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Robust Pose Estimation for Multirotor UAVs
Using Off-board Monocular Vision
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Abstract—This paper deals with the problem of pose
estimation (or motion estimation) for multirotor unmanned
aerial vehicles (UAVs) by using only an off-board camera.
An extended Kalman filter (EKF) is often adopted to solve
this problem. However, the accuracy and robustness of
EKF are limited partly by the usage of an existing linear
constant-velocity process model applicable to many rigid
objects. For such a reason, a nonlinear constant-velocity
process model featured with the characteristics of multiro-
tor UAVs is proposed in this paper, the superiority of which
is explained from the perspective of observability. With the
new process model and a generic camera model, a practical
EKF method suitable for conventional cameras and fish-eye
cameras is then proposed. By taking EKF implementation
into account, a general correspondence method that could
handle any number of feature points is further designed.
Simulation and real experiments show that the proposed
EKF method is more robust against noise and occlusion
than currently employed filtering methods.

Index Terms—Monocular vision, multirotor unmanned
aerial vehicle (UAV), pose estimation, process model.

I. INTRODUCTION

NOWADAYS multirotor unmanned aerial vehicles (UAVs)
are being widely used in many applications. For ex-

ample, Amazon has designed and tested a future delivery
system—Prime Air to deliver goods using multirotor UAVs
[1]. PRENAV uses a ground robot and a multirotor UAV
in coordination (ground-air cooperation) to perform industrial
inspection [2]. Accurate and reliable pose estimation is a
fundamental issue for autonomous operation of these vehicles.
Although global positioning system (GPS) is commonly-used,
it is not suitable for GPS-denied situations, such as urban
areas or inside buildings. In contrast, vision-based navigation
methods do not depend on GPS and could provide high-
precise pose within a close range. Considering that small
multirotor UAVs often feature CPUs with limited capabilities
[3], this paper focuses on the estimation of the pose of
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multirotor UAVs for visual servoing (vision-based control)
by using only an off-board monocular camera. In existing
monocular motion capture systems, such as Vicon [4] and
OptiTrack [5] in single-camera mode, marker missing (e.g.,
caused by occlusion or camera field of view (FOV)) usually
happens and accurate pose information cannot be obtained
when the number of detected markers is less than three. For
such a reason, this paper aims to solve this problem from the
following two aspects: (i) use fish-eye cameras as they can
provide images with a very large FOV (about 180◦) without
requiring external mirrors or rotating devices [6]; (ii) propose a
nonlinear constant-velocity process model with less unknowns.

In computer vision, estimating the pose of a calibrat-
ed camera from n 3D-2D point correspondences is known
as Perspective-n-Point (PnP) problem [7]. A comprehensive
overview of PnP algorithms could be found in [8] and refer-
ences therein. It is easy to transform the problem of estimating
rigid object pose into a PnP problem. Therefore, existing
pose estimation methods for rigid objects (including multirotor
UAVs) can be generally classified into three categories: linear
methods [8], [9], [10], iterative methods [11], [12], [13]
and recursive methods [14], [15], [16], [17], [18]. Linear
methods are simple and intuitive, but are sensitive to noises.
Iterative methods are more accurate and robust, but they are
computationally more intensive than linear methods and prone
to fall into local minima. Recursive methods rely on temporal
filtering methods, especially Kalman filters. These methods are
accurate, efficient and suitable for image sequence processing.
Since the measurement model is nonlinear in the system
states (determined by the camera imaging model), an extended
Kalman filter (EKF) is often adopted for visual servoing
of rigid objects (including multirotor UAVs). However, the
process model of EKF is a linear constant-velocity process
model applicable to many rigid objects [14], [15], [16], which
is not a very appropriate model for multirotor UAVs (more
markers have to be detected so that the states can be observed).
On the other hand, most of recursive methods [14], [15],
[16] are based on conventional cameras, which obey the
pinhole projection model and provide a limited FOV. But these
methods are inapplicable to fish-eye camera pose estimation
directly because fish-eye cameras can provide images with a
very large FOV (about 180◦) and the pinhole camera model
is no longer valid.

In order to solve the process modeling problem, a nonlinear
constant-velocity process model featured with the characteris-
tics of multirotor UAVs is proposed in this paper. Multirotor
UAVs are under-actuated systems with four independent inputs
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(a thrust force perpendicular to the propeller plane and three
moments) and six coordinate outputs [19]. Thus, the num-
ber of unknowns in the proposed process model, namely a
nonlinear constant-velocity model, are set to four instead of
six as in linear constant-velocity process models [14], [15],
[16]. Then, based on the new process model and a generic
camera model [20], an EKF method is proposed to fuse the
process model and off-board monocular vision information.
Thanks to the proposed process model, the robustness of
pose estimation against noise and occlusion is improved. The
minimum number of feature points observed by the camera
is reduced from three to two, which is analyzed from the
perspective of observability in this paper. Also, thanks to the
generic camera model, the proposed EKF method is suitable
for conventional cameras as well as fish-eye cameras. The
research results in this paper are helpful to improve the
robustness of single-camera motion capture systems or ground-
air cooperation systems. Additionally, the implementation of
majority vision-based EKF methods requires 3D-2D point
correspondences to be known. A correspondence algorithm
for monocular pose estimation is proposed in [11], but it fails
if less than four feature points are detected in the image (e.g.,
caused by occlusion or camera FOV). This means that EKF
cannot work in these situations. To solve the correspondence
problem, a general correspondence method combining EKF
and the algorithm in [11] is also proposed in this paper, which
could handle any number of image points.

The main contributions of this paper are: (i) A nonlinear
constant-velocity process model featured with the character-
istics of multirotor UAVs is proposed; (ii) Based on the new
process model and a generic camera model, an EKF method
for cameras equipped with generic lens is proposed; (iii)
To implement the EKF method in real systems, a general
correspondence method that could handle any number of
feature points is proposed; (iv) The proposed EKF method
is more robust against noise and occlusion than existing
filtering methods, the superiority of which is explained from
the perspective of observability.

This paper is organized as follows. Some preliminaries
and problem formulation are introduced in Section II. In
Section III, a correspondence-based EKF method and observ-
ability analysis are presented. Then the experimental results
are reported in Section IV and Section V, followed by the
conclusions in Section VI.

Following notations are adopted in this paper. Rn is Eu-
clidean space of dimension n. ∥·∥ denotes the Euclidean
vector norm or induced matrix norm. In is the identity
matrix with dimension n. 0m×n is a zero vector or a zero
matrix with dimension m × n. The gradient of the vector
function g ∈ Rm is given by ∂g (x) /∂x = [∂g (x) /∂x1

· · · ∂g (x) /∂xn ] ∈ Rm×n. diag[a1, a2, · · · , an] denotes a
diagonal matrix with a1, a2, · · · , an as its diagonal elements.
The rank of the matrix A is given by rank(A).

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Generic camera model
As shown in Fig. 1, Oc − XcYcZc denotes the camera

coordinate system and o− xy is the image coordinate system
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Fig. 1. Generic camera model [15]. The 3D point P is imaged at p by a
fish-eye camera, while it would be p′ using a pinhole camera.

(unit mm). A 3D point P = [X Y Z]
T ∈ R3 is projected to

m = [sin θ cosφ sin θ sinφ cos θ]
T on the unit hemisphere

centred at Oc. Thus, it is easy to derive that

m =
P

∥P∥
. (1)

The 3D point P is imaged at p by a fish-eye camera, while it
would be p′ by a pinhole camera.

A generic model suitable for both conventional and fish-eye
cameras is proposed as follows [20]

r(θ) = k1θ + k2θ
3 + k3θ

5 + k4θ
7 + k5θ

9 + · · · . (2)

In this paper we choose the model that contains only the five
parameters k1, k2, k3, k4, k5, as it is found that the first five
terms can approximate different projection curves. Therefore,
the image coordinates of p (or p′) in o− xy is obtained by[

x
y

]
= r(θ)

[
cosφ
sinφ

]
, (3)

where r(θ) is defined in (2), and φ is the angle between the
radial direction and the x-axis. Then the pixel coordinates
(u, v) can be derived from[

u
v

]
=

[
mu 0
0 mv

] [
x
y

]
+

[
u0

v0

]
, (4)

where (u0, v0) is the principal point, and mu,mv are the
number of pixels per unit distance in horizontal and vertical
directions, respectively. Thus, the intrinsic parameters of a
camera are (k1, k2,mu,mv, u0, v0, k3, k4, k5), which can be
obtained through camera calibration [20], [21].

B. Feature point imaging
As shown in Fig. 2, Ob − XbY bZb denotes the body

coordinate system of a multirotor UAV, Oc −XcY cZc is the
camera coordinate system, and Ow −XwY wZw is the world
coordinate system. Let (T,Θ) be the relative pose between
the body coordinate system and the world coordinate system,
where T = [X Y Z]

T is the relative position vector and
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Θ = [θ φ ϕ]
T is the relative orientation defined by the pitch,

yaw, and roll parameters. Then the transformation of Pj (the
jth feature point fixed rigidly with the multirotor UAV) from
the body coordinate system to the world coordinate system is
described as

Pw
j = T+R(Θ)Pb

j , (5)

where Pw
j =

[
Xw

j Y w
j Zw

j

]T
is the coordinate vector of

the jth feature point in the world coordinate system, Pb
j =[

Xb
j Y b

j Zb
j

]T is the coordinate vector of the jth feature point
in the body coordinate system (known beforehand), and the
rotation matrix R is given as follows

R(Θ) =

 cθcφ sϕsθcφ− cϕsφ cϕsθcφ+ sϕsφ
cθsφ sϕsθsφ+ cϕcφ cϕsθsφ− sϕcφ
−sθ sϕcθ cϕcθ

 ,

(6)
where c and s are abbreviations for cosine and sine, re-
spectively. Suppose that the transformation of Pj from the
world coordinate system to the camera coordinate system is
described as

Pc
j = Tc

w +Rc
wP

w
j , (7)

where Pc
j =

[
Xc

j Y c
j Zc

j

]T
is the coordinate vector of the jth

feature point in the camera coordinate system and Rc
w,T

c
w are

known beforehand. Based on (5) and (7), it is derived that

Pc
j = Tc

b +Rc
bP

b
j , (8)

where Tc
b = Tc

w + Rc
wT,Rc

b = Rc
wR(Θ).Then, the jth

feature point Pj is imaged at pj = [ui
j v

i
j ]
T and its coordinates

are given by (1)-(4).
If the 3D-2D feature correspondences Pj ↔ pj are known,

then the measurement model that defines the relationships
between the output measurements and the states could be
expressed as follows

zk = g (xk) + vk, (9)

where zk =
[
ui
1 vi1 . . . ui

nF
vinF

]T
k
∈ R2nF is the measure-

ment vector for nF feature points, and g (xk) ∈ R2nF can be
obtained from (8) and (1)-(4). Besides, vk is the measurement
noise vector and each element of vk is considered as indepen-
dent zero-mean Gaussian distribution with variance Ri. There-
fore, the measurement-noise-variance matrix Rk ∈ R2nF×2nF

is a diagonal matrix with diagonal elements being Ri.

Note that when Rc
w = I3,T

c
w = 03×1, the problem

discussed in this paper degenerates to that in [11]. Thus, the
problem formulation of this paper is more general. Substituting
(8) into (1)-(4) leads to two nonlinear equations with six
unknown parameters. Therefore, at least three noncollinear
points are required for pose estimation in theory. In fact it
is pointed out that the number of feature points nF satisfies
4 ≤ nF ≤ 6 in many robotic visual servoing applications [15].

cZ
cX

bY

cO

bX

bO

cY

bZ

A

B

C

D

F

a b

wY
wX

wO

wZ

jP

Fig. 2. (a) Illustration of different coordinate systems. (b) The multirotor
UAV (quadrotor) fixed with four reflective markers (reflective markers are
used as feature points in this paper).

C. Process model for multirotor UAVs

The nominal model used in this paper is a constant-velocity
motion model. The translational motion model for multirotor
UAVs [19] is described as

Ṫ = V, (10)

V̇ = R(Θ)ua− ga, (11)

where V = [Vx Vy Vz]
T ∈ R3 is the relative linear velocity

vector, g is the gravity acceleration 9.81 m/s2, a = [0 0 1]
T ∈

R3 and u ∈ R is the control input. In [19], u could be known
by using an inertial measurement unit (IMU). However, u is
unknown in this paper since only off-board vision information
is exploited (IMU information is not used in this paper). Here,
it is assumed that u ≈ g in many situations such as hovering
so that we have u = g+ε1, where ε1 is modeled as a Gaussian
noise.

Note that when multirotor UAVs are accelerating or decel-
erating, the roll and pitch could become significant, which will
absolutely cause problem for the proposed translational motion
model. However, the roll and pitch angles ϕ, θ are usually
constrained by “saturation” in the implementation process
of proportion-integration-differentiation (PID) controllers for
multirotor UAVs. For example, there are ∥ϕ∥ ≤ 0.2 rad,
∥θ∥ ≤ 0.2 rad in the real-time experiments (Section V) of this
paper. It is known from (11) that u = g/ (cos θ cosϕ) ≤ 10.21
m/s2 in order to balance the gravity. As shown in Section V,
the proposed translational motion model is still valid when
ϕ, θ are small.

As only off-board vision information is used in this paper,
the relative angular velocity W = [w1 w2 w3]

T ∈ R3 is also
unknown. Here it is assumed that W is constant during
each sample period as in [14], [15], [16]. This assumption
is reasonably valid for sufficiently small sample periods in
robotic visual servoing systems [15]. Therefore, the rotational
motion model for multirotor UAVs is described as

Θ̇ = W, (12)

Ẇ = ξ, (13)
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where ξ = [ε2 ε3 ε4]
T ∈ R3 is modeled as Gaussian noises.

Finally, the process model for multirotor UAVs is written as
follows

Ṫ = V, (14)

V̇ = R(Θ)(g + ε1)a− ga, (15)

Θ̇ = W, (16)

Ẇ = ξ. (17)

Let Ts denote the sampling time. Using the first-order
backward difference, the discrete form of the proposed process
model for Kalman filtering is described as

xk = f (xk−1) + Γ (xk−1) εk−1, (18)

where xk = [Xk Vx,k Yk Vy,k Zk Vz,k θk w1,k φk w2,k ϕk

w3,k]
T ∈ R12, εk−1 = [ε1,k−1 ε2,k−1 ε3,k−1 ε4,k−1]

T ∈ R4,
and f (xk−1) ∈ R12, Γ (xk−1) ∈ R12×4 (see Appendix for
details). The noises εi,k−1 (i = 1, . . . , 4) are considered
as independent zero-mean Gaussian distribution with
variance Qi. Therefore, the process-noise-variance matrix
Qk−1 ∈ R4×4 is a diagonal matrix with diagonal elements
being Qi.

Note that (18) is a nonlinear constant-velocity process
model. The commonly-used linear constant-velocity process
model [14], [15], [16] is depicted as follows

xk = Axk−1 + γk, (19)

where A ∈ R12×12 is a block diagonal matrix with

2 × 2 blocks of the form
[

1 Ts

0 1

]
, and γk =[

0 γ1
k 0 γ2

k 0 γ3
k 0 γ4

k 0 γ5
k 0 γ6

k

]T ∈
R12 models the motion uncertainties. Compared to (19),
the dimension of the inputs in (18) reduces from six to
four. Therefore, (18) may be more robust against occlusion
(see Section IV-C and Section V). In this paper, the linear
constant-velocity process model (19) as used in [14], [15],
[16] will be compared with the proposed nonlinear constant-
velocity process model (18) by observability analysis and
experimental results.

Note that in (19) both the relative linear velocity V ∈ R3

and the relative angular velocity W ∈ R3 are assumed
to be constant during each sample period [14], [15], [16].
However, only the assumption for W ∈ R3 is required in
(18). Therefore, (18) is expected to be more robust against
noise (see Section IV-B).

Suppose that EKF with the process model (19) and the
measurement model (9) and EKF with the process model (18)
and the measurement model (9) are denoted as Traditional
EKF and Proposed EKF, respectively. Then, the objectives
of this paper are: (i) estimating the relative pose (T,Θ)
between the body coordinate system and the world coordinate
system by using the Proposed EKF method; (ii) performing
observability analysis on both Traditional EKF and Proposed
EKF; (iii) comparing the performance of the Traditional EKF
method with that of the Proposed EKF method.

Note that this paper focuses on using (18) and (9) in the
basic EKF framework. To further improve filter performances,

several techniques could be adopted, such as the adaptive EKF
(AEKF) [22] and iterative adaptive EKF (IAEKF) [15].

III. EXTENDED KALMAN FILTER AND OBSERVABILITY
ANALYSIS

Using the nonlinear constant-velocity process model (18)
and measurement model (9) presented in Section II, a
correspondence-based EKF method is proposed in this section.
Since point correspondence is required in the implementation
of the proposed EKF method, a point correspondence method
combining EKF and the algorithm in [11] is also proposed.
This point correspondence method still works when severe
marker missing happens. Besides, observability analysis is
performed on both Traditional EKF and Proposed EKF. This
theoretically explains why the proposed nonlinear constant-
velocity process model (18) is better than the existing linear
constant-velocity process model (19).

A. Extended Kalman filter
Using the nonlinear constant-velocity process model (18)

and measurement model (9), the well-known extended Kalman
filter consisting of prediction and estimation parts is given as
follows

Fk−1 =
∂f(x)

∂x

∣∣
x=x̂k−1,k−1

(20)

x̂k,k−1 = f(x̂k−1,k−1) (21)

Pk,k−1 = Fk−1Pk−1,k−1F
T
k−1 + Γk−1Qk−1Γ

T
k−1 (22)

Hk =
∂g(x)

∂x

∣∣
x=x̂k,k−1

(23)

Kk = Pk,k−1H
T
k (Rk +HkPk,k−1H

T
k )

−1 (24)
x̂k,k = x̂k,k−1 +Kk(zk − g(x̂k,k−1)) (25)
Pk,k = Pk,k−1 −KkHkPk,k−1. (26)

Here, Pk,k−1 is a priori covariance of the estimation error,
Pk,k is a posterior covariance of the estimation error and Kk

is the Kalman gain matrix at step k.
Note that the implementation of the proposed EKF method

requires point correspondences to be known. The steps used
to find point correspondences and estimate pose using the
proposed EKF method are summarized in Algorithm 1.

Algorithm 1 Point correspondence determination and pose
estimation

Step 1: Use the brute-force matching method in [11] to find
initial point correspondences and x̂0,0, and let k = 1;

Step 2: Calculate x̂k,k−1 using (20)-(22);
Step 3: With x̂k,k−1, obtain the feature points Pc

j (j =
1, . . . , nF ) according to (8);

Step 4: Project Pc
j (j = 1, . . . , nF ) into the camera image

and match each prediction with its closest detection if they are
closer than a threshold λr (e.g. 5 pixels);

Step 5: With the correspondences found in Step 4, calculate
x̂k,k using (23)-(26). Then, go back to Step 2 with k = k+1.
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Note that the proposed point correspondence method could
handle any number of feature points, while the correspondence
method in [11] fails when there are less than four feature
points detected in the image. Besides, the proposed point
correspondence method is suitable for conventional cameras
as well as fish-eye cameras, while the correspondence method
in [11] is only suitable for conventional cameras.

B. Observability analysis
Consider a general nonlinear system of the form{

ẋ = f (x)
y = h(x)

, (27)

where x ∈ Rn is the state vector, and y = [y1 . . . ym]
T ∈ Rm

is the measurement vector with yk = hk(x) (k = 1, . . . ,m).
The zeroth-order Lie derivative of any scalar function is the
function itself, namely, L0hk(x) = hk(x). The first-order
Lie derivative of hk(x) with respect to f (x) is defined as
L1
fhk(x) = ∇hk(x) · f(x) = ∇L0hk(x) · f(x), where ‘∇’

denotes the gradient operator, and ‘·’ means the inner product.
The second-order Lie derivative of hk(x) with respect to f (x)
is L2

fhk(x) = L1
f (L

1
fhk(x)) = ∇L1

fhk(x)·f(x). Higher order
Lie derivatives of hk(x) can be computed similarly. Based on
the Lie derivatives, the observability matrix is defined as the
matrix with rows

Ω =
[
∇Ll

fhk(x)|k = 1, . . . ,m; l = 0, . . . , n− 1
]
. (28)

It is proved in [23] that if Ω is full column rank, then the
nonlinear system (27) is locally observable.

Next, observability analysis is performed on Tradi-
tional EKF and Proposed EKF, according to the cri-
teria mentioned before. In practice, there may be on-
ly two feature points observed by the camera because
of occlusion or camera FOV. In this situation, for the
nonlinear system consisting of (19) and (9), f(x) =[
Vx 0 Vy 0 Vz 0 w1 0 w2 0 w3 0

]T
,

∇h(x) =


× 0 × 0 × 0 × 0 × 0 × 0
× 0 × 0 × 0 × 0 × 0 × 0
× 0 × 0 × 0 × 0 × 0 × 0
× 0 × 0 × 0 × 0 × 0 × 0

 ,

(29)
where ‘×’ generally means a non-zero element. For Tradition-
al EKF, the observability matrix Ω1 is:

Ω1 =


∇L0

fg(x)

∇L1
fg(x)

04×12

...
04×12

 ∈ R48×12, (30)

where ∇Li
fg(x) ∈ R4×12 (i = 0, 1, . . .) and

∇Lj
fg(x) = 04×12(j > 2). It is easy to find that

rank(Ω1) < 12 at each state point, so the pose
parameters are unobservable using the linear constant-
velocity model (19) and the measurement model (9).
This is consistent with the conclusions in [14], [15]
and [16], where at least three noncollinear features

are required for pose estimation. Similarly, for the
nonlinear system consisting of (18) and (9), f(x) =[
Vx a1 Vy a2 Vz a3 w1 0 w2 0 w3 0

]T ,
where a1 = g cosϕ sin θ cosφ + g sinϕ sinφ,
a2 = g cosϕ sin θ sinφ− g sinϕ cosφ, a3 = g cosϕ cos θ− g,
∇h(x) is the same as in (29). For Proposed EKF, the
observability matrix

Ω2 =


∇L0

fg(x)

∇L1
fg(x)

∇L2
fg(x)
...

∇L11
f g(x)

 ∈ R48×12, (31)

is formulated. It is found that rank(Ω2) = 12 through
MATLAB Symbolic Toolbox 1, so the pose parameters are
observable using the nonlinear constant-velocity model (18)
and the measurement model (9). This is consistent with the
experimental results in Section IV and Section V. It can be
concluded from above discussions that the proposed nonlinear
constant-velocity process model (18) outperforms the existing
linear constant-velocity process model (19).

IV. NUMERICAL SIMULATION RESULTS

A. Simulation setting
In the simulation experiments, the camera has an image

resolution of 752 pixels × 480 pixels and its framerate is
40 Hz (namely, the sampling time Ts = 0.025 s). The focal
length of the camera is 1.8 mm with a FOV of 185◦ and the
principle point is assumed to lie at the image center. Suppose
that the translation from the world coordinate system to the
camera coordinate system Tc

w = [ − 0.35 0.65 3.3]
T m, and

the rotation Rc
w is described in the form of Euler angles [ −

0.175 −0.436 2.182]
T rad (z− y− x). There are four feature

points fixed rigidly with a quadrotor and the 3D coordinates
of each feature point in the body coordinate system are: [0.14
−0.215 −0.013]T m, [−0.21 −0.075 −0.004]T m, [0.04 0.033
0.033]T m and [0.032 0.256 −0.015]T m. Two trajectories of
the quadrotor are generated: (1) a 2D circular trajectory with
the fix height of 1 m and the diameter of 2 m (see Fig. 3 (a),
the period for one rotation is 12s); (2) a 3D curve trajectory
from (−0.455,−0.570, 1.008)

T m to (0.745, 0.230, 0.368)
T

m (see Fig. 3 (b)). The world coordinate system locates at
the origin. The simulations have been performed using the
Robotics and Machine Vision Toolbox for Matlab [24]. The
initial values of the pose is obtained using the P4P method
[25]. The simulation time is set to 80s.

Three filter methods for pose estimation are evaluated: (1)
Proposed EKF (with the nonlinear constant-velocity process
model (18)); (2) Traditional EKF (with the linear constant-
velocity process model (19)); (3) a loosely-coupled filtering
method P4P+KF, which means that the pose estimation
problem is solved using the P4P method, and the pose
is refined using a Kalman filter (with the linear constant-
velocity process model (19)) at the same time. The filter
parameters are as follows: for Proposed EKF, P0,0 = 0.01I12,

1The MATLAB code is available at http://rfly.buaa.edu.cn/resources.
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Fig. 3. Quadrotor trajectories generated in the simulation experiments:
(a) a 2D circular trajectory; (b) a 3D curve trajectory.

Q0 = 0.04I4, R0 = σ2I8, where σ is the standard deviation
of Gaussian noises added to image points; for Traditional
EKF, P0,0 = 0.01I12, Q0 =diag[0, p, 0, p, 0, p, 0, p, 0, p, 0, p]
with p = 0.04, R0 = σ2I8; for P4P+KF, P0,0 = 0.01I12,
Q0 =diag[0, q, 0, q, 0, q, 0, q, 0, q, 0, q] with q = 0.04, R0 =
0.0004I6.

If there are m frames in each experiment, the accuracy of
each pose parameter η is evaluated by the root-mean-squared
(RMS) error

Dη
RMS =

√√√√ 1

m

m∑
j=1

(ηj − η̂j)
2
, (32)

where ηj denotes the ground-truth data and η̂j is the corre-
sponding data obtained by using the above different filtering
methods. Another criterion is to use the RMS reprojection
error

ERMS =

√√√√ 1

mn

m∑
i=1

n∑
j=1

∥uij − ûij∥2, (33)

where uij denotes the image point of the jth 3D point in
the ith frame and ûij is the corresponding reprojection point
obtained by using the pose estimation results.

B. Noise simulations

Gaussian noises with the mean value µ = 0 and the standard
deviation σ varying from 0.5 to 4 pixels are added to the
image points. Fig. 4 shows the estimation errors of the pose
parameters for the 2D circular trajectory, while Fig. 5 gives
the estimation errors of the pose parameters for the 3D curve
trajectory. The RMS reprojection errors for the 2D circular
trajectory and the 3D curve trajectory are shown in Fig. 6.

As shown in Figs. 4-6, all the evaluated methods offer
good accuracy under different levels of noises except the
P4P+KF method. One possible reason is that the loosely cou-
pling structure of the P4P+KF method would result in error
propagation. The Proposed EKF method gives better results
than the Traditional EKF method in Figs. 4(a)-4(c), while they
give quite similar results in the rest of the comparisons. This
is probably because the assumption that the relative linear
velocity is constant during each sample period is not valid
for the 2D circular trajectory (the direction of the velocity
is constantly changing). Thus, the linear constant-velocity
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Fig. 4. Pose estimation errors for the 2D circular trajectory: (a) DX
RMS

(mm); (b) DY
RMS (mm); (c) DZ

RMS (mm); (d) Dθ
RMS (degrees); (e)

Dφ
RMS (degrees); (f) Dϕ

RMS (degrees).

TABLE I
THE NUMBER OF FEATURE POINTS OBSERVED BY THE CAMERA

(T1=25, T2=50)

Method Time
0(s)-T1(s) T1(s)-T2(s) T2(s)-80(s)

Proposed EKF 4 3 2

Traditional EKF 4 3 2

P4P+KF 4 4 4

TABLE II
POSITION ERRORS FOR THE PROPOSED METHOD WHEN THE NUMBER

OF FEATURE POINTS IS VARYING

n X(mm) Y (mm) Z(mm)

mean std mean std mean std

4 1.99 1.36 4.36 3.06 3.38 2.47

3 4.42 3.15 7.90 5.41 6.34 4.42

2 9.57 7.93 13.08 10.52 10.78 8.58

process model (19) is inferior to the nonlinear constant-
velocity process model (18) for the 2D circular trajectory.
However, the two models have almost the same performance
for the 3D curve trajectory.
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Fig. 5. Pose estimation errors for the 3D curve trajectory: (a) DX
RMS

(mm); (b) DY
RMS (mm); (c) DZ

RMS (mm); (d) Dθ
RMS (degrees); (e)

Dφ
RMS (degrees); (f) Dϕ

RMS (degrees).
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Fig. 6. RMS reprojection errors: (a) ERMS for the 2D circular trajectory
(pixels); (b) ERMS for the 3D curve trajectory (pixels).

TABLE III
ORIENTATION ERRORS FOR THE PROPOSED METHOD WHEN THE

NUMBER OF FEATURE POINTS IS VARYING

n θ(degrees) φ(degrees) ϕ(degrees)

mean std mean std mean std

4 0.20 0.15 0.18 0.14 0.19 0.16

3 0.29 0.23 0.24 0.17 0.20 0.15

2 0.30 0.22 0.31 0.23 0.22 0.17

C. Occlusion simulations

The performance of the three filtering methods will be
compared when the number of feature points observed by the
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Fig. 7. Absolute errors of pose estimation for the 3D curve trajectory:
(a) X (mm); (b) Y (mm); (c) Z (mm); (d) θ (degrees); (e) φ (degrees);
(f) ϕ (degrees).

camera n is varying (see Table I). Gaussian noise with the
mean value µ = 0 and the standard deviation σ = 0.5 pixel
is added to the image points. Taking the 3D curve trajectory
for example, the absolute errors of pose estimation are shown
in Fig. 7. It is known from Fig. 7 that the Proposed EKF
method offers comparable accuracy with the Traditional EKF
method when 3 ≤ n ≤ 4 (the duration is 50 s). When n = 2
(the duration is 30 s), the Traditional EKF method fails to
produce good results, while the Proposed EKF method still
works. The accuracy of the Proposed EKF method when n is
varying is also investigated. As shown in Table II and Table
III (std refers to standard deviation), the errors of position and
orientation estimation increase as the number of feature points
n decreases. The P4P+KF method requires that n ≥ 4.

V. REAL-TIME EXPERIMENTAL RESULTS

To show the robustness and effectiveness of our method,
closed-loop control experiments of the quadrotor (AR.Drone
2.0, see Fig. 2(b)) with pose estimates using the Proposed EKF
method at 40 Hz are performed. A video of this work is avail-
able at https://www.youtube.com/watch?v=wqCWSlqlATE or
http://rfly.buaa.edu.cn/.
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a b

Fig. 8. (a) The infrared conventional camera and active LEDs; (b) A
sample image of the infrared conventional camera (exposure time is 34
ms).

a b

Fig. 9. (a) The infrared fish-eye camera and active LEDs; (b) A sample
image of the infrared fish-eye camera (exposure time is 51 ms).

In the first experiment, two MUC36M (MGYYO) cameras 2

are used (each camera has an infrared-pass filter and an image
resolution of 752 pixels × 480 pixels). One is equipped with
a conventional lense (13FM22IR) having a FOV of 118.6◦

and the other is equipped with a fish-eye lense (Fujinon
FE185C057HA-1) having a FOV of 185◦. The camera hard-
wares and sample images of each camera are shown in Fig. 8
and Fig. 9. The markers fixed with the quadrotor could be
easily detected in the camera image because: (a) the light
reflected by the markers lies in the infrared spectrum; (b) the
outside light could be minimized by setting the exposure time
of the camera to a small value. After camera calibration [20],
[21], the positions of the markers in the reference frame of
the quadrotor can be estimated as in [11]. Furthermore, the
corresponding relations between a marker and its image point
are obtained by using the proposed correspondence method.
The quadrotor is expected to hover at the waypoint (0.3, 0.3, 1)
m from the starting point (−0.2, 0, 1) m all along with only
two markers detected. The 3D trajectories of the quadrotor
recorded by the Proposed EKF method are shown in Fig.
10 and the corresponding distance between the camera and
the quadrotor is given in Fig. 11. It can be concluded from
Fig. 10 that the quadrotor can fly to and hover at the desired
waypoint all along with only two markers detected by the
conventional camera or the fish-eye camera. As shown in Fig.
11, the durations of having only two observable markers are
about 7 s and 8.5 s for the conventional camera and the fish-
eye camera. Note that the distance for the fish-eye camera
is smaller than that for the conventional camera because the
active LEDs are not customized for the fish-eye camera.

In the second experiment, a conventional camera (i.e.
the fish-eye lense in Fig. 9 is replaced by a conventional

2http://en.catchbest.com/index.asp

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4

-0.2
0

0.2

0

0.2

0.4

0.6

0.8

1

Y (m)

(0.264,0.285,0.818)

X (m)

(-0.215,0.004,0.785)

Z
 (

h
e
ig

h
t 

a
b
o
v
e
 g

ro
u
n
d
, 

m
)

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4

-0.2
0

0.2

0

0.2

0.4

0.6

0.8

1

Y (m)

(0.321,0.304,0.741)

X (m)

(-0.186,0.014,0.857)

Z
 (

h
e
ig

h
t 

a
b
o
v
e
 g

ro
u
n
d
, 

m
)

(a)

(b)

Fig. 10. The quadrotor is controlled to hover at the waypoint (0.3, 0.3, 1)
m from the starting point (−0.2, 0, 1) m all along with only two markers
detected: (a) The 3D trajectory of the quadrotor when a conventional
camera is used; (b) The 3D trajectory of the quadrotor when a fish-eye
camera is used.

0 1 2 3 4 5 6 7 8 9
1

1.5

2

2.5

3

Time (s)

D
is

ta
n
c
e
 (

m
)

Conventional camera

Fish-eye camera

Fig. 11. The distance between the camera and the quadrotor in the
hovering experiment (all along with only two markers detected).

lense (AZURE-0420MM) having a FOV of 77.32◦) is used.
The quadrotor is expected to track a line from the point
(−0.55,−0.27, 1) m to the point (0.32, 0.64, 1) m all along
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Fig. 12. The X-Y trajectory (fixed height is 1 m) of the quadrotor when a
conventional camera is used. The quadrotor is controlled to track a line
from the point (−0.55,−0.27, 1) m to the point (0.32, 0.64, 1) m all along
with only two markers detected.
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Fig. 13. The distance between the camera and the quadrotor in the
line-tracking experiment (all along with only two markers detected).

with only two markers detected. As the height is fixed to
be 1 m, only the X-Y trajectory of the quadrotor recorded
by the Proposed EKF method is shown in Fig. 12 and the
corresponding distance between the camera and the quadrotor
is given in Fig. 13. It is known from Fig. 12 and Fig. 13
that the quadrotor can achieve line-tracking all along with
only two markers detected by the conventional camera and
the duration is about 12.5 s. Furthermore, the tracking result
deteriorates when the quadrotor approaches the end-point. This
is probably because the accuracy of pose estimation decreases
as the distance between the camera and the quadrotor increases
[11]. In summary, the experiments above demonstrate the
practicability of the Proposed EKF method when the number
of feature points detected is two.

VI. CONCLUSIONS

A more appropriate process model featured with the char-
acteristics of multirotor UAVs is proposed in this paper to

achieve accurate and robust pose estimation for multiro-
tor UAVs based on off-board monocular vision. Based on
the proposed nonlinear constant-velocity process model, a
correspondence-based EKF method together with a general
point correspondence technique handling any number of fea-
ture points (Algorithm 1) has been proposed. Observability
analysis shows that the Proposed EKF method outperforms
the Traditional EKF method. Simulations and real experiments
have demonstrated that the Proposed EKF method is more
robust against noise and occlusion than the Traditional EKF
method. The Proposed EKF method is suitable for convention-
al cameras as well as fish-eye cameras. It will be promising to
use this method in the single-camera motion capture system
or ground-air cooperation system.

APPENDIX

The concrete form of equation (18) is described as follows

Xk = Xk−1 + TsVx,k−1

Vx,k = Vx,k−1 + (Tscϕk−1sθk−1cφk−1 + Tssϕk−1sφk−1) ḡ

Yk = Yk−1 + TsVy,k−1

Vy,k = Vy,k−1 + (Tscϕk−1sθk−1sφk−1 − Tssϕk−1cφk−1) ḡ

Zk = Zk−1 + TsVz,k−1

Vz,k = Vz,k−1 − Tsg + Tscϕk−1cθk−1ḡ

θk = θk−1 + Tsw1,k−1

w1,k = w1,k−1 + Tsε2,k−1

φk = φk−1 + Tsw2,k−1

w2,k = w2,k−1 + Tsε3,k−1

ϕk = ϕk−1 + Tsw3,k−1

w3,k = w3,k−1 + Tsε4,k−1,

where ḡ = g + ε1,k−1, and c, s are abbreviations for cosine
and sine, respectively. Thus, we have

Γ (xk−1) =



0 0 0 0
Γ21 0 0 0
0 0 0 0
Γ41 0 0 0
0 0 0 0
Γ61 0 0 0
0 0 0 0
0 Ts 0 0
0 0 0 0
0 0 Ts 0
0 0 0 0
0 0 0 Ts



,

where Γ21 = Tscϕk−1sθk−1cφk−1 + Tssϕk−1sφk−1,Γ41 =
Tscϕk−1sθk−1sφk−1 − Tssϕk−1cφk−1 and Γ61 =
Tscϕk−1cθk−1.
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