
Repetitive Control for Nonlinear Systems

Lesson 09 An Actuator-Focused Design Method

Quan Quan

Beihang University

qq buaa@buaa.edu.cn

November 9, 2020

Quan Quan (BUAA) An Actuator-Focused Design Method November 9, 2020 1 / 43



Preface

What is actuator-focused viewpoint and how is it applied to repetitive
control problems?
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Motivation and Objective
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Figure: Tracking problem and rejection problem.

In Fig.1(a), the transfer function from r to e (corresponding to r and e
respectively) is written as follows

e (s) =
1

1− C (s)P (s)
r (s) .

In Fig.1(b), the transfer function from r to e is written as follows

e (s) =
1

1− C (s)P (s)
P (s) r (s) .
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If all poles of P (s) lie in the left s-plane, then the controller C only needs
to ensure that all poles of 1 /(1− C (s)P (s)) lie in the left s-plane and
one closed-loop zero of 1 /(1− C (s)P (s)) is 0 so that the closed-loop
zero can cancel the unstable pole of r (s) = a /s , where a is constant.
According to IMP, the controller C should contain an integral term 1 /s .
Therefore, both tracking problem and rejection problem can be reduced to
a stabilization problem.
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Motivation and Objective

Objective. By taking these into account, a new viewpoint on IMP is
proposed to support general periodic signal tracking of nonlinear systems
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Figure: Comparison between two design ideas.
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Actuator-Focused Viewpoint on IMP
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Three Examples

(1) Step Signals

( )e s ( )v s ( )y s( )dy s
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Figure: Step signal tracking.

Cancelation Viewpoint: As shown in Fig.4, the transfer function from
the desired signal to the tracking error is written as follows

e (s) =
1

1 + 1
s
G (s)

yd (s) =
1

s + G (s)

(

s
1

s

)

=
1

s + G (s)
.

Then it only requires to verify whether or not the roots of the equation
s + G (s) = 0 are all in the left s-plane. If all roots are in the left s-plane,
then the tracking error tends to zero as t → ∞. Therefore, the tracking
problem has been reduced to a stability problem of the closed-loop system.
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Three Examples

Actuator-Focused Viewpoint: This new viewpoint will give a new
explanation on IMP without using transfer functions. Assume that the
minimal realization of y = G (s) v is

ẋ = Ax+ bv

y = cTx+ dv

where G (s) = cT (sI− A)−1 b+ d . As shown in Fig.4, the resulting
closed-loop system becomes

[
ẋ
v̇

]

︸ ︷︷ ︸

ż

=

[
A b

−cT −d

]

︸ ︷︷ ︸

Aa

[
x
v

]

︸ ︷︷ ︸

z

+

[
0
yd

]

︸ ︷︷ ︸

w

. (1)
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Three Examples

The solution is

z (t) = eAatz (0) +

∫ t

0
eAa(t−s)wds

where w is constant. If the closed-loop system is stable, then the matrix
Aa is stable, namely the real parts of eigenvalues of Aa are negative. As a
result, z (t) will tend to a constant vector as t → ∞. Consequently, v (t)
and e (t) = yd − cTx will tend to constants v∗ and e∗ as t → ∞,

respectively. It can be claimed that e∗ = 0. Otherwise, because of the
integral term, one has

v̇ (t) = e (t) (2)

v (t) will tend to infinity. Therefore, to confirm that the tracking error
tends to zero as t → ∞, it is only required to verify whether or not the
closed-loop system without external signals is exponentially stable. This
implies that the tracking problem has been reduced to a stability problem.
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Three Examples

(2)Sine Signals

( )e s ( )v s ( )y s( )dy s

( )2 21 s w+ ( )G s
+

-

Figure: Sine signal tracking

Cancelation Viewpoint: As shown in Fig.6, the transfer function from
the desired signal to the tracking error is written as follows

e (s) =
1

1 + 1
s2+ω2G (s)

yd (s)

=
1

s2 + ω2 + G (s)

(
(
s2 + ω2

) b1s + b0

s2 + ω2

)

=
b1s + b0

s2 + ω2 + G (s)

b s+b
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Three Examples

(2)Sine Signals
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Figure: Sine signal tracking

where the Laplace transformation model of a0 sin (ωt + ϕ0) is
b1s+b0
s2+ω2 .

Then, it is only required to verify whether or not the roots of the equation
s2 + ω2 + G (s) = 0 are all in the left s-plane, namely whether or not the
closed-loop system is stable. Therefore, the tracking problem has been
reduced to a stability problem of the closed-loop system.
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Three Examples

Actuator-Focused Viewpoint: Because of the term 1
s2+ω2 , the

relationship between v (t) and e (t) can be written as

e (t) = v̈ (t) + ω2v (t) . (3)

If the closed-loop system without external signals is exponentially stable,
then, when the system is driven by an external signal in the form of
a0 sin (ωt + ϕ0), it is easy to see that v (t) and e (t) will tend to signals in
the form of a sin (ωt + ϕ), where a and ϕ are constants. Consequently,

e (t) → (a sin (ωt + ϕ))′′ + ω2 (a sin (ωt + ϕ)) ≡ 0

as t → ∞ by (3) no matter what a and ϕ are. Therefore, to confirm that
the tracking error tends to zero as t → ∞ , it only requires verifying
whether or not the closed-loop system without external signals is
exponentially stable. This implies that the tracking problem has been
reduced to a stability problem.
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Three Examples

(3)General T -Periodic Signal

( )e s ( )v s ( )y s( )dy s
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Figure: Periodic signal tracking of an RC system.

Cancelation Viewpoint: Similarly, as shown in Fig.8, the transfer
function from the desired signal to the error is written as follows

e (s) =
1

1 + 1
1−e−sT G (s)

yd (s)

=
1

1− e−sT + G (s)

(
(
1− e−sT

) 1

1− e−sT

)

=
1

1− e−sT + G (s)
.
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Three Examples

(3)General T -Periodic Signal
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Figure: Periodic signal tracking of an RC system.

Then, it is only required to verify whether or not the roots of the equation
1− e−sT + G (s) = 0 are all in the left s-plane. Therefore, the tracking
problem has been reduced to a stability problem of the closed-loop system.
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Three Examples

Actuator-Focused Viewpoint: Because of the term 1
/(

1− e−sT
)
, the

relationship between v (t) and e (t) can be written as

e (t) = v (t)− v (t − T ) . (4)

If the closed-loop system without external signals is exponentially stable,
then, by the solution of v (t) and e (t), it can be proven that v (t) and
e (t) will both tend to T -periodic signals when the system is driven by a
T -periodic signal. Consequently, it can be concluded that e (t) → 0 as
t → ∞ by (4). Therefore, to examine the tracking error tending to zero as
t → ∞, it only requires verifying whether or not the closed-loop system
without external signals is exponentially stable. This implies that the
tracking problem has been reduced to a stability problem.
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Filtered Repetitive Control Systems Subject to T -Periodic

Signals

The model Q (s)
/(

1− Q (s) e−sT
)
replaces 1

/(
1− e−sT

)
resulting in

the closed-loop system shown in Fig.9. Furthermore, if
Q (s) = 1 /(1 + ǫs) , then the relationship between v (t) and e (t) is

e (t) = v (t)− v (t − T ) + ǫv̇ (t) . (5)

( )e s ( )v s ( )y s( )dy s

( )G s( ) ( )( )1 Ts
Q s Q s e

--

-

+

Figure: Periodic signal tracking of an FRC system.
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Filtered Repetitive Control Systems Subject to T -Periodic

Signals

If the closed-loop system without external signals is exponentially
stable, then, when the system is driven by a periodic signal, it is easy
to see that v (t) and e (t) will both tend to periodic signals as t → ∞.

Because of the relationship (5), it can be concluded that
e (t)− ǫv̇ (t) → 0. This implies that the tracking error can be
adjusted by the filter Q (s) or say ǫ. Moreover, if v̇ (t) is bounded in t

uniformly with respect to (w.r.t) ǫ as ǫ → 0, then lim
t→∞,ǫ→0

e (t, ǫ) = 0.

On the other hand, increasing ǫ can improve the stability of the
closed-loop system.

Therefore, a satisfactory tradeoff between stability and tracking
performance can be achieved by using the FRC.
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Actuator-Focused RC Design Method
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Linear Periodic System

Consider the following linear periodic system

ẋ (t) = A (t) x (t) + B (t)u (t) + d (t)

y (t) = CT (t) x (t) +D (t)u (t) (6)

where matrices A (t + T ) = A (t) ∈ R
n×n, B (t + T ) = B (t) ∈ R

n×m,

C (t + T ) = C (t) ∈ R
n×m, and D (t + T ) = D (t) ∈ R

m×m are bounded;
x (t) ∈ R

n is the system state, u (t) ∈ R
m is the control input,

d ∈ C0
T ([0,∞) ,Rm) is a T -periodic disturbance. The objective of the

control input u is to make y (t) track a T -periodic desired signal
yd ∈ C0

T ([0,∞) ;Rm) .
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Linear Periodic System

For the system (6), similar to equation (5), an FRC is taken in the form as

Aǫv̇ (t) = −v (t) + (Im − αAǫ) v (t − T ) + L1 (t) e (t)

u (t) = L2 (t) x (t) + v (t) (7)

where e , yd − y, Aǫ ∈ R
m×m is a positive definite matrix,

α > 0, L1 (t + T ) = L1 (t) is nonsingular and L2 (t + T ) = L2 (t) .
Moreover, L1 (t) and L2 (t) are bounded. Then

y (t) =
(

CT (t) +D (t)L2 (t)
)

x (t) +D (t) v (t) .

Next, by combining the system (6) and FRC (7), the resulting closed-loop
system is written as follows

Eż (t) = Aa (t) z (t) + Aa,−Tz (t − T ) + Ba (t)w (t) . (8)
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Linear Periodic System

Consider a general perturbed time-delay system

ẋ (t) = f (t, xt ,w) , t ≥ t0 (9)

with xt0 (s) = φ (s) , s ∈ [−τ, 0] , τ ∈ R+, where x (t) ∈ R
n, w (t) ∈ R

m is
a piecewise continuous and bounded perturbation. The function
f : [t0,∞)× C ([−τ, 0] ,Rn)× R

m → R
n is supposed to be continuous and

takes bounded sets into bounded sets. Here, let initial time t0 = 0 for
simplicity.

Lemma 9.1

For (9), suppose (i) f (t, xt ,w (t)) = f (t + T , xt ,w (t + T )) , (ii)
f (t, xt ,w) satisfies a local Lipschitz condition in xt , (iii) x (t + T ) is a
solution of (9) whenever x (t) is a solution of (9). If solutions of (9) are
uniformly bounded and uniformly ultimately bounded, then (9) has a
T -periodic solution.
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Linear Periodic System

Lemma 9.2

Suppose that the solution z (t) = 0 of the differential equation

Eż (t) = Aa (t) z (t) + Aa,−Tz (t − T ) (10)

is globally exponentially stable. Then the resulting closed-loop system in
(8) has a unique globally exponentially stable T -periodic solution z∗.

Theorem 9.2

Suppose that (10) is globally exponentially stable. Then, the resulting
closed-loop system in (8) has a T -periodic solution z∗ = [v∗T x∗T]T.
Furthermore,

‖e‖a ≤ sup
t∈[0,T ]

∥
∥L−1

1 (t)Aǫ

∥
∥ (‖v̇‖a + α ‖v‖a) .

If z (t) = 0 in (10) is globally exponentially stable uniformly w.r.t Aǫ as
‖Aǫ‖ → 0, then lim

t→∞,‖Aǫ‖→0
‖e (t,Aǫ)‖a = 0.
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Linear Periodic System

Proof : By Lemma 9.2, the resulting closed-loop system in (8) has a
unique globally exponentially stable T -periodic solution z∗. By using (7),
it follows that

L1 (t) e (t) = Aǫv̇ (t) + v (t)− (1− αAǫ) v (t − T ) .

Taking ‖·‖a on both sides of the equation above yields

‖e‖a = lim sup
t→∞

∥
∥L−1

1 (t)Aǫ (v̇ (t) + αv (t − T )) + L−1
1 (t) (v (t)− v (t − T ))

∥
∥

≤ sup
t∈[0,T ]

∥
∥L−1

1 (t)Aǫ

∥
∥ (‖v̇‖a + α ‖v‖a) .

If (10) is globally exponentially stable uniformly w.r.t Aǫ as ‖Aǫ‖ → 0,
then ‖v̇‖a + α ‖v‖a is bounded uniformly w.r.t Aǫ as ‖Aǫ‖ → 0.
Consequently, ‖Aǫ‖ (‖v̇‖a + α ‖v‖a) → 0 as ‖Aǫ‖ → 0. This implies that
‖e (t,Aǫ)‖a → 0 as ‖Aǫ‖ → 0. �

Quan Quan (BUAA) An Actuator-Focused Design Method November 9, 2020 24 / 43



Linear Periodic System

Theorem 9.3

If there exist matrices 0 < P = PT ∈ R
n×n, 0 < Q = QT ∈ R

m×m,

λ1 ∈ R+ such that

0 < PE+ ETP (11)
[
PAa (t) + AT

a (t)P+Q PAa,−T

AT
a,−TP −Q

]

≤ −λ1In+m (12)

then z (t) = 0 in (10) is globally exponentially stable when 0 < Aǫ.
Furthermore, if there exists λ2 ∈ R+ such that

sup
t∈[0,T ]

∥
∥
∥(Im + L (t)D (t))−1

∥
∥
∥ < 1,

[
0 0
0 λ2In+m

]

≤ PE+ ETP

then z (t) = 0 in (10) is globally exponentially stable when Aǫ = 0.
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General Nonlinear System

In the following, let us consider a general perturbed nonlinear system

ẋ = f (t, x,u,d)

y = g (x,u) (13)

where f : [0,∞)× R
n × R

m ×R
m → R

n, g : Rn × R
m → R

m, and
f (t, x,u,d (t)) = f (t + T , x,u,d (t + T )); x (t) ∈ R

n is the system state,
u (t) ∈ R

m is the control input, d ∈ C0
T ([0,∞) ,Rm) is the T -periodic

disturbance. The objective of the control input u is to make y (t) track
T -periodic desired signal yd ∈ C0

T ([0,∞) ;Rm) .
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General Nonlinear System

For the system (13), similar to (5), an FRC is taken in the form as

Aǫv̇ (t) = −v (t) + (1− αAǫ) v (t − T ) + h (t, e)

u (t) = ust (x (t)) + v (t) (14)

where e , yd − y, Aǫ ∈ R
m×m is a positive definite matrix, α > 0,

h : Rm ×R
m → R

m is a continuous function, and ust : R
n → R

m is a state
feedback law employed to stabilize the state of the considered plant (13).
The functions h (·) and ust (·) are both locally Lipschitz. On the other
hand, the continuous function v represents a feedforward input which will
drive the output y of (13) to track the given desired trajectory yd.
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General Nonlinear System

Next, the resulting closed-loop system is written as follows

Eż = fa (t, zt ,w) (15)

where

z =
[
vT xT

]T
,w =

[
yTd dT

]T

E = diag (Aǫ, In) , y = g (x,ust (x) + v)

fa (t, zt ,w) =

[
−v + (1− αAǫ) v (t − T )− h (t, e)

f (t, x,ust (x) + v,d)

]

.
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General Nonlinear System

Theorem 9.4

Suppose (i) the solutions of the resulting closed-loop system in (15) are
uniformly bounded and uniformly ultimately bounded; (ii) h (t, e) → 0
implies e → 0. Then the resulting closed-loop system in (15) has a
T -periodic solution z∗ = [v∗T x∗T]T. Furthermore, if

Eże = fa (t, z
∗
t + zet ,w)− fa (t, z

∗
t ,w) (16)

is locally (globally) exponentially stable, then the T -periodic solution z∗ is
locally (globally) exponentially stable and

‖h (t, e)‖a ≤ ‖Aǫ‖ (‖v̇‖a + α ‖v‖a)

holds locally (globally), where ze , z− z∗. Furthermore, if
‖v̇ (t,Aǫ)‖a and ‖v (t,Aǫ)‖a are bounded in t uniformly w.r.t Aǫ as
‖Aǫ‖ → 0, then lim

t→∞,‖Aǫ‖→0
‖e (t,Aǫ)‖a = 0 locally (globally).
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General Nonlinear System

The major idea of the actuator-focused RC design is to make h (t, e)
as the input of the internal model, i.e.
Aǫv̇ (t) = −v (t) + (1− αAǫ) v (t − T ) + h (t, e) . If the closed-loop
system tends to equilibrium, then the tracking error can be analyzed
according to the RC itself. This is based on the actuator-focused
viewpoint.

The major advantage of the proposed actuator-focused RC design is
to avoid the derivation of error dynamics. This facilitates the tracking
controller design.

The designed controller is applied not only to the rejection problem
but also to the tracking problem. Through incorporating the internal
model into the closed-loop system, it is only necessary to ensure that
the latter is uniformly bounded and uniformly ultimately bounded.
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Numerical Examples
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Numerical Examples

(1) A Linear Periodic System
Consider the following linear periodic system

ẋ (t) =

[
0 1

−1− 0.5 sin t −2− cos t

]

x (t) +

[
0.5 sin t

1

]

u (t) +

[
0

sin (t + 1)

]

y (t) =
[
1 cos t

]
x (t) + u (t) . (17)

The objective is to design u to drive the signal y (t)− yd (t) → 0, where
yd (t) = sin t for simplicity. For the system above, according to FRC (7),
design

v (t) = v (t − T ) + L1 (yd (t)− y (t))

u (t) = v (t) , v (s) = 0, s ∈ [−T , 0] (18)

where L1 = 6.
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Numerical Examples

By the actuator-focused viewpoint, the control form (18) is to establish an
input-output relation as follows

yd (t)− y (t) =
1

L1
(v (t)− v (t − T )) .

Since v approaches a T -periodic signal, it can be concluded that
yd (t)− y (t) → 0 as t → ∞.

0 2 4 6 8 10 12 14 16 18 20
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−0.2

0

0.2
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Output Trajectory y(t)

Figure: Linear periodic system tracking
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A Minimum-Phase Nonlinear System

The dynamics of an m-degree-of-freedom manipulator are described by the
following differential equation

D (q) q̈+ C (q, q̇) q̇+ G (q) = u (19)

where q ∈ R
m denotes the vector of generalized displacements in robot

co-ordinates, u ∈ R
m denotes the vector of generalized control input forces

in robot coordinates; D (q) ∈ R
m×m is the manipulator inertial matrix,

C (q, q̇) ∈ R
m×m is the vector of centripetal and Coriolis torques and

G (q) ∈ R
m is the vector of gravitational torques. It is assumed that both

q and q̇ are available from measurements. Because of no internal
dynamics, the system (19) is a minimum-phase nonlinear system. Two
common assumptions in the following are often made on the system (19).
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A Minimum-Phase Nonlinear System

(A1) The inertial matrix D (q) is symmetric, uniformly positive definite
and bounded, i.e.,

0 < λD Im ≤ D (q) ≤ λ̄D Im,∀q ∈ R
m (20)

where λD , λ̄D ∈ R+.
(A2) The matrix Ḋ (q)− 2C (q, q̇) is skew-symmetric, hence

xT
(

Ḋ (q)− 2C (q, q̇)
)

x = 0,∀x ∈ R
m.

For a given desired trajectory qd ∈ C2
PT ([0,∞) ,Rm), the controller u is

designed to make q track qd. Define a new state x as follows

x = q̇+ µq

where µ ∈ R+.
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A Minimum-Phase Nonlinear System

According to (14), a control law u is taken in the form as

ǫv̇ (t) = −v (t) + (1− αǫ) v (t − T ) + k ((q̇d + µqd)− x) (t)

u (t) = v (t)−Mx (t) + G (q (t))− µD (q (t)) q̇ (t)− µC (q (t) , q̇ (t))q (t)
(21)

where v (s) = 0, s ∈ [−T , 0] , 0 < M = MT ∈ R
m×m is positive definite

matrix and k ∈ R+. Substituting the controller (21) into (19) results in

ǫv̇ (t) = −v (t) + (1− αǫ) v (t − T ) + k ((q̇d + µqd)− x) (t)

ẋ (t) = −D−1 (q (t)) (C (q (t) , q̇ (t)) +M (t)) x (t) +D−1 (q (t)) v (t) .
(22)
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A Minimum-Phase Nonlinear System

The closed-loop system (22) can be rewritten in the form of (15) with

z =
[
vT xT

]T
,E = diag (ǫIm, In)

w =
[
xTd 0

]T
, xd = q̇d + µqd (23)

fa (t, zt ,w) = E−1

[
−v (t) + (1− αǫ) v (t − T ) + k ((q̇d + µqd)− x) (t)

−D−1 (q (t)) (C (q (t) , q̇ (t)) +M) x (t) +D−1 (q (t)) v (t)

]

.

Theorem 5

Suppose (i) Assumptions (A1)-(A2) hold, (ii) 0 < αǫ < 1, ǫ, α, k ∈ R+.

Then the solutions of the closed-loop system (15) with (23) are uniformly
bounded and uniformly ultimately bounded.
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A Nonminimum-Phase Nonlinear System

Consider the following nonlinear system

η̇ = sin η + ξ + dη

ξ̇ = u + dξ (24)

y = ξ

where η (t) , ξ (t) , y (t) ∈ R, dη, dξ ∈ C0
T ([0,∞) ,Rm) are T -periodic

disturbances. Since zero dynamics η̇ = sin η is unstable, the system (24) is
a nonminimum-phase nonlinear system. The control is required not only to
cause y to track yd, but also to make the internal dynamics bounded.

Quan Quan (BUAA) An Actuator-Focused Design Method November 9, 2020 38 / 43



A Nonminimum-Phase Nonlinear System

Compared with the existing design, the proposed design method will
simplify the controller design. According to (14), a control law u is taken
in the form as

ǫv̇ (t) = −v (t) + (1− αǫ) v (t − T ) + k (yd − y) (t)

u (t) = − (q1 + cos η) (−q1η + z) (t)− ρz (t)− q2η (t) + v (t) (25)

where v (s) = 0, s ∈ [−T , 0] , v , α, ǫ, k , q1, q2, ρ ∈ R and
z = ξ + q1η + sin η. Substituting the controller (25) into (24) results in

ǫv̇ (t) = −v (t) + (1− αǫ) v (t − T )− k (z − q1η − sin η) (t) + kyd (t)

η̇ (t) = −q1η (t) + z (t) + dη (t)

ż (t) = −kz (t)− q2η (t) + v (t) + dξ (t) + dη (t) (q1 + cos η) (t) . (26)
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A Nonminimum-Phase Nonlinear System

From the simulation, v approaches a T -periodic solution, then

(yd − y) (t)−
ǫ

k
(v̇ + αv) (t) → 0.
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Figure: Periodic signal tracking of an FRC system.
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Summary

A new viewpoint, namely actuator-focused design, on IMP is
proposed. It can be used to explain how internal models work in the
time domain.

Guided by the actuator-focused viewpoint, the actuator-focused RC
design method is further proposed for periodic signal tracking.

In the controller design, the stability of the closed-loop system needs
to be considered rather than that of the error dynamics.

In order to demonstrate its effectiveness, the proposed design method
is applied to RC problems for a linear periodic system (time-varying),
a minimum-phase nonlinear system and a nonminimum-phase
nonlinear system.
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Exercise

Fill the steps of the derivation of Lemma 9.2.

Fill the steps of the derivation of Theorem 9.2

Fill the steps of the derivation of Theorem 9.3

Fill the steps of the derivation of Theorem 9.4.

Fill the steps of the derivation of Theorem 9.5
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All course source can be downloaded at
http://rfly.buaa.edu.cn/publications.html. For More, please refer to the
book:

Thank you!
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