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What is actuator-focused viewpoint and how is it applied to repetitive
control problems?
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Motivation and Objective
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Figure: Tracking problem and rejection problem.

In Fig.1(a), the transfer function from r to e (corresponding to r and e
respectively) is written as follows
1
e(s)= T-COPE) P(S)r(s).
In Fig.1(b), the transfer function from r to e is written as follows
1
=———-P .
()= et e
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Motivation and Objective
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Figure: Tracking problem and rejection problem.

If all poles of P (s) lie in the left s-plane, then the controller C only needs
to ensure that all poles of 1 /(1 — C(s) P (s)) lie in the left s-plane and
one closed-loop zero of 1 /(1 — C(s) P(s)) is 0 so that the closed-loop
zero can cancel the unstable pole of r(s) = a /s, where a is constant.
According to IMP, the controller C should contain an integral term 1 /s.
Therefore, both tracking problem and rejection problem can be reduced to
a stabilization problem.
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Motivation and Objective

Objective. By taking these into account, a new viewpoint on IMP is

proposed to support general periodic signal tracking of nonlinear systems
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Figure: Comparison between two design ideas.
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Actuator-Focused Viewpoint on IMP
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Three Examples

(1) Step Signals

Figure: Step signal tracking.

Cancelation Viewpoint: As shown in Fig.4, the transfer function from
the desired signal to the tracking error is written as follows

1 L L -
e(s) = 1+16(s)" (s) = s+G(s) <S;> TS+ G()

Then it only requires to verify whether or not the roots of the equation
s+ G (s) =0 are all in the left s-plane. If all roots are in the left s-plane,
then the tracking error tends to zero as t — oo. Therefore, the tracking

problem has been reduced to a stability problem of the.closed-loop system.
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Three Examples

Actuator-Focused Viewpoint: This new viewpoint will give a new
explanation on IMP without using transfer functions. Assume that the
minimal realization of y = G (s) v is

x = Ax + bv

y=c'x+dv

where G (s) =c' (sl — A) "' b+ d. As shown in Fig.4, the resulting
closed-loop system becomes

G-l SER) o
z A, z w
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Three Examples

The solution is .
z(t) = efatz (0) +/ ePa(t=5)wds
0

where w is constant. If the closed-loop system is stable, then the matrix
A, is stable, namely the real parts of eigenvalues of A, are negative. As a
result, z(t) will tend to a constant vector as t — oo. Consequently, v (t)
and e(t) = yq — c"x will tend to constants v* and e* as t — oo,
respectively. It can be claimed that e* = 0. Otherwise, because of the
integral term, one has

v(t) =e(t) (2)
v (t) will tend to infinity. Therefore, to confirm that the tracking error
tends to zero as t — 00, it is only required to verify whether or not the
closed-loop system without external signals is exponentially stable. This
implies that the tracking problem has been reduced to a stability problem.
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Three Examples

(2)Sine Signals
W) ) () ¥6)
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Figure: Sine signal tracking

Cancelation Viewpoint: As shown in Fig.6, the transfer function from
the desired signal to the tracking error is written as follows

1
e (s) %)

ER=—E)

s24w?

_ 1 2 2 b15+b0
24 w2+ G(s) <(S +o) s2+w2)
B bis + by

24 w2+ G(s)

Quan Quan (BUAA) An Actuator-Focused Design Method November 9, 2020 11 /43



Three Examples

(2)Sine Signals
() o(s) v(s) ()

L»?—» 1(s*+?) > G(s) >

Figure: Sine signal tracking

. . . b
where the Laplace transformation model of agsin (wt + ¢g) is i—ﬁf}

Then, it is only required to verify whether or not the roots of the equation
s?2 +w? 4+ G (s) = 0 are all in the left s-plane, namely whether or not the
closed-loop system is stable. Therefore, the tracking problem has been
reduced to a stability problem of the closed-loop system.
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Three Examples

Actuator-Focused Viewpoint: Because of the term ser#wQ the

relationship between v (t) and e (t) can be written as
e(t)=v(t) +w?v(t). (3)

If the closed-loop system without external signals is exponentially stable,
then, when the system is driven by an external signal in the form of

agsin (wt + o), it is easy to see that v (t) and e (t) will tend to signals in
the form of asin (wt + ), where a and ¢ are constants. Consequently,

e(t) — (asin(wt+ ¢))" +w? (asin (wt +¢)) =0

as t — 0o by (3) no matter what a and ¢ are. Therefore, to confirm that
the tracking error tends to zero as t — oo , it only requires verifying
whether or not the closed-loop system without external signals is
exponentially stable. This implies that the tracking problem has been
reduced to a stability problem.
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Three Examples

(3)General T-Periodic Signal
vals) el v(s) »(s)

—»?—» Y(1-e™) > G(s) >

Figure: Periodic signal tracking of an RC system.

Cancelation Viewpoint: Similarly, as shown in Fig.8, the transfer
function from the desired signal to the error is written as follows

1
e(s) = 1+ H%G(S)yd (5)
1 1
T1-eT+G(s) <(1_e )ﬁ)
1

S l—e T+ G(s)
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Three Examples

(3)General T-Periodic Signal
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Figure: Periodic signal tracking of an RC system.

Then, it is only required to verify whether or not the roots of the equation
1— e~ 5T + G (s) =0 are all in the left s-plane. Therefore, the tracking
problem has been reduced to a stability problem of the closed-loop system.
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Three Examples

Actuator-Focused Viewpoint: Because of the term 1 /(1 — e™*T), the
relationship between v (t) and e (t) can be written as

e(t)=v(t)—v(t—-T). (4)

If the closed-loop system without external signals is exponentially stable,
then, by the solution of v (t) and e (t), it can be proven that v (t) and

e (t) will both tend to T-periodic signals when the system is driven by a
T-periodic signal. Consequently, it can be concluded that e (t) — 0 as

t — oo by (4). Therefore, to examine the tracking error tending to zero as
t — oo, it only requires verifying whether or not the closed-loop system
without external signals is exponentially stable. This implies that the
tracking problem has been reduced to a stability problem.
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Filtered Repetitive Control Systems Subject to T-Periodic

NIEGELS

The model Q(s) /(1 — Q(s)e*T) replaces 1 /(1 — e*T) resulting in
the closed-loop system shown in Fig.9. Furthermore, if
Q(s) =1/(1 + es), then the relationship between v (t) and e (t) is

e(t)=v(t)—v(t—T)+ev(t). (5)

a?—»Q(s)/(l—Q(s)e")—» G(s) >

Figure: Periodic signal tracking of an FRC system.
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Filtered Repetitive Control Systems Subject to T-Periodic

NIEGELS

@ If the closed-loop system without external signals is exponentially
stable, then, when the system is driven by a periodic signal, it is easy
to see that v (t) and e (t) will both tend to periodic signals as t — oc.

@ Because of the relationship (5), it can be concluded that
e(t) —ev(t) — 0. This implies that the tracking error can be
adjusted by the filter Q (s) or say €. Moreover, if v (t) is bounded in t

uniformly with respect to (w.r.t) e as e — 0, then lim e(t,e) =0.
t—00,e—0

@ On the other hand, increasing € can improve the stability of the
closed-loop system.

@ Therefore, a satisfactory tradeoff between stability and tracking
performance can be achieved by using the FRC.
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Actuator-Focused RC Design Method

Quan Quan (BUAA) An Actuator-Focused Design Method November 9, 2020 19 / 43



Linear Periodic System

Consider the following linear periodic system

%(t) = A(t)x(t) + B (t)u(t) +d(t)
y(t) =CT (t)x(t) + D (t)u(t) (6)

where matrices A(t+ T) = A(t) e R™" B(t+ T) =B (t) € R™™,
C(t+T)=C(t) e R™™, and D(t+ T) =D (t) € R™™ are bounded;
x (t) € R" is the system state, u(t) € R™ is the control input,

d € C% ([0,00),R™) is a T-periodic disturbance. The objective of the
control input u is to make y (t) track a T-periodic desired signal

ya € C3([0,00) ; R™).
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Linear Periodic System

For the system (6), similar to equation (5), an FRC is taken in the form as

Av(t)=—v(t)+(Im—aA)v(t—T)+Li(t)e(t)
u(t) = L2 (t)x(t) +v (1) (7)
where e £ y4 —y, A, € R™*™ is a positive definite matrix,

a>0, Ly (t+ T)=Lyi(t) is nonsingular and Lp (t + T) = La(t).
Moreover, L; (t) and L, (t) are bounded. Then

y(t) = (CT(t) +D(t) L2(t)) x(t)+ D (t)v (t).

Next, by combining the system (6) and FRC (7), the resulting closed-loop
system is written as follows

Ez(t)=A,(t)z(t)+ A, _7z(t —T)+ B, (t)w(t). (8)
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Linear Periodic System

Consider a general perturbed time-delay system
x(t) =f(t,xe,w),t >ty 9)

with x¢, (s) = ¢ (s), s € [-7,0], 7 € Ry, where x(t) € R", w(t) € R™ is
a piecewise continuous and bounded perturbation. The function

f: [to,00) x C([-7,0],R") x R™ — R" is supposed to be continuous and
takes bounded sets into bounded sets. Here, let initial time tg = 0 for
simplicity.

For (9), suppose (i) f(t,x:,w(t)) =Ff(t+ T,x,,w(t+ T)), (ii)

f (t,x¢, w) satisfies a local Lipschitz condition in x;, (iii) x(t 4+ T) is a
solution of (9) whenever x (t) is a solution of (9). If solutions of (9) are
uniformly bounded and uniformly ultimately bounded, then (9) has a
T-periodic solution.
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Linear Periodic System

Suppose that the solution z (t) = 0 of the differential equation

Ez(t)=A.(t)z(t)+A,_7z(t—T) (10)

is globally exponentially stable. Then the resulting closed-loop system in
(8) has a unique globally exponentially stable T-periodic solution z*.

| \

Theorem 9.2

Suppose that (10) is globally exponentially stable. Then, the resulting
closed-loop system in (8) has a T-periodic solution z* = [v*T x*T]T.
Furthermore,

lell, < sup [[Li* (&) Acl| ([vll, + alv]l,)-
te[0,T]

If z(t) =0 in (10) is globally exponentially stable uniformly w.r.t A, as
|Ac|| — 0, then lim le(t,Ad)ll, =0.

~ || A
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Linear Periodic System

Proof: By Lemma 9.2, the resulting closed-loop system in (8) has a
unique globally exponentially stable T-periodic solution z*. By using (7),
it follows that

Li(t)e(t) =Av(t)+v(t)— (1 —aA)v(t—T).
Taking ||-||, on both sides of the equation above yields
lefl, = tim sup LT () Ac (¥ (2) +av (£ = T)) + LT (£) (v (t) — v (t = T))|

< sup [ILt (8) Al (1]l + aflvll,)-
€[0,7]

If (10) is globally exponentially stable uniformly w.r.t A, as ||A.|| — 0,
then ||V||, 4+ a||v||, is bounded uniformly w.r.t A, as ||A.|| — 0.
Consequently, ||Ac|| (|||, + c«||v||,) = 0 as ||Ac|| = 0. This implies that
lle(t,A)|l, — 0as ||A — 0. O
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Linear Periodic System

Theorem 9.3

If there exist matrices 0 < P =PT ¢ R™", 0 < Q= QT € R™m,
A1 € Ry such that

0<PE+E'P (11)
PA,(t) + Al (t)P+Q PAa_T]

; < —Ailpim 12
[ Al P -Q 1y (12)

then z(t) = 0 in (10) is globally exponentially stable when 0 < A..
Furthermore, if there exists A\, € R such that

sup ||t + LD ()7 <1, [8 L ] R
t€[0,T] 2lntm

then z(t) = 0 in (10) is globally exponentially stable when A, = 0.

4
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General Nonlinear System

In the following, let us consider a general perturbed nonlinear system

x = f(t,x,u,d)
y =g(xu) (13)

where f : [0,00) X R” x R x R™ - R" g: R" x R — R", and
f(t,x,u,d(t))=f(t+ T,x,u,d(t+ T)); x(t) € R" is the system state,
u(t) € R™ is the control input, d € C% ([0,00) ,R™) is the T-periodic
disturbance. The objective of the control input u is to make y (t) track
T-periodic desired signal yq € C% ([0, 00) ; R™).
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General Nonlinear System

For the system (13), similar to (5), an FRC is taken in the form as

Av(t)=—v(t)+(1—aA)v(t—T)+h(t,e)
u(t) = ust (x(8)) + v () (14)

where e £ y4 —y, A, € R™*™ is a positive definite matrix, o > 0,

h:R™ xR™ — R™ is a continuous function, and ug : R” — R™ is a state
feedback law employed to stabilize the state of the considered plant (13).
The functions h (-) and ug () are both locally Lipschitz. On the other
hand, the continuous function v represents a feedforward input which will
drive the output y of (13) to track the given desired trajectory yq.
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General Nonlinear System

Next, the resulting closed-loop system is written as follows
Ez =f,(t,z:,w) (15)
where

z= [ vl xT ]T,w: [ yI d’ ]T
E= diag(Aaln)vy :g(x7 Ust (x)+V)
—v+(1-aA)v(t—T)—h(t,e)

Fa(t,2e,w) = f(t,x,us () + v,d)
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General Nonlinear System

Theorem 9.4

Suppose (i) the solutions of the resulting closed-loop system in (15) are
uniformly bounded and uniformly ultimately bounded; (ii) h(t,e) — 0
implies @ — 0. Then the resulting closed-loop system in (15) has a
T-periodic solution z* = [v*T x*T|T. Furthermore, if

Ez. = f,(t,z} + zet, W) — o (t, 27, W) (16)

is locally (globally) exponentially stable, then the T-periodic solution z* is
locally (globally) exponentially stable and

Ih (2, e)lls < [|A] (¥, + e livil.)

holds locally (globally), where z. = z — z*. Furthermore, if
IV (t,Ac)|l, and [|v (t,Ac)|, are bounded in t uniformly w.r.t A, as
|Ac|| — 0, then lim lle(t,Ac)ll, = 0 locally (globally).

t—00,||Ac||—0

v
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General Nonlinear System

@ The major idea of the actuator-focused RC design is to make h (¢, e)
as the input of the internal model, i.e.
Av(t)=—-v(t)+ (1L —aA)v(t— T)+h(t,e). If the closed-loop
system tends to equilibrium, then the tracking error can be analyzed
according to the RC itself. This is based on the actuator-focused
viewpoint.

@ The major advantage of the proposed actuator-focused RC design is
to avoid the derivation of error dynamics. This facilitates the tracking
controller design.

@ The designed controller is applied not only to the rejection problem
but also to the tracking problem. Through incorporating the internal
model into the closed-loop system, it is only necessary to ensure that
the latter is uniformly bounded and uniformly ultimately bounded.
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Numerical Examples
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Numerical Examples

(1) A Linear Periodic System
Consider the following linear periodic system

x(t) = [ _1_8.55int _2_1cost }X(f)+ [ 0'5?“ } u(t) + [ sin(i?—i— 1) }

y()=[1 cost |x(t)+u(t). (17)

The objective is to design u to drive the signal y (t) — yq (t) — 0, where
y4 (t) = sint for simplicity. For the system above, according to FRC (7),
design

v(t)=v(t—T)+Li(ya(t) -y (1)
u(t)=v(t),v(s)=0,5€[-T,0] (18)

where L; = 6.
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Numerical Examples

By the actuator-focused viewpoint, the control form (18) is to establish an
input-output relation as follows
1
ya(t) =y () = - (v() —v(t=T)),
Since v approaches a T-periodic signal, it can be concluded that
ya(t) —y(t) > 0ast— oo.

— = Desied Trajectory y,{)
— Output Trajectory y(1)

Figure: Linear periodic system tracking
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A Minimum-Phase Nonlinear System

The dynamics of an m-degree-of-freedom manipulator are described by the
following differential equation

D(q)d+C(9,4)4+G(q)=u (19)

where q € R denotes the vector of generalized displacements in robot
co-ordinates, u € R denotes the vector of generalized control input forces
in robot coordinates; D (q) € R™*™ is the manipulator inertial matrix,
C(q,q) € R™*™ is the vector of centripetal and Coriolis torques and

G (q) € R™ is the vector of gravitational torques. It is assumed that both
g and q are available from measurements. Because of no internal
dynamics, the system (19) is a minimum-phase nonlinear system. Two
common assumptions in the following are often made on the system (19).
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A Minimum-Phase Nonlinear System

(A1) The inertial matrix D (q) is symmetric, uniformly positive definite
and bounded, i.e.,

0<Aplm <D(q) < Aplm,Vq € R™ (20)

where Ap, Ap € R_+.
(A2) The matrix D (q) — 2C(q, q) is skew-symmetric, hence

x' (D (q) —2C (q,('])) x=0,Vx € R".

For a given desired trajectory qq € C31 ([0, 00) ,R™), the controller u is
designed to make q track qq. Define a new state x as follows

Xx=q+pq
where p € R,
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A Minimum-Phase Nonlinear System

According to (14), a control law u is taken in the form as

ev(t) = —v(t)+ (1 —ae)v(t—T)+ k(4 + pas) —x) ()
u(t) = v (t) = Mx(t) + G(q(t)) —uD(a(t))q(t) — uC (Q(f)’él(f)gll()f)

where v(s) =0,s € [-T,0],0 < M = MT € R™™ is positive definite
matrix and k € Ry. Substituting the controller (21) into (19) results in

ev(t) = —v(t)+ (1 —ae)v(t—T)+ k((aa + pad) —x) (t)

x(t) = -D7 (a(t)) (C(a(t),a(t)) + M(t))x(t) + D~ (Q(t))V((t;é)
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A Minimum-Phase Nonlinear System

The closed-loop system (22) can be rewritten in the form of (15) with

z=[vT x" ], E=diag(clm,)
w=[x] 0] xq=dq+ pag (23)
£, (£, 20, w) = E-1 —v(t) + (1= ae)v(t = T)+ k((da + nas) - x) (1)

—D~(a (1) (C(a(t),a(t) +M)x(t) + D~ (a (1)) v (t)

Suppose (i) Assumptions (A1)-(A2) hold, (i) 0 < ae < 1,¢,a, k € Ry.
Then the solutions of the closed-loop system (15) with (23) are uniformly
bounded and uniformly ultimately bounded.
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A Nonminimum-Phase Nonlinear System

Consider the following nonlinear system

n=sinn+¢{+d,
E=u+d (24)
y=§

where 1 (t),£(t),y (t) € R, d,, de € C3([0,00) ,R™) are T-periodic
disturbances. Since zero dynamics 1 = sin7 is unstable, the system (24) is
a nonminimum-phase nonlinear system. The control is required not only to
cause y to track yyg, but also to make the internal dynamics bounded.
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A Nonminimum-Phase Nonlinear System

Compared with the existing design, the proposed design method will
simplify the controller design. According to (14), a control law u is taken
in the form as

ev(t)=—v(t)+ (1 —ae)v(t—T)+k(ya—y) ()
u(t) = —(qu +cosn) (=qun + 2) (t) — pz (t) — qn (t) + v (¢)  (25)

where v(s) =0,s € [-T,0], v,a,¢,k,q1,q2,p € R and
z =&+ qin + sinn. Substituting the controller (25) into (24) results in
ev(t)=—v(t)+ (1 —ae)v(t—T)—k(z—qgin—sinn)(t) + kyd (t)
1(t) = —qun (t) + z(t) + dy (1)
z(t) = —kz(t) — gan(t) + v (t) + de (t) + dy (t) (g1 + cosn) (t) . (26)

Quan Quan (BUAA) An Actuator-Focused Design Method November 9, 2020 39 /43



A Nonminimum-Phase Nonlinear System

From the simulation, v approaches a T-periodic solution, then

(vd —Y)(t)—i(\'/—l—av)(t) — 0.

0

. . . . . .
o 10 20 30 40 50 60
t (sec)

Figure: Periodic signal tracking of an FRC system.
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@ A new viewpoint, namely actuator-focused design, on IMP is
proposed. It can be used to explain how internal models work in the
time domain.

@ Guided by the actuator-focused viewpoint, the actuator-focused RC
design method is further proposed for periodic signal tracking.

@ In the controller design, the stability of the closed-loop system needs
to be considered rather than that of the error dynamics.

@ In order to demonstrate its effectiveness, the proposed design method
is applied to RC problems for a linear periodic system (time-varying),
a minimum-phase nonlinear system and a nonminimum-phase
nonlinear system.
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Exercise

Fill the steps of the derivation of Lemma 9.2.
Fill the steps of the derivation of Theorem 9.2

°
°

@ Fill the steps of the derivation of Theorem 9.3
@ Fill the steps of the derivation of Theorem 9.4.
°

Fill the steps of the derivation of Theorem 9.5
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All course source can be downloaded at
http://rfly.buaa.edu.cn/publications.html. For More, please refer to the
book:

Quan Quan
Kai-Yuan Cai

Filtered
Repetitive

Control
with Nonlinear
Systems

‘a Springer

Thank you!
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