directly affects the band-
width and robustness of the control system. We use the time-
triggered method [23] to ensure the algorithm runs at a stable
frequency, and it can be easily implemented in Simulink with
Stateflow schedulers, as shown in Fig. 5. The underlying
control logic of flight control generally adopts hierarchical
control, as shown in Fig. 4. The attitude estimator update
frequency in Pixhawk/PX4 autopilot is 250Hz, so we set the
execution frequency of the attitude controller to 250Hz. The
IMU has a refresh frequency of 1000 Hz, so the angular rate
control frequency can be increased to a high level, such as
400Hz, with the refresh frequency of the electronic speed
control (ESC) under consideration. The control frequency
of the position control is generally lower than the attitude
control, and the bandwidth of the attitude control should
be 4 to 10 times of position control, so the execution
frequency of the position control is set to 50Hz. The high-
level controller does not need a high execution frequency, so
the execution frequency of the state machine is set to 5 Hz,
and the autonomous flight is set to 50 Hz. The estimator in
Pixhawk/PX4 autopilot is directly used for state observation.
This further demonstrates the superiority of our platform.
Instead of building our flight control system from scratch,

1590

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 01,2021 at 01:32:56 UTC from IEEE Xplore. Restrictions apply.

we focus mainly on the areas we are interested in, such as
the design of attitude control, estimator, or state machine.

b
y
te

s
t(

m
s
)

Fig. 7. Comparison of the hardware resource usage in the custom module
and Pixhawk/PX4 autopilot.

Through the data recording function, the execution period
of each module is obtained, as shown in Fig. 6. It can be
seen that the execution cycle of each module in the system
is controlled accurately. In addition, considering the hard-
ware resource limitation of Pixhawk, the controller or state
estimator we design should not be too complicated. Some
online optimization methods such as MPC [24] cannot run
in real-time with limited computing resources. The memory
usage of main tasks running in Pixhawk/PX4 autopilot is
shown in Fig. 7. It can be seen that the memory usage of the
attitude control and position control we design is half of that
the autopilot’s. The CPU usage of our attitude control and
position control is slightly higher than that in Pixhawk/PX4
autopilot, but the autopilot’s CPU resource remains idle for
30.95% of the time.

V. CASES STUDY

Flight control involves dynamic system modeling, sensor
calibration, state estimation, controller design, and decision
logic design [25]. For all the knowledge, we have given step-
by-step procedures and reference design examples based on
our platform, and learners can refer to https://github.
com/RflySim/RflyExpCode. Here, we first design the

ADRC law for of low-level attitude control system as an
example. After that, a fault-tolerance control example shows
the fast response of the designed position controller by the
proposed platform. Finally, we design a high-level failsafe
logic in the form of a state machine for the RC signal being
lost.

A. ADRC Controller Design

TD NLSEF Plant

ESO

b1/b

v
1
v

n
v

1
e

n
e

-

-

-

1
z

n
z

1n
z

+

u0
u

w

y

Fig. 8. Structure of the ADRC, which consists of a tracking differentia-
tor(TD), a nonlinear state error feedback(NLSEF), and an expanded state
observer(ESO).

ADRC law is a more and more popular method in practice
[26], with the structure of ADRC shown in Fig. 8. Obviously,
it is considered as an advanced version of PID controller but
with a more complex structure. It is an appropriate testing
case.

CopterSim

(SIL)

(HIL)

(actual flight)

3DDisplay

Fig. 9. Design procedure of ADRC including SIL simulation, HIL
simulation and Real flight test.

The controller is designed in Simulink, and the SIL simu-
lation is performed, as shown in Fig. 9(SIL). We can easily
observe the interested states in Simulink and adjust the model
to make it satisfied. As shown in Fig. 10(SIL), the controller

1591

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 01,2021 at 01:32:56 UTC from IEEE Xplore. Restrictions apply.

t(s), HIL

pitch_d
pitch

t(s), SIL

P
it

c
h
(
ra

d
)

p
o
s
it

io
n

(m
)

t(s), Actual Flight

Disturbance is

added

RC is disconnected

P
it

c
h
(
ra

d
)

P
it

c
h
(
ra

d
)

Disturbance is

added

Disturbance is

added
pitch_d
pitch

pitch_d
pitch

Fig. 10. Response of pitch angle of SIL simulation, HIL simulation and actual flight test with ADRC as a controller. Disturbance is added to each
experiment. The blue dotted line denotes the desired pitch angle, and the green dotted line denotes the response of aircraft.

p
o
s
it
io

n
(m

)

p
o
s
it
io

n
(m

)
y
a

w
(r

a
d

)

y
a

w
(r

a
d

)

t(s), HIL

t(s), HIL

t(s), Actual Flight

t(s), Actual Flight

x
y
z

x
y
z

yaw

yaw_sp
yaw

yaw_sp

Propulsion failture

happended

x
y
z

yaw

yaw_sp

y
a

w
(r

a
d

)

p
o
s
it
io

n
(m

)

t(s), SIL

t(s), SIL

Propulsion failture

happended

Propulsion failture

happended

Fig. 11. SIL simulation, HIL simulation and outdoor flight tests of fault-tolerance control.

can eliminate the influence of disturbance very well. After
that, in the HIL simulation, only a simple modification of
the model’s output is made for C/C++ code generation, but
the controller will keep the same as the SIL simulation.
The generated C/C++ code will be uploaded to Pixhawk
automatically. Then, HIL simulation can be performed, as
showed in Fig. 9(HIL). In this process, we can manually
control the multicopter and observe the aircraft’s response, as
shown in Fig. 10(HIL). Controller parameters can be adjusted
according to the HIL simulation performance. Finally, the
actual flight test is performed, as shown in Fig. 9(Actual
Flight). We add 0.2kg weight to a 1.4kg multicopter as
an external disturbance. Under the influence of external
disturbance, the multicopter tilts slightly and then begins
to adjust its attitude. After the adjustment, the multicopter
returns to the horizontal state and the disturbance is rejected,
as shown in Fig. 10(Actual Flight). It should be noted that,
based on the proposed platform, the designer only needs to
design and improve the controller in Simulink. Basically,
the controllers are almost the same in SIL simulation, HIL

simulation and real flight.

(a) HIL simulation. (b) Actual Flight.

Fig. 12. HIL simulation and actual flight test scenes of fault-tolerance
control.

B. Fault-tolerance Control

The growing interest in aerial robotics has prompted
researchers to consider controllers for safety-critical systems.
There are great demands on the ability to tolerate propulsion
failure of quadcopter during the mission. After one rotor of
a quadcopter fails, it is proved that the uncontrollability of
the yaw will make the quadcopter spin around a certain axis
at a high speed [27]. Fast response has to make in that the

1592

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 01,2021 at 01:32:56 UTC from IEEE Xplore. Restrictions apply.

closed-loop stability of the fault-tolerance control system is
very sensitive to control input and estimation phase lag. This
is a perfect benchmark control problem to verify the high
performance of the proposed platform.

To test the proposed platform, the fault-tolerance controller
adopts that proposed in [28] and runs at 400Hz to ensure a
fast response. In SIL, the state estimation directly uses the
ground truth rather than from the estimator of PX4. In this
phase, most controller problems in the algorithm are reme-
died. After SIL succeeds, as shown in Fig. 11(SIL), we turn
to the HIL simulation, where the state estimation from PX4
and the controller downloaded in hardware are both in the
closed-loop control system. During this phase, we found that
commonly-used EKF estimator will fail because of the large
estimation phase lag. Instead, we choose the complementary
filter to satisfy the stability shown in Fig. 12(a) and Fig.
11(HIL). Finally, the same code and parameters are compiled
and download to a real quadcopter, and the similar control
performance is achieved in actual flight shown in Fig. 12(b)
and 11(Actual Flight). It can be seen that, after one rotor
fails, the quadcopter spins at a high speed, but it’s position
is still controllable.

RETURN-

TO-

LAUNCH

AUTO-

LANDING

MANUAL

FLIGHT

MODE

C3

C2

C4

C5

C1

C7

C6

FAIL RTL
FAIL

LANDING

C8 C9

C10

C11

C12

C13

C14

C15

C16

Fig. 13. State machine of failsafe.

C. Failsafe
For multicopters, several types of failure cannot be

avoided, including communication breakdown, sensor fail-
ure, and propulsion system anomalies. To guarantee safety,
the multicopter’s decision-making module should prevent or
mitigate the unsafe consequences of system failures. Here
we only consider the failure when the RC is lost, and design
failsafe logic for this case. To facilitate the failsafe logic
design, five flight modes are defined here: 1) MANUAL
FLIGHT MODE. This mode allows a remote pilot to control
a multicopter manually. 2) RTL MODE. Under this mode,
the multicopter will return to the home location and hover
there. 3) AUTO-LANDING MODE. In this mode, the mul-
ticopter automatically lands. 4) FAIL LANDING MODE.
The multicopter automatically lands when the RC is lost. 5)
FAIL RTL MODE. The multicopter automatically returns to
the initial horizontal position when the RC is lost.

Two kinds of events are defined: Manual Input Events
(MIEs) and Automatic Trigger Events (ATEs). These events
will cause the state or mode transition.

• MIES. MIEs are instructions from remote pilots sent
through the RC transmitter, including the following: 1)
MIE1: arm and disarm instructions; 2) MIE2: manual
operation instruction (1: switch to MANUAL FLIGHT
MODE; 2: switch to RTL MODE; 3: switch to AUTO-
LANDING MODE).

• ATES. ATEs are independent of the remote pilot’s oper-
ations but mainly generated by the status of components
onboard and status of the multicopter. 1) ATE1: status
of connections of RC (ATE1 = 1: normal; ATE1= 0:
abnormal); 2) ATE3: (ATE3 = 0: multicopter’s distance
from the HOME point is above the threshold; ATE3 =
0: multicopter’s distance from the HOME point is under
the threshold).

The state machine is shown in Fig. 13, where Ci represents
the corresponding transition condition. Where C1: MIE1 =
1. C2, C7, C10, C1: ATE1 = 1 and MIE2 = 2. C3, C5: ATE1
= 1 and MIE2 = 1. C4, C6, C12, C14: ATE1 = 1 and MIE2
= 3. C8: ATE1 = 0 and ATE3 = 0. C9: ATE1 = 0 and ATE3
= 1. C11, C13: ATE1 = 0. C16: ATE1 = 0 and ATE3 = 1.

The result in SIL simulation is shown in Fig. 14(SIL).
It can be observed that, during 0-10s, the multicopter is
in MANUAL FLIGHT MODE. After 10s, the RC is lost,
and the altitude is less than the threshold. As the logic
we designed, the multicopter first climbs up to the safe
altitude we set, then enters RTL MODE. The return process
is completed at 18s, with the horizontal position being (0,
0). Then, the multicopter enters AUTO-LANDING MODE
and finally completes landing at 39s.

After the HIL simulation further verifies the correctness
of the model, the real flight is performed. To ensure safety,
the safe altitude set in the flight test is 5m. The final real
flight curve is shown in Fig. 14(Actual Flight). At about
335s, the RC is lost, then the multicopter rises to altitude
5m, and returns to the HOME point horizontally. Finally,
the multicopter lands with its altitude decreasing to 0. The
real flight results show that multicopter can achieve failsafe.
Based on the proposed platform, the designer only needs
to design and improve the state machine in Simulink. What
is more, Simulink can help to identify hidden errors in the
designed state machine, like dead logic. This will facilitate
the design.

VI. CONCLUSIONS
In this paper, we introduce a rapid multicopter devel-

opment platform for education and research based on Pix-
hawk/PX4 and MATLAB/Simulink. This platform supports
developers to design controllers, estimators, decision-making
in MATLAB/Simulink for a conventional multicopter or new
type UAVs such as vertical takeoff and landing (VTOL),
which can run in Pixhawk. The entire development consists
of three steps: SIL simulation, HIL simulation, and real flight
test. With this step-by-step development, safety and effi-
ciency can be ensured. About the real-time performance of

1593

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 01,2021 at 01:32:56 UTC from IEEE Xplore. Restrictions apply.

t(s), HIL

RC_lost*10
x
y
z

t(s), SIL

p
o
s
it

io
n

(m
)

p
o
s
it

io
n

(m
)

p
o
s
it

io
n

(m
)

t(s), Actual Flight

RC is disconnected RC is disconnected RC is disconnected

RC_lost*10
x
y
z

RC_lost*10
x
y
z

Fig. 14. SIL, HIL Simulation and outdoor flight tests of failsafe. The blue dotted line is the local position along x axis, the green dotted line is the local
position along y axis, and the red dotted line is the local position along z axis.

the platform, the time-triggered method is adopted to ensure
the designed model can execute at an accurate period. And
debugging functions such as online parameter adjustment,
data recording, and real-time data inspecting are provided to
accelerate development and education for multicopter espe-
cially in real flight test. Finally, we provide three examples
to demonstrate the effectiveness of the proposed platform.

REFERENCES

[1] T. Krajnı́k, V. Vonásek, D. Fišer, and J. Faigl, “Ar.drone as a platform
for robotic research and education,” in International Conference on
Research and Education in Robotics. Springer, 2011, pp. 172–186.

[2] dji.com, “Tello edu,” https://store.dji.com/cn/product/tello?vid=38421,
accessed October 1, 2020.

[3] L. Eller, T. Guerin, B. Huang, G. Warren, S. Yang, J. Roy, and
S. Tellex, “Advanced autonomy on a low-cost educational drone
platform,” arXiv preprint arXiv:1910.03516, 2019.

[4] J. P. How, B. Behihke, A. Frank, D. Dale, and J. Vian, “Real-time
indoor autonomous vehicle test environment,” IEEE Control Systems
Magazine, vol. 28, no. 2, pp. 51–64, 2008.

[5] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The grasp
multiple micro-uav testbed,” IEEE Robotics &Automation Magazine,
vol. 17, no. 3, pp. 56–65, 2010.

[6] S. Lupashin, M. Hehn, M. W. Mueller, and A. P. Schoellig, “A platform
for aerial robotics research and demonstration: The flying machine
arena,” Mechatronics, vol. 24, no. 1, pp. 41–54, 2014.

[7] L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer, and
M. Pollefeys, “Pixhawk: A micro aerial vehicle design for autonomous
flight using onboard computer vision,” Autonomous Robots, vol. 33,
no. 1-2, pp. 21–39, 2012.

[8] L. Meier, D. Honegger, and M. Pollefeys, “Px4: A node-based
multithreaded open source robotics framework for deeply embedded
platforms,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2015.

[9] ardupilot.org, “Ardupilot,” https://ardupilot.org/dev/index.html, ac-
cessed October 1, 2020.

[10] M. Hamandi, M. Tognon, and A. Franchi, “Direct acceleration feed-
back control of quadrotor aerial vehicles,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), 2020, pp. 5335–
5341.

[11] Y. Yu, S. Yang, M. Wang, C. Li, and Z. Li, “High performance full
attitude control of a quadrotor on so (3),” in 2015 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2015.

[12] C. W. Kang and C. G. Park, “Attitude estimation with accelerometers
and gyros using fuzzy tuned kalman filter,” in 2009 European Control
Conference (ECC), 2009, pp. 3713–3718.

[13] M. H. Dhullipalla, R. Hamrah, and A. K. Sanyal, “Trajectory genera-
tion on se(3) with applications to a class of underactuated vehicles,” in
2017 IEEE 56th Annual Conference on Decision and Control (CDC),
2017, pp. 2557–2562.

[14] M. Faessler, D. Falanga, and D. Scaramuzza, “Thrust mixing, satura-
tion, and body-rate control for accurate aggressive quadrotor flight,”
IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 476–482,
2016.

[15] B. Morrell, M. Rigter, G. Merewether, R. Reid, R. Thakker, T. Tzane-
tos, V. Rajur, and G. Chamitoff, “Differential flatness transformations
for aggressive quadrotor flight,” in 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA). IEEE, 2018.

[16] Mathworks.com, “Simulink,” https://www.mathworks.com/products/
simulink.html, accessed October 1, 2020.

[17] X. Dai, C. Ke, Q. Quan, and K.-Y. Cai, “Simulation credibility assess-
ment methodology with fpga-based hardware-in-the-loop platform,”
2019.

[18] Q. Quan, X. Dai, and S. Wang, Multicopter Design and Control
Practice. Springer, Singapore, 2020.

[19] Qgroundcontrol.com, “Qgroundcontrol,” http://qgroundcontrol.com/,
accessed October 1, 2020.

[20] px4.io, “Px4,” http://dev.px4.io/v1.9.0/en/, accessed October 1, 2020.
[21] mathworks.com, “Pixhawk support package,” https://www.mathworks.

com/hardware-support/px4-autopilots.html, accessed October 1, 2020.
[22] microsoft.com, “Airsim,” https://microsoft.github.io/AirSim/, accessed

October 1, 2020.
[23] M. J. Pont, Patterns for time-triggered embedded systems. TTE

System, Ltd, 2008.
[24] M. Brunner, K. Bodie, M. Kamel, M. Pantic, W. Zhang, J. Nieto, and

R. Siegwart, “Trajectory tracking nonlinear model predictive control
for an overactuated mav,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA), 2020, pp. 5342–5348.

[25] Q. Quan, Introduction to Multicopter Design and Control. Springer,
Singapore, 2017.

[26] J. Han, “From pid to active disturbance rejection control,” IEEE
Transactions on Industrial Electronics, vol. 56, no. 3, pp. 900–906,
2009.

[27] G.-X. Du, Q. Quan, B. Yang, and K.-Y. Cai, “Controllability analysis
for multirotor helicopter rotor degradation and failure,” Journal of
Guidance, Control, and Dynamics, vol. 38, no. 5, p. 978–985, May
2015. [Online]. Available: http://dx.doi.org/10.2514/1.G000731

[28] V. Lippiello, F. Ruggiero, and D. Serra, “Emergency landing for a
quadrotor in case of a propeller failure: A pid based approach,” in
2014 IEEE International Symposium on Safety, Security, and Rescue
Robotics (2014), 2014, pp. 1–7.

1594

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 01,2021 at 01:32:56 UTC from IEEE Xplore. Restrictions apply.

