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Abstract: Fish-eye cameras are becoming increasingly popular in computer vision, but their use for three-dimensional
measurement is limited partly because of the lack of an accurate, efficient and user-friendly calibration procedure. For such a
purpose, the authors propose a method to calibrate the intrinsic and extrinsic parameters (including radial distortion
parameters) of two/multiple fish-eye cameras simultaneously by using a wand under general motions. Thanks to the generic
camera model used, the proposed calibration method is also suitable for two/multiple conventional cameras and mixed
cameras (e.g. two conventional cameras and a fish-eye camera). Simulation and real experiments demonstrate the
effectiveness of the proposed method. Moreover, the authors develop the camera calibration toolbox, which is available online.

1 Introduction

Camera calibration is very important in computer vision, and
numerous studies have been carried out on it. Most of these
studies are based on conventional cameras, which obey the
pinhole projection model and provide a limited overlap
region of the field of view (FOV). The overlap region can
be expanded greatly by using fish-eye cameras [1], because
fish-eye cameras can provide images with a very large FOV
(about 180°) without requiring external mirrors or rotating
devices [2]. Fish-eye cameras have been used in many
applications, such as robot navigation [3], three-dimensional
(3D) measurement [4] and city modelling [5]. The
drawbacks of fish-eye cameras are low resolution and
significant distortion. Their use for 3D measurement is
limited partly because of the lack of an accurate, efficient
and user-friendly calibration procedure.

So far, many methods of calibrating conventional cameras
[6, 7] have been proposed, but they are inapplicable to
fish-eye camera calibration directly because the pinhole
camera model no longer holds for cameras with a very
large FOV. Existing methods of calibrating fish-eye cameras
are roughly classified into three categories: (i) methods
based on 3D calibration patterns [8, 9], (ii)) methods based
on 2D calibration patterns [10-12] and (iii) self-calibration
methods [13, 14]. The most widely-used methods are based
on 2D calibration patterns, which are often applied to a
single camera. To calibrate the geometry relation among
multiple cameras, it is required that all cameras observe a
sufficient number of feature points simultaneously [6]. It is
difficult to achieve by 3D/2D calibration patterns if two of
the cameras faces each other. On the other hand, many
wand-based calibration methods [6, 15, 16] were proposed
for motion capture systems consisting of multiple cameras,
such as the well-known Vicon system [17]. However, most
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of them were dedicated to dealing with conventional
cameras. Calibration methods for fish-eye cameras with a
1D wand have not been discussed in the literature as far as
we know.

For such a purpose, we propose a new method to calibrate
the intrinsic and extrinsic parameters (including radial
distortion parameters) of two/multiple fish-eye cameras
simultaneously with a freely-moving wand. Thanks to the
generic camera model used, the proposed -calibration
method is also suitable for two/multiple conventional
cameras and mixed cameras (e.g. two conventional cameras
and a fish-eye camera). The calibration procedure of two
cameras is summarised as follows. First, the intrinsic and
extrinsic parameters are initialised and optimised by using
some prior information such as the real wand lengths and
the nominal focal length provided by the camera
manufacturer. Then, the bundle adjustment [18] is adopted
to refine all unknowns, which consist of the intrinsic
parameters (including radial distortion parameters), extrinsic
parameters and coordinates of 3D points. With the help of
vision graphs in [19], the proposed method is further
extended to the case of multiple cameras, which does not
require all the cameras to have a common FOV. The
calibration procedure of multiple cameras is summarised as
follows. First, the intrinsic and extrinsic parameters of each
camera are initialised by involving pairwise calibration
results. Then, the bundle adjustment is used to refine all
unknowns, which consist of the intrinsic and extrinsic
parameters (including radial distortion parameters) of each
camera, and coordinates of 3D points.

The main contributions of this paper are: (i) a method to
calibrate two/multiple cameras equipped with generic lens
using a wand under general motions [As far as we know, it
is the first time.]; (ii) better calibration results obtained by
using the proposed method than 2D pattern-based methods
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in case of two fish-eye cameras or two mixed cameras
(a conventional camera and a fish-eye camera); (iii) a
camera calibration toolbox freely available online [Available
at http://quanquan.buaa.edu.cn/CalibrationToolbox.html.]. This
paper is organised as follows. Some preliminaries are
introduced in Section 2. In Section 3, the calibration
algorithm for two cameras and multiple cameras is
presented. Then the experimental results are reported in
Section 4, followed by the conclusions in Section 5.

2 Preliminaries
2.1 Generic camera model

The perspective projection is described by the following
equation [10]

ri(f, 0) =ftan @ (perspective projection) (1)

where 6 is the angle between the optical axis and the
incoming ray, the focal length f'is fixed for a given camera,
and r(f, 6) is the distance between the image point and the
principal point. By contrast, fish-eye lenses are usually
designed to obey one of the following projections

ry(f, 0) =6 (equidistance projection) 2)

ry(f, ) =fsin @ (orthogonal projection) 3)

r4(f, 0) = 2f tan(6/2) (stereographic projection)  (4)
rs(f, 8) = 2f sin(6/2) (equisolid angle projection) (5)

In practice, the real lenses do not satisfy the designed
projection model exactly. A generic camera model for
fish-eye lenses is proposed as follows [10]

r(9)=k19+k293+k305+k497+k509+... (6)

It is found that the first five terms can approximate different
projection curves well. Therefore, in this paper we choose
the model that contains only the five parameters ki, k», ks,
k4 and k5.

As shown in Fig. 1, a 3D point P is imaged at p by a
fish-eye camera, while it would be p’ by a pinhole camera.
Let O.— X.Y.Z. denotes the camera coordinate system and
o —xy is the image coordinate system (unit mm). We can
obtain the image coordinates of p in 0 — xy by

G-z o

where 7(6) is defined in (6) and ¢ is the angle between the
radial direction and the x-axis. Then we can obtain the pixel
coordinates (u, v) from

u |my 0 [(x u
(=15 2J0) () o
where (i, Vo) is the principal point and m,,, m, are the number
of pixels per unit distance in horizontal and vertical
directions, respectively. Thus, for each fish-eye camera, the
intrinsic parameters are (ky, k», m,,, m,, Uy, vo, k3, k4 and ks).
Note that in this paper we do not choose the equivalent

sphere model in [20]. If this generic model is used, the
following calibration process will not be changed except for
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Z, P

Fig. 1 Fish-eye camera model [10]

3D point P is imaged at p by a fish-eye camera, while it would be p’ by a
pinhole camera

some intrinsic parameters. The tangential distortion is not
considered here for simplicity. As pointed out in [21], the
lens manufacturing technology now is of sufficiently high
levels so that the tangential distortion can be ignored.
Otherwise, the tangential distortion terms need to be taken
into account in (6). With them, the following calibration
process will not be changed except for some additional
unknown parameters.

2.2 Essential matrix

As shown in Fig. 2, the 1D wand has three collinear feature
points A, B, C (4;, B;, G denote their locations for the jth
image pair), which satisfy

l4-Bl|=L,, [B-Cll=L, [4-Cl=L
where ||-]| denotes the Euclidean vector norm. Let Oy —
XoYoZy and O, —X Y Z, denote the camera coordinate
systems of the left and the right cameras, respectively. The

7 Z.

X;, <" _ S

1 %, X DuBN
Vs R v

Oy 0,

(R,T)

Fig. 2 [llustration of 1D calibration wand
3D points 4;, B;, G denote their locations for the jth image pair

379
© The Institution of Engineering and Technology 2015



www.ietdl.org

3D points A4;, B;, G are projected to aqj, bgj, co; on the unit
hemisphere centred at Oy and ayj, by, cy; on the unit
hemisphere centred at O,. The extrinsic parameters are the
rotatlon matrlx RE R  and translation vector
= (I, 1, Z) € R® from the left camera to the right
camera.
Suppose that a 3D point M; € R? is projected to

sin By, cos @y
sin 6 sin ¢y,
cos by,

sin 0y cos ¢y;
sin 6y, sin @,;
cos 0;

mo. =

)j , ml.:

J

on the unit hemisphere centred at O and the unit hemisphere
centred at O, respectively. Since mg;, my;, T are all coplanar,
we have [22]

mlTj [T], Rmy; =0 ©)
where
0 -
[Tl,=| 0 —¢ (10)
—t, t, 0

Furthermore, (9) is rewritten in the form as
T
my;Emy; = 0 (11)
where E=[T]« R is known as the ‘essential matrix’.

2.3 Reconstruction algorithm

In this section, a linear reconstruction algorithm for spherical
cameras is proposed, which is the direct analogue of the linear
triangulation method for perspective cameras [18]. Suppose

that the homogeneous coordinates of a 3D point M € R? are

XO Xl
Y, Y
My=| )| M,=|_.|=[RTIM
0 ZO 1 Zl 0
1 1

in 00 —X()Y()ZO and Ol _Xl YlZl’ respectively. The 3D pOiIlt
M is projected to

sin 6, cos ¢, sin 6, cos ¢,
my=| sinfysing, |, m; = | sin6,sine,
cos 0, cos 0,

on the unit hemisphere centred at Oy and the unit hemisphere
centred at O, respectively. Then we have

somg = QgM,
{Slml = 0O\M, (12

where sy, 5 are scale factors and @y = [I, 05,,] € R,
0, =[RT]E R**. For each image point on the unit
hemisphere, the scale factor can be eliminated by a cross
product to give three equations, two of which are linearly
independent. So the four independent equations are written
in the form as follows

AM, =0 (13)
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with

sin 6 cos ¢y @y 3 — €08 6,0y ¢
sin 6 sin ¢, Qy 3 — c0s 6,0y ,
sin 0) cos ¢, @y 3 — cos 0,0y
sin 6, sin ¢ Qy 3 — cos 6,0 ,

(14)

where Qy; and O, ; are the ith row of Qg and 0, respectively.
Based on (13), M, is the singular vector corresponding to the
smallest singular value of 4. So far, glven mgy, my, R, T, the
homogeneous coordinates of M € R® in 0Oy — XpYoZy,
namely M,, is reconstructed. This is called ‘the linear
reconstruction algorithm’ here.

Note that (13) provides only a linear solution, which is not
very accurate in presence of noises. It could be refined by
minimising reprojection errors or Sampson errors [18].
However, since the reconstruction algorithm is carried out
at each optimisation iteration, it is more efficient to choose
the linear reconstruction algorithm mentioned above.
Furthermore, the linear reconstruction algorithm can be
extended easily to the case of n-view (n>2) triangulation
for calibration of multiple cameras (Section 3.2) [18].

3 Calibration algorithm
3.1 Calibration of two cameras

Based on the preliminaries mentioned in Section 2, we next
present a generic method to simultaneously calibrate the
intrinsic and extrinsic parameters (including radial distortion
parameters) of two cameras with a freely-moving 1D wand,
which contains three points in known positions, as shown
in Fig. 7a. This method is simple, user-friendly and can be
used to calibrate two fish-eye cameras. Let the intrinsic
parameters of the ith camera be (k’, kz, m,, m., ug, Vo, k3,
ky, ks). Without loss of generality, we take the Oth camera
and the 1st camera as an example in this subsection. The
first three steps of the cahbrat10n procedure 1nvolve only 12
1ntr1n51c parameters (k1 s kz, m0 mo ug, Voo k1 , kz, Ll,, ml,
u(l), Vo) leaving the other parameters dealt with only in the
final step.

3.1.1 Step 1: Initialisation of intrinsic parameters:

For the ith camera, the principal point (g, vp) is initialised
by the coordmates of the image centre, and the pixel sizes
m,, and m;, are given by the camera manufacturer. If the ith
camera is a conventional or fish-eye camera, then the initial
values of k' = (k’ , kz) are obtained by fitting the model (6)
to the projections (1)—(5). Concretely, let the interval
[0, 6}, be equally divided into many pieces (6, 6, ...,

6;) € R?. Then we have

¢ @ r(", 6)
0 0| (k) |00
. . ké,s B ’
6, o r(f', 6)
s=1,2,...,5 (15)

where the nominal focal length of the ith camera is f* and the
maximum viewing angle is ¢,,. provided by the camera
manufacturer. Based on (15), for the ith camera, k' is
determined by
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(K',s*) =arg  min
K sE(1.2,...5)

P
> (r0 o)

J=1

. A\ 2
—K5.0) (16)

J

So far, we obtain the initialisation of intrinsic parameters
ki, Ky, m!, m!, uf, vi), i=0, 1. Note that it is required to
specify the projection type of cameras in advance in [10].
Otherwise, it is possible to obtain inaccurate calibration
results. However, this is not a problem in this paper
because we obtain the best initialisation of k* automatically.
Besides this, the initialisation of the principle point is
reasonable, because the principal point of modern digital
cameras lies close to the centre of the image [18].

3.1.2 Step 2: Initialisation of extrms:c parameters
With the intrinsic parameters (k;, k3, m.,, m’, uj, vy), i=0, 1
and the pixel coordinates of image pomts for the jth image
pair, we can compute 6y, @, 6;; and ¢@; by (6)—(8).
Therefore, according to (11), the essential matrix Eyy is
obtained by using the 5-point random sample consensus
(RANSAC) algorithm [23] if five or more corresponding
points are given.

If the essential matrix Eq; is known, then the initial values
for the extrinsic parameters Ry; and Ty, are obtained by the
singular value decomposition of Eg; [18]. Note that
|To| =1, so the obtained translation vector T, differs
from the real translation vector Ty; by a scale factor. Let
A}, C; denote the reconstructed points of A4, C for the jth
image pair, which are given by the linear reconstruction
algorithm based on (13) with the intrinsic and extrinsic
parameters obtained above. To minimise errors, the scale
factor A is

1L )
V& -l

where N is the number of image pairs. Finally, the initial value
for the translation vector is

Ty = ( . tZ) — AT, ER? (18)

Thus, we obtain the initialisation of extrinsic parameters Ry;
and T()l.

3.1.3 Step 3: Non-linear optimisation of intrinsic and
extrinsic parameters: Denote the reconstructed points of
A, B, C for the jth image pair by A}, B; , Cj, respectively,
which are given by the linear reconstruction algorithm
based on (13) with the intrinsic and extrinsic parameters
obtained above. Because of noises, there exist distance
errors as follows

2,0 =L, ~| (19
&0 =1, B - ¢ (20)
() =L — HA; —c 1)

0 0
u> M5 U, VOﬂ kl ’ k2: m

oy 739 x> y’ z) € ng In parthU-lar For = (7”1, 2 7"3) < R3

1 1
u> My, uO’ Vo, I'1»

where x = (k, k3, m
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and the rotation matrix Ry, are related by the Rodrigues

[18, p. 585]. Therefore,
objective function for

formula, namely R, — olmlx
according to (19)—(21), the
optimisation is

N
¥ =argmin} (g1,00 + 2,0 +gL,0)  (22)
=1

which is solved by using the Levenberg—Marquardt method
[18].

3.1.4 Step 4: Bundle adjustment: The solution above
can be refined through the bundle adjustment [18], which
involves both the camera parameters and 3D space points.
For the jth image pair, we can compute 4}, B}, C; by the
linear reconstruction algorithm based on (13) with the
camera parameters x* obtained in Step 3. If

L—‘AT—CT
2 Al ST

then the jth image pair is removed from the observations.
After this, the number of image pairs reduces from N to Nj.
Without loss of generality, the image pairs from (N; + 1)th
to Nth are removed. Since the 3D space points 4;, B; and G
are collinear, they have the relation as follows

B; = f3(4;, ¢, ])_A +L,-n (23)

Cj:fC(A,qu, ))=A; +L- n
where ¢, 6; are spherical coordinates centred at 4; and ;=
(sing;cosh;, sing;sing;, cosqb,) denotes the orlentatlon of
the 1D wand.

The s1x additional camera parameters
(K3, k3, k2, k3, Ky, k3) for the two cameras are initialised to
zero first, which together with x* constitute

0 ;0 0 0.0 0 ;70 ;0 70 41 1 1
= (kl’ kz, mu, mv, uo, Vo, k}, k4, k5’ kl’ kz, mu,
) c R24

m\ln u(l)’ V(llﬂ k317 kj, k517 ATRATRED txa Vs 'z
Let functions P;(y, M) denote the projection of a 3D point M
onto the ith camera image plane under the parameter y, i =0,
1. Bundle adjustment minimises the following reprojection
error (see (24) at the bottom of the next page)
where a;;, by, ¢;; are the image points of 3D points 4;, B;, G in
the ith camera, respectively. Since 4;, B:, C; are known, we
could obtain ¢/, ¢ from (23). Then, 4, ¢;, 6; are initialised
by A, ¢, (9/’ , respectlvely After all the optimisation
Varlables are initialised, the non-linear minimisation is done
by using the sparse Levenberg—Marquardt algorithm [24].
Note that the main difference here from existing work is to
take the extra parameters of the radial distortion in the set of
unknowns into bundle adjustment.

3.2 Calibration of multiple cameras

3.2.1 Step 1: Initialisation of intrinsic and extrinsic
parameters: The multiple camera system could be
represented by a weighted undirected graph as in [19]. For
example, the vision graph of a system consisting of five
cameras is shown in Fig. 3. Each vertex represents an
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Fig. 3 Vision graph and the optimal path from reference camera 0

to the other four cameras in solid lines

M;; is the number of common points between cameras and ﬁ is the
L )

corresponding weight
Vertices 0 and 4 are not connected because My, =0

individual camera and the weights w;; are given as 5 L where

Mj; is the number of points in the common FOV of the two
cameras. If M;=0, then the vertices corresponding to the
two cameras are not connected. Next, we use the Dijkstra’s
shortest path algorithm [25] to find the optimal path from a
reference camera to other cameras. With the shortest paths
from the reference camera to other cameras and
corresponding pairwise calibration results, we could get the
rotation matrices and translation vectors that represent the
transformation from the reference camera to other cameras.
For example, if the transformations from the ith camera to
the jth camera and from the jth camera to the kth camera are
(Ry, T;) and (Ry, Ty), respectively, then the transformation
from the ith camera to the Ath camera is obtained as follows

y 25
Ty =RyT;+Tj 25)

{ Rik =R ij"

If the length of a path from the reference camera is longer
than two, we could apply (25) sequentially to cover the entire
path. Besides, the initial value of each camera’s intrinsic
parameter is determined from the corresponding pairwise
calibration results when the most points exist in the
common FOV of two cameras.

Note that only the pairwise calibration involved in the
optimal path is performed by using the calibration
algorithm of two cameras mentioned before. However, if all
the camera pairs are calibrated as in [19], then it will be
very time-consuming, especially when the number of
cameras is large.

3.2.2 Step 2: Bundle adjustment: As in the calibration
algorithm of two cameras, A;, B;, C; are computed by
n-view (n > 2) triangulation method in Section 2.3 and a
distance error threshold can be set to remove outliers. The
intrinsic and extrinsic parameters of m + 1 cameras (except
the extrinsic parameter of the reference camera — the Oth
camera, as it is constantly I5.3; and 03”) constitute

€ R et functions P;(y, M) (i=0, 1, ..., m) define
pl"O]eCtIOIl of a 3D point M onto the ith camera image
plane, then bundle adjustment minimises the following
reprojection error (see (26))

where aj;, by;, c;; are the image points of 3D points 4;, B;, C; in
the ith camera and N; is the number of times A4;, B;, C; are
viewed in the ith camera. After all the optimisation
variables are initialised, the non-linear minimisation is done
by using the sparse Levenberg—Marquardt algorithm [24].

4 Experimental results
4.1 Simulation experiments

4.1.1 Simulation setting: In the simulation experiments,
the Oth, 1st and 2nd fish-eye cameras all have image
resolutions of 640 pixels x 480 pixels with pixel sizes of
506umx 5.6 um and FOVs of 185° As for the 1D
calibration wand, the feature points 4 and B, C satisfy

L, = |4 — B| = 400 mm
L, =|B—C| =200mm
— ||4 — C|| = 600 mm

Suppose that the 1D calibration wand undertake 300 times
with general motions inside the volume of [ —0.35, 0.35] m x
[<0.35, 0.35] m % [0.7, 1] m. The rotation matrices from the
Oth to the 1st and 2nd cameras are (28.65, 28.65, 28.65)T,
(57.3, 57.3, 57.3)" (in the form of Euler angles, unit:
degree) respectlvely The translation vectors from the Oth to
the 1st and 2nd cameras are (=700, 100, 200)", (—1200,
—200, 700)", respectively. The calibration error of rotation
is measured by the absolute error in degrees between the
true rotation matrix R, and the estimated rotation matrix R
defined as [26]

E, = max;_, ||acos<rfme, rk>|| x 180/m 27

where rfme and 7* are the kth column of R,,. and R,
respectively. The calibration error of translation is measured by

” Ttrue B T”

=

(28)

e |

where the true translation vector is Tj,. and the estimated
translation vector is 7. If there are » 3D points viewed by a

AP+ 11by — Py(w, S A, &y D) + lic; —

Py, fc(A;, &, 6)11%) (24)

v.4)” + by~
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Pi(yafB(

LB 0)) + licy — Py, S, &y, 6))1%) (26)
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Fig. 4 Calibration errors of the intrinsic and extrinsic parameters and reprojection errors for different noise levels

“2cams’ means calibration of the Oth and Ist fish-eye cameras and ‘3cams’ means calibration of the Oth, 1st and 2nd fish-eye cameras

a Focal lengths of two and multiple cameras

b Principle points (1) of two and multiple cameras

¢ Principle points (vy) of two and multiple cameras

d Calibration error of rotation E, of two and multiple cameras

e Calibration error of translation E, of two and multiple cameras
/' RMS reprojection error Egys of two and multiple cameras

camera, the global calibration accuracy of this camera is
evaluated by the root-mean-squared (RMS) reprojection error

29
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where u; denotes the image point of the jth 3D point
and #@; is the corresponding reprojection point obtained
by using calibration results. Next, we perform simulation
for both two cameras (the Oth and 1st fish-eye cameras)
and multiple cameras (the Oth, Ist and 2nd fish-eye
cameras).
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Fig. 5 Calibration errors of the intrinsic and extrinsic parameters and reprojection errors for different focal length offsets

‘2cams’ means calibration of the Oth and 1st fish-eye cameras and ‘3cams’ means calibration of the Oth, 1st and 2nd fish-eye cameras

a Focal lengths of two and multiple cameras

b Principle points (u) of two and multiple cameras

¢ Principle points (vg) of two and multiple cameras

d Calibration error of rotation E, of two and multiple cameras

e Calibration error of translation £, of two and multiple cameras
/' RMS reprojection error Egys of two and multiple cameras

4.1.2 Noise simulations: The truth values of the three
cameras’ focal lengths and principal points are 2 mm and
(310, 250), while initial values are 1.8 mm and (320, 240),
respectively. Gaussian noises with the mean value =0 and
the standard deviation o varying from 0 to 2 pixels are
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added to the image points. Simulations are performed ten
times for each noise level and the average of estimated
parameters is taken as the result. Figs. 4a—e show the
calibration errors of the intrinsic and extrinsic parameters,
whereas Fig. 4f gives the RMS reprojection errors of the
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Fig. 6 Calibration errors of the intrinsic and extrinsic parameters and reprojection errors for different centre offsets of the principle points

“2cams’ means calibration of the Oth and Ist fish-eye cameras and ‘3cams’ means calibration of the Oth, 1st and 2nd fish-eye cameras

a Focal lengths of two and multiple cameras

b Principle points (1) of two and multiple cameras

¢ Principle points (vy) of two and multiple cameras

d Calibration error of rotation E, of two and multiple cameras

e Calibration error of translation £, of two and multiple cameras
/' RMS reprojection error Egyis of two and multiple cameras

cameras. In Fig. 4, ‘2cams’ means calibration of the Oth and
the Ist fish-eye cameras (two cameras) and ‘3cams’ means
calibration of the Oth, Ist and 2nd fish-eye cameras
(multiple cameras).

As shown in Fig. 4, the calibration errors of the intrinsic
and extrinsic parameters do not change drastically with the
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noise level. Moreover, the RMS reprojection errors of the
cameras increase almost linearly with the noise level. All
these errors are small even when o=2 pixels. This shows
that the calibration algorithm in this paper performs well
and achieves high stability for the cases of both two
cameras and multiple cameras.
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4.1.3 |Initial value simulations: First, we conduct
experiments with initial focal lengths at different ‘distances’
from the truth values to analyse the convergence and the
quality of the solution. The truth values of the three
cameras’ principal points are (310, 250), while initial values
are (320, 240). Gaussian noise with the mean value £ =0
and the standard deviation o=1 pixel are added to the
image points. The truth values of the three cameras’ focal
lengths vary from 1.5 to 2.5 mm, while the initial values
are fixed to 2 mm. Simulations are performed ten times for
each focal length and the average of involving parameters is
taken as the result. Figs. Sa—e show the calibration errors of
the intrinsic, whereas Fig. 5f gives the extrinsic parameters
and the RMS reprojection errors of the cameras.

Next, we conduct experiments with initial principle points
at different ‘distances’ from the truth values to analyse the
convergence and the quality of the solution. The true values
of the three cameras’ focal lengths are 2 mm, while the
initial values are 1.8 mm. Gaussian noise with the mean
value 4 =0 and the standard deviation o=1 pixel is added
to the image points. The truth values of the three cameras’
principle points vary from (270, 190) to (370, 290) along
the diagonal line u=v, while the initial values are fixed to
(320, 240). Experiments are performed ten times for each
principle point and the average of estimated parameters is
taken as the result. Figs. 6a—e show the calibration errors of
the intrinsic and extrinsic parameters, whereas Fig. 6f gives
the RMS reprojection errors of the cameras.

As shown in Figs. 5 and 6, the calibration errors of the
intrinsic and