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How Far Two UAVs Should Be subject to
Communication Uncertainties

Quan Quan, Member, IEEE, Rao Fu, and Kai-Yuan Cai

Abstract—Unmanned aerial vehicles are now becoming in-
creasingly accessible to amateur and commercial users alike. A
safety air traffic management system is needed to help ensure
that every newest entrant into the sky does not collide with
others. Much research has been done to design various methods
to perform collision avoidance with obstacles. However, how to
decide the safety radius subject to communication uncertainties
is still suspended. Based on assumptions on communication
uncertainties and supposed control performance, a separation
principle of the safety radius design and controller design
is proposed. With it, the safety radius in the design phase
(without uncertainties) and flight phase (subject to uncertainties)
are studied. Furthermore, the results are extended to multiple
obstacles. Simulations and experiments are carried out to show
the effectiveness of the proposed methods.

Index Terms—Safety radius, swarm, collision avoidance, com-
munication, separation principle, UAV, air traffic

I. INTRODUCTION

A. Motivation

The number of Unmanned aerial vehicles (UAVs) continues
to explode and they increasingly play an integral role in many
practical applications in places where the working environment
is dangerous or human capacity is limited [1]. However, in
increasingly busy airspace, the conflicts among UAVs will
occur frequently and become a serious problem. UAS Traffic
Management (UTM) by NASA in the USA [2] and U-SPACE
in the European Union [3] in progress are aiming to manage
UAVs for tactical self-separation and collision avoidance [4].

Traditionally, the main role of air traffic management (ATM)
is to keep a prescribed separation between all aircraft by using
centralized control. However, it is infeasible for increasing
UAVs because the traditional control method lacks scalability.
In order to address such a problem, free flight is a devel-
oping air traffic control method that uses decentralized con-
trol [5],[6]. By Automatic Dependent Surveillance-Broadcast
(ADS-B) [7], Vehicle to Vehicle (V2V) communication [8] or
5G mobile network [9], UAVs can receive the information of
their neighboring obstacles to avoid collision. Especially in
low-altitude airspace, utilizing the existing mobile networks
will eliminate the need to deploy new infrastructure and,
therefore, help to ensure connected UAVs are economically
feasible [10]. Communication is often considered for UAVs,
especially in the formation control, where the communication
connection establishes the network topological structure [11].
However, it is not enough because communication protocols
are subject to message delivery delay and packet loss. A V2V
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communication test on UAVs has been done by NASA for
UTM showing that the probability of packet loss will be
increased gradually to 1 after two UAVs keep about 1.3km
away [12]. A UAV typically relies on localization sensors,
monitoring systems, and/or wireless communication networks.
These sensing mechanisms will provide inaccurate position
information as a result of process delays, interferences, noise,
and quantization, jeopardizing the safety of the vehicle and
its environment [13]. If these uncertainties are not adequately
taken into consideration, then UAVs may become vulnerable to
collisions. This motivates us to study UAV collision avoidance
problem for moving obstacles subject to sensing uncertainties,
especially communication uncertainties.

B. Related Works

Much research has been done to design various methods
for UAVs to perform collision avoidance with obstacles [14],
including path planning [15], conflict resolution [16], model
predictive control [17], motion planning of teams [18], Mixed-
Integer Linear Programming (MILP) [19], potential field [20].
A simulation study of four typical collision avoidance methods
can be found in [21]. Most of existing collision avoidance
methods suppose that they can acquire exact sensing informa-
tion. However, in recent years, more and more attention has
been paid to collision avoidance subject to sensing uncertain-
ties. Two ways are followed to extend the existing collision
avoidance methods to handle sensing uncertainties for moving
obstacles.

(i) The major way is to predict the future obstacles’ tra-
jectory set with uncertainty models [22],[23],[24],[25]. Then,
control, decision or planning is obtained by optimization over
a future time horizon to avoid obstacles’ trajectory sets or
reachable sets in the sense of probability. This way is often
for the control methods without closed forms, like the opti-
mization methods mentioned above. However, as pointed out
in [26], under some circumstances the optimization problem
may be infeasible due to the sensing uncertainties. Moreover,
heavy computational burden always introduces difficulties in
the design process. A discussion will be given to show this
in Section IV.C. As far as we know, fewer communication
uncertainties are considered in this way.

(ii) The other way is to take the sensing uncertainties into
the analysis of the closed-loop of existing methods. Then,
adjust controller parameters to reject uncertainties [13]. This
way is often for the control methods with closed forms, like
the potential field method. However, the analysis will be
more difficult subject to the uncertainties like communication
uncertainties. What is worse, the communication uncertainties
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may make the closed-loop instability if the delay or packet
loss is not compensated for elaborately [27].

C. Idea

As pointed out in [28], communication (delivery delay and
packet loss) is a very significant and necessary factor that
should be considered in UAV swarm. The survey paper [14]
also takes communication uncertainties in collision avoidance
as a challenge. To deal with sensing uncertainties including
communication uncertainties, a complementary way of col-
lision avoidance is proposed in this paper with a principle
that separates the safety radius design for uncertainties and
controller design for collision avoidance. Here, the safety
radius design will take all sensing uncertainties into consid-
eration, while the controller design does not need to take
uncertainties into consideration. So, the two ways mentioned
above can also benefit from the safety radius design when
facing communication uncertainties. Intuitively, the safety
radius will be increased as the uncertainties are increased.
This is inspired by traffic rules in both the aviation area
[29] and the ground transportation area [30]. For example,
two airplanes should maintain standard enroute separation
between aircraft (5 nautical miles (9.3 km) horizontal and
1,000 feet (300 m) vertical) [29]. Also, as shown in Figure
1, it is well known that two cars on highway should keep a
certain safe distance. However, the experience to determine
the safety radius for manned and airline airplanes in high-
altitude airspace or safety distance for cars is difficult or
not at all to apply to decentralized-control UAVs in low-
altitude space because of the differences in pilot manner,
communication manner, flight manner and risk requirement.
On the other hand, obviously, the safety radius cannot be
just the physical radius of a UAV because many uncertainties,
like estimation error, communication delay and packet loss,
should be considered. As pointed out in [14], the safety radius
design is a challenge in the presence of sensing uncertainties,
especially communication uncertainties. Moreover, the case of
cooperative obstacles1 should also be taken into consideration,
which is quite different from the safety distance for cars in
highway (1D space).

D. Proposed Method and Contribution

To this end, this paper focuses on studying the safety radius
of decentralized-control Vertical TakeOff and Landing (VTOL)
UAVs, while the deterministic collision avoidance controller
could be any type as long as it satisfies certain conditions.
VTOL ability, which enables easier grounding or holding by
hovering, is an important ability that might be mandated by
authorities in high traffic areas such as lower altitude in the
urban airspace [31]. This is because VTOL drones are highly
versatile and can perform tasks in an environment with very
little available airspace. The study on the safety radius is
divided into two phases, namely the ‘offline’ design phase
and ‘online’ flight phase.

1The cooperative obstacles indicate that the obstacles can make collision
avoidance with the UAV at the same time, such as other UAVs.

(i) In the design phase, when a UAV is on the ground,
a question will arise that how far the UAV and an obstacle
should be kept without uncertainties in order to avoid a
collision in the presence of uncertainties?

(ii) On the other hand, when a UAV in the sky (in the
presence of uncertainties), a question will arise that how
far should the UAV and an obstacle be kept in the sense
of estimated distance (involve uncertainties but only can be
accessed) in order to avoid a collision?

To reply to these two questions, first, a VTOL UAV control
model and an obstacle model are proposed. The filtered
position is defined to replace position by considering velocity.
Based on these models above, assumptions on practical uncer-
tainties, like estimation error, communication delay and packet
loss, are considered in the broadcast information received by
the UAV. Assumptions on control performance are assumed for
the design phase and the flight phase, respectively. Since only
is the distance error used, the controller can be distributed.
Based on these assumptions, a principle of separation of
control and safety radius is proposed in the design phase
(Theorem 1). Based on this principle, the safety radius in the
design phase is derived. Then, the safety radius in the flight
phase is further derived in the sense of estimated distance.
These conclusions are further extended to multiple obstacles.
Simulations and experiments including delay and packet loss
uncertainties are carried out to show the effectiveness of the
proposed method.

ObstacleCar (Controller inside)

Safety distance

Fig. 1. Safe distance of cars in highway.

The major contribution of this paper is to separate the
controller design and the safety radius so that the existing
methods are available again (not need to be changed) in
the presence of communication uncertainties. Concretely, the
contributions of this paper are: i) a principle of separation of
control and safety radius proposed so that the same controller
with different safety radii can deal with different communica-
tion uncertainties; ii) safety radius derived in both the design
phase and the flight phase to reduce the conservatism as much
as possible; iii) filtered VTOL UAV control model in the form
of a single integrator which takes the maneuverability into
consideration.

The remainder of this paper is organized as follows. In
Section II, the problem is formulated based on a proposed
VTOL UAV control model, a proposed obstacle model, and
assumptions. The solutions to the problem and their extensions
are proposed in Section III. The effectiveness of the proposed
safety radius design is demonstrated by simulation and flight
experiments in Section IV. The conclusions are given in
Section V. Some details of the mathematical proof process
are given in Section VI as an appendix.
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II. NOMENCLATURE

ξ,p,v,vc Filtered position, position, velocity and
velocity command of the VTOL UAV

vm Maximum speed of the VTOL UAV
ξ̂, ξ̂o Estimated filtered position of the VTOL UAV

and the obstacle
rs,r̂s, r

′
s Safety radius, estimated safety radius and

practical safety radiusof the VTOL UAV

III. PROBLEM FORMULATION

To make this paper self-contained, we introduce the mod-
eling and some conclusions of [20]. Then, assumptions on
uncertainties and control performance are proposed. Based on
these models and assumptions, problems for the design and
flight phase objective are formulated.

A. VTOL UAV Control Model

In a local airspace, there exists a VTOL UAV defined as

U =
{
x ∈ R3 |‖x− p‖ < rm

}
(1)

where p ∈ R3 is the center of mass of the UAV, U , rm
are called the physical area and physical radius of the UAV
related to its physical size, respectively. Many organizations or
companies have designed some open-source semi-autonomous
autopilots or offered semi-autonomous autopilots with Soft-
ware Development Kits. The semi-autonomous autopilots can
be used for velocity control of VTOL UAVs. With such an
autopilot, the velocity of a VTOL UAV can track a given
velocity command in a reasonable time. It can not only
avoid the trouble of modifying the low-level source code of
autopilots but also utilize commercial autopilots to complete
various tasks. Based on this, the VTOL UAV satisfies the
following control model

ṗ = v

v̇ = −l (v − vc) (2)

where l > 0 is the velocity control gain of the VTOL UAV
with the unit s−1, which indicates the the VTOL UAV’s
maneuverability, v ∈ R3 is the velocity, and vc ∈ R3 is the
velocity command. From the model (2), lim

t→∞
‖v (t)− vc‖ = 0

if vc is constant. The constant l, called maneuver constant
here, depends on the VTOL UAV and the semi-autonomous
autopilot used, which can be obtained through flight experi-
ments. It stands for the maneuverability of the VTOL UAV. If
it is big, then v can converge to vc rapidly, vice versa. Here,
the velocity command vc (required to design) for the VTOL
UAV is subject to

max ‖vc‖ ≤ vm. (3)

Further, the motion of each multicopter is transformed into
a single integrator form to simplify the controller design
and analysis. Although the distances between two UAVs in
the three cases are the same, namely a marginal avoidance
distance, the case in Figure 2(b) needs to carry out avoidance

Fig. 2. Intuitive interpretation for the definition of filtered position [20].

urgently by considering the velocity. However, the case in
Figure 2(a) in fact does not need to be considered to perform
collision avoidance. With such an intuition, a filtered position
is defined as follows:

ξ , p +
1

l
v. (4)

Then

ξ̇ = ṗ +
1

l
v̇

= vc. (5)

Remark 1. It should be noted that the model (2) is a second-
order system. By the transformation (4), the model (2) is
transformed into a single integrator form to simplify the further
controller design and analysis. What is more, the proposed
model (2) has taken the maneuverability into consideration.
Although a commonly-used model

ṗ = vc (6)

is also a single integrator model, it does not take the maneuver-
ability into consideration. As a result, the true velocity v will
be different from vc. The difference will be big, if the UAV’s
maneuverability is low. This further increases the difference
between the true position and desired position especially in
some situations such as making an aggressive maneuver.

Remark 2. In many pieces of literature [32],[33], the double
integrator point-mass model is also employed for fixed-wing
aircraft, where the desired three-dimensional velocity input vc
subject to saturation constraints then maps to be the bank
angle, thrust, and load factor for example. Therefore, the
modeling of safety radius here can also be extended to fixed-
wing aircraft. One significant difference is that the fixed-wing
aircraft’s physical area and safety area are more suitable taken
as an ellipsoid. More studies are the future work.

B. Obstacle Model
In the same local airspace, there exists a moving obstacle

(it may be an aircraft or a balloon) defined as

O =
{
x ∈ R3 |‖x− po‖ < ro

}
where po ∈ R3 is the center of mass of the obstacle, O,ro
are called the obstacle area and obstacle radius, respectively.
Define

ξo , po +
1

l
vo
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where vo ∈ R3 is the velocity of the obstacle. The obstacle
satisfies the following model

max
∥∥∥ξ̇o

∥∥∥ ≤ vo

where vo > 0. This is a general model for any obstacle with
bounded velocity and acceleration. Let

ξ̇o = ao (7)

with max ‖ao‖ ≤ vo. Then (7) can be rewritten as

ṗo = vo

v̇o = −l (vo − ao) . (8)

In particular, if ‖vo (0)‖ ≤ vo and ao = vo (0) , then the
obstacle is moving with a constant velocity.

C. Assumptions on Uncertainties

Assumption 1(Estimate noise). For the UAV, the position
estimate during the flight is ξ+ ε, where ‖ε‖ ≤ b and ‖ε̇‖ ≤
vb.

Assumption 2(Broadcast delay & Packet loss). The non-
cooperative obstacle’s information can be surveilled and then
broadcasted by ground station, or be detected by airborne
sensors, while the cooperative obstacle can broadcast its
information to the UAV directly. The interval of receiving
information for the UAV is Ts > 0, while the time delay
(including the broadcast period) is 0 < τd ≤ τdm. Let θ ∈ [0, 1]
be the probability of packet loss, θ ≤ θm. The estimate ξ̂o is
a value that the UAV gets the estimated information from the
obstacle via communication with the following model

˙̄ξo (t) = −
1− θ
θTs

ξ̄o (t) +
1− θ
θTs

ξo (t− τd)

ξ̂o (t) = ξ̄o (t) + εo, ξ̄o (0) = ξo (−τd) (9)

where ‖εo‖ ≤ bo and ‖ε̇o‖ ≤ vbo .
As shown in Figure 4, the value ξ̂(·) represents the estimated

filtered position. There exist two cases:
• Information from itself. Based on Assumption 1, as for

the UAV itself, the filtered position estimate is

ξ̂ = ξ + ε (10)

because no broadcast delay and packet loss need to be
considered.

• Information from obstacle. The UAV has to receive
information from the obstacle via communication. As
shown in Figure 3, the UAV receives the information ξ̂o,
which has changed by estimate noise, broadcast delay,
and packet loss.

Broadcast 

Delay
Packet Loss

Obstacle

Estimate 
Noise

UAV

Position and 
Velocity 

+

+

Fig. 3. Shared information broadcasting.

The relationship among the position, the filtered position
and the estimated filtered position is shown in Figure 4,
where the UAV cannot access the position and the filtered
position (ground truth) but only the estimated filtered position
including uncertainties. From the UAV’s view, it senses itself
and obstacle at both estimated filtered positions (dash circle)
in Figure 4. If the UAV is at a high speed or the maneuver
constant l is small, then true position p will be far from its
filtered position.
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Fig. 4. Relation among position, filtered position, estimated filtered position,
where the estimated filtered position will appear in (9) and (10).

Remark 2. The reasonability of the selected model (9) is
explained as follows. First, a simple and reasonable estimation
method is adopted

ξ̂o (t) =

{
ξo (t− τd)

ξ̂o (t− Ts)

if data packet is received
if data packet is lost . (11)

This implies that the estimate will remain the last estimated
value if data packet is lost. Then, according to the probability
of packet loss θ, the expected value of ξ̂o is

ξ̄o (t) = θξ̄o (t− Ts) + (1− θ) ξo (t− τd) , t > 0 (12)

where ξ̄o =E
(
ξ̂o

)
. Roughly, the differential ξ̄o can be written

as
˙̄ξo (t) ≈

ξ̄o (t)− ξ̄o (t− Ts)

Ts
. (13)

Consequently, by using (13), the algebraic transformation of
(12) is

˙̄ξo (t) ≈ −
1− θ
θTs

ξ̄o (t) +
1− θ
θTs

ξo (t− τd) .

Furthermore, putting uncertainties on εo, we have the differen-
tial equation model (9). Therefore, we can replace the model
(11) with the new model (9). In the following simulation, the
reasonability of the selected model (9) will be further shown.

Remark 3. The broadcast delay τdm is the maximum delay
we can accept, which is the worst case. By using it, the most
conservative safety radius is derived. If the delay exceeds τdm,
then the packet can be considered as a loss. The time delay
and the probability of packet loss are very normal parameters
and can be easily measured for communication [12]. For most
UAVs, filters will be used to eliminate the high-frequency
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noise to preserve the low-frequency information. As a result,
b, vb, bo, vbo will be small.

D. Assumption on Controller

Let

p̃o , p− po

ṽo , v − vo

ξ̃o , ξ − ξo. (14)

For the UAV, no collision with the obstacle implies

U ∩ O = ∅

namely true position distance ‖p̃o‖ satisfies

‖p̃o‖ ≥ rm + ro. (15)

In the following, there are two assumptions about controller
design. Assumption 3 is only for the design phase, during
which a controller is designed for (2) without considering
uncertainties to make the filtered position distance, namely∥∥∥ξ̃o

∥∥∥ , greater than a certain distance.
Assumption 3 (Controller in Design Phase). Given a

designed safety radius rs > 0, with any ξ̃o (0) satisfying∥∥∥ξ̃o (0)
∥∥∥ ≥ rs + ro, a controller

vc = c
(
t, ξ̃o

)
(16)

for (2) can make ∥∥∥ξ̃o (t)
∥∥∥ ≥ rs + ro (17)

for any obstacle with
∥∥∥ξ̇o

∥∥∥ ≤ vm, where
∥∥∥c(t, ξ̃o

)∥∥∥ ≤ vm,

for t ≥ 0, ∀ξ̃o ∈ R3.
Assumption 3 is equivalent to Lemma 1.
Lemma 1. If and only if

min
x∈C

xTc (t,x) ≥ (rs + ro) vm (18)

then (17) holds for any obstacle
∥∥∥ξ̇o

∥∥∥ ≤ vm and
∥∥∥ξ̃o (0)

∥∥∥ ≥
rs + ro, where C =

{
x ∈R3

∣∣ ‖x‖ = rs + ro
}
.

Proof. The idea here relies on the following inequality

min
x∈C

xTẋ ≥ 0. (19)

If and only if (19) holds, then ‖x (t)‖ ≥ rs+ro for any x with
‖x (0)‖ ≥ rs + ro. The remaining proofs are in Appendix. �

In Assumption 3, we do not consider the uncertainties
because the communication uncertainties will be left to the
designed safety radius so that the same controller with differ-
ent design safety radii can deal with different communication
uncertainties. In the practice flight phase, eo rather than ξ̃o
is only available. So, the same controller is used but with
different feedback such as

vc = c (t, eo) (20)

for (2), where
eo , ξ̂ − ξ̂o. (21)

Since the controller cannot get the truth, we only can make the
estimated filtered position distance, namely ‖eo‖ , greater than
a certain distance. Assumption 4 is only for the flight phase in
the presence of uncertainties, describing what has happened.

Assumption 4 (Control Performance in Flight Phase). There
exists a practical safety radius r′s > 0 such that, for any
obstacle with

∥∥∥ξ̇o

∥∥∥ ≤ vm and ‖eo (0)‖ ≥ r′s + ro, a controller
for (2) can make

‖eo (t)‖ ≥ r′s + ro (22)

where t ≥ 0.

E. Objective
In the ‘offline’ design phase (in numerical simulation), a

question will arise that how far should the UAV and the
obstacle be kept without uncertainties offline in order to avoid
a collision in the presence of uncertainties?
• Design Phase Objective (Offline). Under Assumptions

1-3 and controller (16) for (2), the objective here is to
determine the estimated safety radius r̂s > 0 (it is related
to rs) that

‖eo (t)‖ ≥ r̂s + ro (23)

holds, where t ≥ 0. Furthermore, determine the designed
safety radius rs to make (15) hold in the presence of
uncertainties.

On the other hand, when the UAV in practice (in the presence
of uncertainties), a question will arise that how far should the
UAV and the obstacle be kept in the sense of the estimated
filtered position distance, namely ‖eo‖ , in order to avoid a
collision?
• Flight Phase Objective (Online). Under Assumptions 1-

2,4, the second objective is to determine the practical
safety radius r′s > 0 to satisfy (15).

Remark 4. The design phase objective is a type of the
principle of separation of control and safety radius. It can be
stated that under some assumptions, the problem of designing a
collision-avoidance controller with uncertainties can be solved
by designing a safety radius covering the uncertainties, which
feeds into a deterministic collision avoidance controller for
the system. Thus, the problem can be broken into two separate
parts, which facilitates the design. One controller with different
designed safety radii can deal with different communication
uncertainties. In some cases, controllers may not satisfy As-
sumption 3 but Assumption 4 in practice. This is because the
controller in Assumption 3 considers any initial condition, or
say the worst condition. But it is not necessary. For example,
a UAV and an obstacle are supposed to only fly along two
separate airlines without any collision avoidance control. In
this case, Assumption 3 is not satisfied, but Assumption 4 may
hold. This motivates us to consider the safety radius separately
in the design phase and the flight phase.

IV. SAFETY RADIUS DESIGN

Preliminaries are given first. By using them, the estimated
safety radius and the practical safety radius are designed
for the UAV and one obstacle. Furthermore, the results are
extended to multiple obstacles.
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A. Preliminary

First, an important lemma is proposed.
Lemma 2. Let x (t) ∈ Rn and y (t) ∈ Rn satisfy

ẋ (t) = −k (t)x (t) + k (t)y (t) (24)

where 0 < kmin ≤ k (t) ≤ kmax. If ‖y (t)‖ ≤ ymax, ‖ẏ (t)‖ ≤
vymax

, and ‖x (0)‖ ≤ ymax, then

‖x (t)‖ ≤ ymax, t ≥ 0. (25)

If ‖x (0)− y (0)‖ ≤ 1
kmin

vymax
holds, then

‖ẋ (t)‖ ≤ kmax

kmin
vymax , t ≥ 0. (26)

Proof. See Appendix. �
With Lemma 2 in hand, we have
Proposition 1. If ‖v (0)‖ ≤ vm and the model (2) is subject

to (3), then ‖v (t)‖ ≤ vm, t ≥ 0.
Proof. It is easy from Lemma 2. �
According to Proposition 1, we have

1

l
‖ṽo‖ ≤ rv (27)

where
rv =

vm + vo

l
. (28)

In the following, a relationship between the true position error
p̃o and the filtered position error ξ̃o is shown. Proposition 2
implies that the UAV and the obstacle will be separated largely
enough if their filtered position distance is separated largely
enough.

Proposition 2. For the VTOL UAV and the obstacle, if and
only if the filtered position error satisfies∥∥∥ξ̃o (t)

∥∥∥ ≥√r2 + r2v (29)

and ‖p̃o (0)‖ ≥ r, then ‖p̃o (t)‖ ≥ r, where t > 0. The
relationship “=” holds if vTvo

‖v‖‖vo‖ = −1.
Proof. See Appendix. �

B. Separation Principle

For the design phase, the principle of separation of con-
troller is stated in Theorem 1.

Theorem 1 (Separation Theorem). Suppose that the UAV
is with model (2) under Assumptions 1-2. Then (i) if and only
if (

eT
o ξ̇ − eT

o
˙̂ξo

)∣∣∣
‖eo‖=rs+ro

≥ (rs + ro) vb (30)

then (23) holds with r̂s = rs for any ‖eo (0)‖ ≥ rs + ro; (ii)
furthermore, under Assumptions 1-3, if

(rs + ro) (vm − vb) ≥ eT
o

˙̂ξo

∣∣∣
‖eo‖=rs+ro

(31)

then (23) holds with r̂s = rs; (iii) in particular, under
Assumptions 1-3, if

vm ≥ vo + vb + vbo , (32)

then (23) holds with r̂s = rs.
Proof. See Appendix. �

o

��
��

o

��
��

(b) Non-cooperative obstacle and UAV with same velocity direction

(a) Cooperative obstacle and UAV with opposite velocity direction

Fig. 5. A cooperative obstacle and a non-cooperative obstacle.

Remark 5. Through Theorem 1, we obtain ‖eo (t)‖ ≥ r̂s +
ro, based on which we can directly determine the lower bound
of the safety radius to make UAVs safe. From now on, we do
not need to consider the controller any more, because Theorem
1 has separated the controller design and safety radius design.
So, we call Theorem 1 as the separation theorem. It is worth
pointing out that the estimated safety radius r̂s is unpredictable
if Theorem 1 does not hold. In the worst case, the collision
cannot be avoided. An extreme example is given in [20] that
we can choose the obstacle dynamic as

ξ̇o = ξ̇ − ε ξo − ξ
‖ξo − ξ‖

(33)

where
∥∥∥ξ̇o

∥∥∥ ≤ ∥∥∥ξ̇∥∥∥+ ε ≤ vm + ε with ε > 0. From (33), it is
easy to see ‖ξo (t)− ξ (t)‖ < rs + ro within a finite time no
matter how small ε is. This implies that the obstacle is chasing
after the UAV and then hits it finally.

Remark 6. Let us consider a cooperative obstacle in the best
case shown in Figure 5(a) and a non-cooperative obstacle in
the worst case shown in Figure 5(b). The cooperative obstacle
can be considered as another UAV with the same controller,
namely

ao = c (t,−eo)

where, for simplicity, −eo is used for another UAV’s feedback
approximately. The obstacle (another UAV) will, in turn, take
the UAV as its “obstacle” and will make collision avoidance
simultaneously as well. According to Lemma 1, the following
inequality

−eT
o c (t,−eo)

∣∣
‖eo‖=rs+ro

≥ (rs + ro) vm

still holds. Since ξ̇o = c (t,−eo) , we have

eT
o ξ̇o

∣∣∣
‖eo‖=rs+ro

≤ − (rs + ro) vm < 0.

If ˙̂ξo ≈ ξ̇o, then eT
o

˙̂ξo

∣∣∣
‖eo‖=rs+ro

< 0. Therefore, (31) is

satisfied in most cases without the requirement (32). Figure
5(a) shows the best case that the UAV and obstacle can keep
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away simultaneously with the opposite direction. Intuitively,
no limitation will be put on vo. Figure 5(b) shows the worst
case that the UAV and obstacle move simultaneously in the
same direction. In this case, the requirement (32) implies that
the UAV should have a faster speed than the obstacle’s speed.

C. Safety Radius Design

Based on rm, ro > 0, we will further determine rs > 0 in
order to avoid a collision in the presence of uncertainties.
For this purpose, we need to analyze the relationship between
the filtered position distance and the true position distance
(Proposition 2 has done), and the relationship between the
filtered position distance and the estimated filtered position
distance (Proposition 3 will show), as shown in Figure 6.

Relationship between Filtered Position 

Distance and Estimated Filtered Position 

Distance (Proposition 3)

Relationship between Filtered 

Position Distance and True Position 

Distance (Proposition 2)

True Position Distance00000000                             

Estimated Filtered Position Distance 

m o
r r> +

s o
r r> +

s
?r

Fig. 6. Relationship from true position distance to estimated filtered position
distance.

Proposition 3. Under Assumptions 1-2, given any r > 0, if

‖eo (t)‖ ≥ r + re, t ≥ 0 (34)

then ∥∥∥ξ̃o (t)
∥∥∥ ≥ r, t ≥ 0 (35)

where
re =

θmTs

1− θm
vo + voτdm + b+ bo (36)

Proof. See Appendix. �
With Lemma 2, we start to determine the lower bound of

the safety radius rs in the design phase.
Theorem 2. Under Assumptions 1-3, if the designed safety

radius satisfies

rs ≥
√
(rm + ro)

2
+ r2v + re − ro, (37)

then condition (15) holds.
Proof. According to Proposition 3, if

‖eo (t)‖ ≥ rs + ro

then ∥∥∥ξ̃o (t)
∥∥∥ ≥ rs + ro − re.

If (37) holds, then

(rs + ro − re)2 ≥ (rm + ro)
2
+ r2v

namely ∥∥∥ξ̃o (t)
∥∥∥ ≥√(rm + ro)

2
+ r2v .

According to Proposition 2, we have

‖p̃o (t)‖ ≥ rm + ro.

�
With Theorem 2 in hand, the solution to the flight phase

objective is easy to get.
Theorem 3. Under Assumptions 1-2,4, if the practical safety

radius satisfies

r′s ≥
√

(rm + ro)
2
+ r2v + re − ro

then (15) holds.
Proof. It is similar to the proof of Theorem 2. �

D. Extension to Multiple Obstacles

The results above can be extended to multiple obstacles as
well. There are M obstacles

Oo,k =
{
x ∈ R3 |‖x− po,k‖ ≤ ro

}
where po,k ∈ R3 is the center position of the kth obstacle,
vo,k = ṗo,k ∈ R3 is the velocity of the kth obstacle, k =
1, · · · ,M . Define

ξo,k , po,k +
1

l
vo,k

ξ̃o,k , ξ − ξo,k.

These obstacles satisfy max
∥∥∥ξ̇o,k

∥∥∥ ≤ vo, k = 1, · · · ,M . For
the UAV, no collision with the multiple obstacles implies

U ∩ Oo,k = ∅ (38)

where k = 1, · · · ,M. To extend the conclusions in Theorems
1-2 to multiple moving obstacles, we have Assumptions 2’,3’
to replace with Assumptions 2,3 in the following.

Assumption 2’ (Broadcast delay & Packet loss). The kth
obstacle can be surveilled and then broadcast, or it can
broadcast its information to the UAV. The interval of re-
ceiving information for the UAV is Ts > 0, while the time
delay (including the broadcast period) of the kth obstacle is
0 < τd,k ≤ τdm. Let θk ∈ [0, 1] be the probability of packet
loss for the kth obstacle, θk ≤ θm < 1 . The estimate ξ̂o,k is
a value that the kth UAV gets the estimated information from
the obstacle via communication with the following model

˙̄ξo,k (t) = −
1− θk
θkTs

ξ̄o,k (t) +
1− θk
θkTs

ξo,k (t− τd,k)

ξ̂o,k (t) = ξ̄o,k (t) + εo,k, ξ̄o,k (0) = ξo,k (−τd,k) (39)

where ‖εo,k‖ ≤ bo and ‖ε̇o,k‖ ≤ vbo , k = 1, · · · ,M.
The avoidance case with multiple obstacles is complex. As

stated in [20], the UAV cannot avoid collision with obstacles
no matter what a controller uses under some initial conditions,
such as a case shown in Figure 7. For such a purpose,



8

Fig. 7. A UAV surrounded by four obstacles [20].

we define a set F for multiple obstacles’ and UAV’s initial
conditions in Assumption 3’.

Assumption 3’. Given a designed safety radius rs > 0, with
any

(
ξ̃o,1 (0) , · · · , ξ̃o,M (0)

)
∈ F , a controller

vc = c
(
t, ξ̃o,1, · · · ,ξ̃o,M

)
(40)

for (2) can make ∥∥∥ξ̃o,k (t)
∥∥∥ ≥ rs + ro (41)

for obstacles with
∥∥∥ξ̇o,k

∥∥∥ ≤ vo, where∥∥∥c(t, ξ̃o,1, · · · ,ξ̃o,M

)∥∥∥ ≤ vm, for t ≥ 0, k = 1, · · · ,M.

Theorem 4. Suppose that the UAV is with model (2) under
Assumptions 1-2. Then (i) if and only if(

eT
o,kξ̇ − eT

o,k
˙̂ξo,k

)∣∣∣
‖eo,k‖=rs+ro

≥ (rs + ro) vb (42)

then
‖eo,k (t)‖ ≥ rs + ro (43)

for any (eo,1 (0) , · · · , eo,M (0)) ∈ F where eo,k , ξ̂ − ξ̂o,k,
k = 1, · · · ,M. (ii) In particular, under Assumptions 1,2’,3’ ,
if (32) holds, then (43), where k = 1, · · · ,M. Furthermore, if
rs satisfies (37), then (38) holds for k = 1, · · · ,M .

Proof. Proof of Conclusion (i) does not rely on Assumption
3’, which is similar to Conclusion (i) of Theorem 1. So, we
omit it. Let us prove Conclusion (ii). The controller (40) is
rewritten as

vc = c (t, eo,1, · · · , eo,M )

= c
(
t, ξ − ξ′o,1, · · · , ξ − ξ

′
o,M

)
where ξ′o,k , ξ̂o,k−ε. New obstacle O′k with filtered position
ξ′o,k are taken into consideration, where k = 1, · · · ,M .. If(
ξ (0)− ξ′o,1 (0) , · · · , ξ (0)− ξ

′
o,M (0)

)
∈ F and

∥∥∥ξ̇′o,k

∥∥∥ ≤
vo, then ∥∥ξ − ξ′o,k

∥∥ ≥ rs + ro

namely (43) holds, according to Assumption 3’, k =

1, · · · ,M . The left problem is to study the condition
∥∥∥ξ̇′o,k

∥∥∥ ≤
vm. The derivative ξ′o,k is

ξ̇
′
o,k = ˙̄ξo,k + ε̇o,k − ε̇. (44)

In view of (9), according to Lemma 1, we have∥∥∥ ˙̄ξo,k

∥∥∥ ≤ ∥∥∥ξ̇o,k (t− τd,k)
∥∥∥

≤ vo.

Then, (44) is bounded as∥∥∥ξ̇′o,k

∥∥∥ ≤ ∥∥∥ ˙̄ξo,k

∥∥∥+ ‖ε̇o,k‖+ ‖ε̇‖

≤ vo + vbo + vb

where Assumptions 1,2’ are utilized. Therefore, if (32) holds,
then (43) holds with r̂s = rs. �

Remark 7. The introduction to the set F is to make the
problem completed, which is out of the scope of this paper.
How to find the set F is an interesting problem, which can
be formulated as: given a T > 0, the initial condition set(
ξ̃o,1 (0) , · · · , ξ̃o,M (0)

)
∈ F is a set that can make

max
vc

min
ao,1,···ao,M

(∥∥∥ξ̃o,1 (t)
∥∥∥ , · · · ,∥∥∥ξ̃o,M (t)

∥∥∥) ≥ rs + ro, 0 ≤ t ≤ T

s.t. ˙̃ξo,k = vc − ao,k, ‖vc‖ ≤ vm, ‖ao,k‖ ≤ vo, k = 1, · · · ,M.

Interested readers can take the problem as the feasibility of the
pursuit-evasion game problem with multiple entities chasing a
single target or prey [34] or group chase and escape problem
[35].

To extend the conclusions in Theorem 3 to multiple moving
obstacles, we have Assumption 4’ to replace with Assumption
4 in the following.

Assumption 4’. There exists a practical safety radius r′s >
0 such that, for obstacles with

∥∥∥ξ̇o,k

∥∥∥ ≤ vo and ‖eo,k (0)‖ ≥
r′s + ro, a controller for (2) can make

‖eo,k (0)‖ ≥ r′s + ro

where k = 1, · · · ,M .
In the flight phase, the results in Theorem 3 are extended

in the following Theorem 5 for multiple obstacles.
Theorem 5. Under Assumptions 1,2’,4’, if the practical

safety radius satisfies

r′s ≥
√

(rm + ro)
2
+ r2v + re − ro

then (38) holds for k = 1, · · · ,M .
Proof. It is similar to the proof of Theorem 3. �

V. SIMULATION AND EXPERIMENTS

A. Simulation

The VTOL UAV’s control model in the simulation scenarios
are modeled as 2. In the first two simulations for avoiding non-
cooperative obstacles, with the proposed separation principle
(Theorems 1,4) and the designed safety radius (Theorem 2),
we will show that the condition (32) is necessary in order
to make avoidance subject to uncertainties. However, for
cooperative obstacles which can make avoidance simultane-
ously, the condition (32) is not necessary, which is shown
in the last simulation. The controllers [20] and [36] for
UAV to avoid non-cooperative and cooperative obstacles are
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Case * b(m) bo(m) vb(m/s) vbo (m/s) τd(s) θ rs(m)
Case A 0 0 0 0 0 0 5.30
Case B 3 1 3 1 1 10% 14.30
Case C 5 2 6 5 2 20% 22.31

TABLE I
DIFFERENT COMMUNICATION PARAMETERS.

-3 0

1 2

3

x-axis direction error

-3 0 3

y-axis direction error

Fig. 8. Statistical property of obstacle estimate noise.

employed, respectively.2 The results of Theorems 3,5 can be
observed directly from these results of the following simu-
lations by choosing r̂s = rs. A video about simulations and
experiments is available on https://youtu.be/MawyB3eoZQ0 or
http://t.cn/A6ZD7otD.

1) Simulation with One Non-Cooperative Obstacle:

• Simulation Setting. As shown in Figure 9, a scenario
that one static UAV makes avoidance with one mov-
ing non-cooperative obstacle is considered. The UAV’s
controller to avoid non-cooperative obstacles is designed
from our previous work [20], where the specific form
and the proof of collision avoidance are both given.
This indicates that Assumption 3 is satisfied. Further, the
simulation parameters are set as follows. The UAV with
a physical radius rm = 5m is at p (0) = [0 0 100]

Tm
initially. The UAV’s maneuver constant is l = 5s−1,
and the maximum speed vm = 10m/s. The obstacle is
at po (0) = [40 0 100]

Tm initially with radius ro = 10m
and a constant velocity vo = [−5 0 0]

Tm/s.3 The interval
of receiving information for the UAV is Ts = 0.01s.
Communication uncertainty parameters are set as Table I,
where only Case A has no uncertainties. We make Case B
satisfy the condition of (32) but Case C not intentionally.
The designed safety radii are all chosen according to (37)
in Theorem 2.

• Assumption Verification. The comparison of model (9)
in Assumption 2 with the model (11) is studied by taking
Case B as an example, where the value ξ̂o is from (11)
taking as the ground truth and ξ̄o (t) from (9). The two
models with the same communication parameters have
the same input ξo. Let us study the noise εo = ξ̂o −
ξ̄o. As shown in Figure 8, for the UAV, the noise εo
is bounded, moreover, obeying the normal distribution
by Kolmogorov-Smirnov test. Therefore, Assumption 2
is reasonable.

2For the convenience of reproduction, the simulation codes of this work is
available at https://rfly.buaa.edu.cn/res/codes\ safetyradiusdesign.rar.

3It should be pointing out that the change of maximum velocity of the UAV
and obstacle will only affect the scale, and will not have any impact on the
results in general.

• Safety Radius Verification. Under the initial conditions
above and an obstacle avoidance controller, the true posi-
tion distance ‖p̃o (t)‖ and the estimated filtered position
distance ‖eo (t)‖ between the UAV and the obstacle are
shown in Figure 10. Figure 10(a) corresponding to Case A
shows that Assumption 3 is satisfied. The results observed
from Figure 9 and Figure 10(b) corresponding to Case B,
are consistent with conclusion (iii) of Theorem 1 and the
result in Theorem 2. As shown in Figure 9, it should
be noted that ‖eo (t)‖ ≥ rs + ro holds consistent with
conclusion (iii) in Theorem 1 during the flight, although∥∥∥ξ̃o (t)

∥∥∥ < rs + ro after t = 5s because of uncertainties.
Since Case C does not satisfy the condition of (32), as
shown in Figure 10(c), ‖eo (t)‖ < rs + ro at time about
11.25s.

t = s

ro

rm

rs

-

t = 5s

-

t = 1 s

-

t = 15s

-

Fig. 9. Positions of UAV and obstacle at different times in Case B of
numerical simulation

2) Simulation with Multiple Non-Cooperative Obstacles:

• Simulation Setting. As shown in Figure 11, a sce-
nario that one UAV makes avoidance with three moving
non-cooperative obstacles is considered. These obsta-
cles can avoid each other except for the UAV. The
simulation parameters are set as follows. The initial
position of the UAV is set as p (0) = [0 40 100]

Tm
with radius rm = 5m; the initial positions of obstacles
are set as po,1 (0) = [−40 − 40 100]

Tm, po,2 (0) =
[0 − 40 100]

Tm, po,3 (0) = [40 − 40 100]
Tm with ra-

dius ro = 10m and the velocity vo,i = i + 2m/s,
i = 1, 2, 3. The others about the UAV and uncertainties
are the same as those in the last simulation.

• Safety Radius Verification. Under the initial conditions
above and an obstacle avoidance controller, the mini-
mum true position distance min

i∈{1,2,3}
‖p̃o,i (t)‖ and the

estimated filtered position distance min
i∈{1,2,3}

‖eo,i (t)‖ be-

tween the UAV and the obstacle are shown in Figure 12.
Figure 12(a) corresponding to Case A shows that Assump-
tion 3’ is satisfied. The results observed from Figure 11
and Figure 12(b) corresponding to Case B, are consistent
with conclusion (ii) of Theorem 4. As shown in Figure
11, it should be noted that min

i∈{1,2,3}
‖eo (t)‖ ≥ rs + ro

holds consistent with conclusion (ii) in Theorem 4 during
the flight, although min

i∈{1,2,3}

∥∥∥ξ̃o,i (t)
∥∥∥ < rs + ro about

t = 10s because of uncertainties. Since Case C does not
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3

32.
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r r
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Fig. 10. The position distance and estimated filtered position distance between
a UAV and one obstacle in numerical simulation.

satisfy the condition of (32), as shown in Figure 12(c),
min

i∈{1,2,3}
‖eo,i (t)‖ < rs + ro at time about 6s.
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Fig. 11. Positions of UAV and three obstacles at different time in Case B of
numerical simulation.

3) Simulation with Multiple Cooperative Obstacles:
• Simulation Setting. As shown in Figure 13, a scenario

that one UAV makes avoidance with three moving co-
operative obstacles is considered. The UAV and these
obstacles can avoid each other. The UAV and cooperative
obstacles adpot the same distributed control protocol
designed from our previous work [36], where the specific
form and the proof of inter-agent collision avoidance are
both given. This indicates that Assumption 3 is satisfied.
The simulation parameters are set as follows. The initial

r r

r r

r r
rs ro

rs ro

rs ro

Fig. 12. Minimum position distance and estimated filtered position distance
from UAV to three non-cooperative obstacles in numerical simulation.

position of the UAV is set as p (0) = [−40 40 100]
Tm

with radius rm = 5m. The UAV’s maneuver constant
is l = 5s−1, and the maximum speed vm = 5m/s.
The interval of receiving information for the UAV is
Ts = 0.01s. The initial positions of obstacles are set as
po,1 (0) = [40 40 100]

Tm, po,2 (0) = [40 − 40 100]
Tm,

po,3 (0) = [−40 − 40 100]
Tm with radius ro = 10m and

their velocities vo,i = i + 2m/s, i = 1, 2, 3. Communi-
cation uncertainty parameters are set as Case B in Table
I. The designed safety radius is chosen as rs = 14.14m
according to (37) in Theorem 2. It is worth noting that the
condition of (32) does not satisfy because of vm = vo,3.

• Safety Radius Verification. Under the initial conditions
above and an obstacle avoidance controller, the minimum
true position distance min

i∈{1,2,3}
‖p̃o,i (t)‖ and the esti-

mated filtered position distance min
i∈{1,2,3}

‖eo,i (t)‖ from

the UAV to these obstacles are shown in Figure 14. Since
the obstacles and the UAV can make collision avoidance
with each other, the separation principle still holds even if
vm = vo,3. For a simple case, Remark 5 has explained the
reason. Consequently, min

i∈{1,2,3}
‖eo (t)‖ ≥ rs + ro holds

during the flight observed from Figure 13.

B. Experiments

A motion capture system called OptiTrack is installed, from
which we can get the ground truth of the position, velocity
and, orientation of each multicopter. The laptop is connected
to these multicopters and OptiTrack by a local network,
providing the proposed controller and a real-time position
plotting module. In the first experiment for a non-cooperative
obstacle, with the proposed separation principle (Theorem 1)
and designed safety radius (Theorem 2), we will show that the
condition (32) can make avoidance subject to uncertainties.
However, for cooperative obstacles which can make avoidance
simultaneously, the condition (32) is not necessary, which is
shown in the last two experiments. The results of Theorems 3,5
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Fig. 13. Positions of UAV and three obstacles at different times in Case B
of numerical simulation.

rm ro

rs ro

Fig. 14. Minimum position distance and filtered position distance from UAV
to three cooperative obstacles in numerical simulation.

can be observed directly from these results of the following
experiments by choosing r̂s = rs.

1) Experiment with One Non-Cooperative Hovering Obsta-
cle:
• Experiment Setting. An experiment scenario that one

UAV makes avoidance with one non-cooperative hover-
ing obstacle is considered. The experiment parameters
are set as follows. The UAV with physical radius rm
= 0.2m is at p (0) = [1.5 0 1]

Tm initially. The UAV’s
maneuver constant is l = 2s−1, and the maximum speed
vm = 0.1m/s. The obstacle is at po (0) = [−0.2 0 1]

Tm
initially with radius ro = 0.2m. The interval of receiving
information for the UAV is Ts = 0.01s. Communication
uncertainty parameters are set as b = 0.10m, bo = 0.03m,

rm ro

rs ro

67

Fig. 15. The position distance and estimated filtered position distance between
a UAV and one hovering obstacle in the flight experiment

vb = 0.08m/s, vbo = 0.01m/s, τd = 1s, θ = 10%.
The condition of (32) in Theorem 2 is satisfied in this
scenario. The safety radius rs = 0.47m is designed with
such defined parameters according to Theorem 2.

• Safety Radius Verification. Under the initial condi-
tions above and an obstacle avoidance controller, the
true position distance and the estimated filtered position
distance from the UAV to the obstacle are shown in
Figure 15. The positions of multicopters during the whole
flight experiment are shown in Figure 16. The UAV can
complete its route at about 77s, keeping a safe distance
from the obstacle without conflict. This is consistent with
the separation principle (Theorem 1) with the designed
safety radius (Theorem 2).

2) Experiment with One Cooperative Moving Obstacle:
• Experiment Setting. An experiment scenario that one

static UAV makes avoidance with one moving cooperative
obstacle is considered. The experiment parameters are set
as follows. The UAV with physical radius rm = 0.2m is at
p (0) = [1.5 0 1]

Tm initially. The UAV’s maneuver con-
stant is l = 2s−1, and the maximum speed vm = 0.1m/s.
The obstacle is at po (0) = [−1.5 0 1]

Tm initially with
radius ro = 0.2m and vo = 0.1m/s. The interval of
receiving information for the UAV is Ts = 0.01s. Com-
munication uncertainty parameters are set as b = 0.2m,
bo = 0.1m, vb = 0.08m/s, vbo = 0.01m/s, τd = 2s,
θ = 30%. The safety radius rs = 0.71m is designed
with such defined parameters by Theorem 4.

• Safety Radius Verification. Under the initial condi-
tions above and an obstacle avoidance controller, the
true position distance and the estimated filtered position
distance from the UAV to the obstacle are shown in
Figure 17. The positions of multicopters during the whole
flight experiment are shown in Figure 18. Since the
obstacle and the UAV can make collision avoidance with
each other, the separation principle still holds even if
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Fig. 16. Positions of a UAV and a non-cooperative hovering obstacle at
different times in the flight experiment.
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Fig. 17. The position distance and estimated filtered position distance between
a UAV and one moving obstacle in the flight experiment

vm = vo. Remark 5 has explained the reason. This is
consistent with the separation principle (Theorem 1) with
the designed safety radius (Theorem 2).

3) Experiment with Multiple Cooperative Obstacles:

• Experiment Setting. An experiment scenario that one
UAV makes avoidance with three moving cooperative
obstacles is considered. The experiment parameters are

U

U

U

U

U

U U

rs
rm
ro
Estimated Position by UAV

Fig. 18. Positions of UAV and a moving cooperative obstacle at different
times in the flight experiment

set as follows. The UAV with a physical radius rm
= 0.2m is at p (0) = [−1 1 1]

Tm initially. The UAV’s
maneuver constant is l = 2, and the maximum speed
vm = 0.1m/s. The obstacles are at po,1 (0) = [1 1 1]

Tm,
po,2 (0) = [1 − 1 1]

Tm, po,3 (0) = [−1 − 1 1]
Tm

initially with radius ro = 0.23m and vo = 0.1m/s.
The interval of receiving information for the UAV is
Ts = 0.01s. Communication uncertainty parameters are
set as b = 0.012m, bo = 0.01m, vb = 0.012m/s,
vbo = 0.01m/s, τd = 0.1s, θ = 1%. The safety radius
rs = 0.23m is designed according to Theorem 2.

• Safety Radius Verification. Under the initial conditions
above and an obstacle-avoidance controller, the minimum
true position distance min

i∈{1,2,3}
‖p̃o,i (t)‖ and the esti-

mated filtered position distance min
i∈{1,2,3}

‖eo,i (t)‖ from

the UAV to these obstacles are shown in Figure 19. Since
these obstacles and the UAV can make collision avoid-
ance with each other, the separation principle still holds
even if vm = vo. Consequently, min

i∈{1,2,3}
‖eo (t)‖ ≥ rs+ro

holds during the flight observed from Figure 19.

C. Discussion

In Assumption 3, we proposed some requirements on the
controller performance without considering the communica-
tion uncertainties. For multi-agent systems, the current con-
trol methods mainly include the optimal trajectory method
and forcefield-based method. By simulation and analysis, the
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Fig. 19. Positions of four UAVs at different time in flight experiment.

performance of different control methods subject to commu-
nication uncertainties is shown.

1) Forcefield-Based Control without Safety Radius Design:
The impact of communication uncertainties on forcefield-
based control is first shown by an example of formation
control. The objective of the formation control method re-
quires agents maintaining a certain formation. In [37], ex-
isting results of the formation control were introduced and
categorized. We choose a simple and classical displacement-
based control method to show the ability of the formation
control method subject to communication uncertainties. The
UAV’s maneuver constant is l = 5, and the maximum
speed vm = 10m/s. The initial positions of UAVs are set
as p1 (0) = [−40 40 100]

Tm, p2 (0) = [40 40 100]
Tm,

p3 (0) = [40 − 40 100]
Tm, p4 (0) = [−40 − 40 100]

Tm.
The communication topology and desired formation of UAVs
are shown in Figure 20(a). For simplicity, we only consider
the impact of time delay on formation. As shown in Figure
20(b), the UAVs cannot converge to the desired formation in
a short time subject to time delay. The result is similar to
[38], which indicates that this objective is difficult to achieve
if the communication uncertainties are not compensated for
elaborately in formation controllers.

Estimating-and-then-compensating is a way to deal with
uncertainty. However, a deadlock may happen if the noise,
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Fig. 20. Performance of formation control method subject to communication
uncertainties.
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Fig. 21. Positions of two UAVs without and with the designed safety radius.

delay, or packet loss is not compensated elaborately. Let
us consider a simple but particular example that two UAVs
pass through a trapezoid tube. As shown in Figure 21(a),
in the presence of uncertainties, UAV1 considers UAV2 at
the position of UAV2’, while UAV2 considers UAV1 at the
position of UAV1’. In this case, a deadlock will exist, namely,
each UAV cannot pass the exit. Even if a deadlock does not
exist, these uncertainties will slow down the movement of
the swarm. The proposed safety radius for uncertainties can
solve this problem by separating the two UAVs large enough
as shown in Figure 21(b). However, a big safety radius will
decrease traffic efficiency, but, on the other hand, make sure
safety. A further study on safety radius is deserved to achieve
a trade-off between safety and efficiency for UAV swarm.

2) Calculation Speed Analysis of Optimal Trajectory
Method & Forcefield-Based Method with Safety Radius De-
sign: We discuss the performance of different control methods
with the safety radius design. The objective of the optimal
trajectory method requires optimal solutions of length, time,
or energy of path, which leads to longer calculation time of the
online path-planning problem. In the simulation, we compare
the online path-planning calculation speed of an optimization-
based algorithm with the forcefield-based method by MAT-
LAB. In [39], a path-planning algorithm using Bezier curves
with the open-source code at https://github.com/byuflowlab/
uav-path-optimization is proposed, which can find the optimal
solutions to the offline and online path-planning problem.
We design a scenario that contains 10 UAVs at the same
altitude with rs = 5m. The initial position of 1st UAV
p1 (0) = [0 0 100]

Tm, while the other UAVs are distributed
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randomly in a 100m × 100m space with a constant velocity
[1 0 0]T. For two different algorithms, we design 10 sets
of random initial positions for the other UAVs, run the
simulation on the same computer, and record the average
calculation time when the 1st UAV get a feasible path to its
destination [100 0 100]

Tm. Figure 22 shows the calculation
speed performance with respect to the density by changing
the safety radius and the number of UAVs separately. As
shown in Figure 22, for the same airspace, if the number
of UAVs increases or the safety radius of UAVs gets larger,
the calculation speed of the optimization-based algorithm will
be decreased rapidly because the probability of constraint
being triggered is increasing, which brings more complex
calculations. On the contrary, the forcefield-based method
can better deal with such an online path-planning problem.
However, the optimal trajectory method is better to deal with
the offline path-planning problem.
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Fig. 22. Calculation speed of different algorithms.

VI. CONCLUSIONS

How to decide the safety radius taking communication
uncertainties into consideration is studied in this paper. First, a
VTOL UAV model and obstacle model are introduced. Then,
some assumptions of communication and control are made,
including estimated noise, broadcast delay, and packet loss.
Based on models and assumptions, problems are formulated
to determine the designed safety radius in the design phase
objective and the practical safety radius in the flight phase
objective. For the first objective, the principle of separation
of control and safety radius (Theorem 1) is proposed. With
this principle, the designed safety radius is determined in
Theorems 2,4. Then, the practical safety radius is determined
in Theorems 3,5. By the proposed methods, a UAV can
keep a safe distance from other obstacles during the whole
flight. This is very necessary to guarantee flight safety in
practice. Simulations and experiments are given to show the
effectiveness of the proposed method from the functional
requirement and the safety requirement.

VII. APPENDIX

A. Proof of Lemma 1

(i) Proof of Sufficiency. Since

˙̃
ξo = c

(
t, ξ̃o

)
− ξ̇o

we have
ξ̃

T
o

˙̃ξo = ξ̃
T
o

(
c
(
t, ξ̃o

)
− ξ̇o

)
. (45)

If (17) is violated, due to the continuity of ξ̃o, there must exist
a time t = t1 such that

∥∥∥ξ̃T
o (t1) ξ̃o (t1)

∥∥∥ = (rs + ro)
2. Since∥∥∥ξ̇o

∥∥∥ ≤ vm, (45) becomes

ξ̃
T
o

˙̃
ξo

∣∣∣
t=t1
≥ ξ̃

T
o c
(
t1, ξ̃o

)
−
∥∥∥ξ̃o (t1)

∥∥∥∥∥∥ξ̇o (t1)
∥∥∥

≥ ξ̃
T
o c
(
t1, ξ̃o

)
− (rs + ro) vm.

If (18) holds, then ξ̃
T
o

˙̃ξo

∣∣∣
t=t1

≥ 0. This implies that∥∥∥ξ̃T
o (t1) ξ̃o (t1)

∥∥∥ will not be decreased any more. So, (17)

cannot be violated for any
∥∥∥ξ̃o (0)

∥∥∥ ≥ rs + ro. (ii) Proof of
Necessity. This necessary condition is proved by contradiction.
Suppose that there exists an x∗ ∈ C such that

x∗Tc (t,x∗) = (rs + ro) vm − ε
< (rs + ro) vm

where ε > 0. We will show that (17) will not hold for any
obstacle

∥∥∥ξ̇o

∥∥∥ ≤ vm and
∥∥∥ξ̃o (0)

∥∥∥ ≥ rs + ro. Let ξ̃o (0) =

x∗ and
ξ̇o (0) =

vm

rs + ro
ξ̃o (0) .

So,
∥∥∥ξ̇o (0)

∥∥∥ = vm
rs+ro

∥∥∥ξ̃o (0)
∥∥∥ = vm. In this case, (45)

becomes

ξ̃
T
o

˙̃
ξo

∣∣∣
t=0

= (rs + ro) vm − ε−
vm

rs + ro
ξ̃

T
o (0) ξ̃o (0)

= −ε < 0.

This implies that
∥∥∥ξ̃o (t)

∥∥∥ will be further decreased around

t = 0, namely there exists a t = t2 such that
∥∥∥ξ̃o (t2)

∥∥∥ <
rs + ro. This contradicts with (17). So, (18) is also necessary.
�

B. Proof of Lemma 2

First, multiplying xT (t) on the left side of (24) results in

xT (t) ẋ (t) = −k (t)xT (t)x (t) + k (t)xT (t)y (t) . (46)

Since

xT (t) ẋ (t) =
1

2

dxT (t)x (t)

dt

=
1

2

d ‖x (t)‖2

dt
= ‖x (t)‖ d ‖x (t)‖

dt
(47)

the equation (46) becomes

d ‖x (t)‖
dt

= −k (t) ‖x (t)‖+ k (t)
1

‖x (t)‖
xT (t)y (t) .

If ‖y (t)‖ ≤ ymax, then

d ‖x (t)‖
dt

≤ −k (t) ‖x (t)‖+ k (t) ymax.

Let z , ‖x‖ − ymax. Then

dz (t)
dt
≤ −k (t) z (t) .
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We consider another equation that

dz′ (t)
dt

= −k (t) z′ (t) , z′ (0) = z (0) .

The solution to the equation above is

z′ (t) = e

∫ t

0

−k(s)ds
z (0) . (48)

Since z (0) ≤ 0, we have z′ (t) ≤ 0 according to (48).
Consequently, z (t) ≤ z′ (t) ≤ 0 according to the comparison
lemma [40, p. 102], namely ‖x (t)‖ ≤ ymax.

In the following, the conclusion (26) will be shown. Let
z , x− y. Then (24) can be transformed as

ż (t) = −k (t) z (t) + k (t)

(
1

k (t)
ẏ

)
.

If ‖z (0)‖ ≤ 1
kmin

vymax
, then

‖z (t)‖ ≤ 1

kmin
vymax

(49)

where the conclusion (25) is utilized. The equation (24) is
further written as

ẋ (t) = −k (t) z (t) .

It can be further written as

‖ẋ (t)‖ ≤ |k (t)| ‖z (t)‖
≤ kmax ‖z (t)‖ .

Using (49) will lead to the conclusion (26). �

C. Proof of Proposition 2

(i) Proof of sufficiency. Let

p = p̃T
o p̃o

δ = ξ̃T
o ξ̃o −

1

l2
ṽT

o ṽo.

According to (14), we have

ξ̃T
o ξ̃o =

(
p̃o +

1

l
ṽo

)T(
p̃o +

1

l
ṽo

)
= p̃T

o p̃o +
1

l2
ṽT

o ṽo +
2

l
ṽT

o p̃o. (50)

Since
ṗ = 2p̃T

o ṽo

using the equation (50), we further have

ṗ = −lp+ lδ. (51)

The solution p (t) can be expressed as

p (t) = e−ltp (0) +

∫ t

0

e−l(t−s)lδ (s) ds. (52)

With (27) in hand, if condition (29) is satisfied, then

δ (t) = ξ̃
T
o ξ̃o −

1

l2
ṽT

o ṽo ≥ r2.

Since ‖p̃o (0)‖ > r, we have p (0) > r2. The solution in (52)
satisfies

p (t) ≥ e−ltr2 + r2
∫ t

0

e−l(t−s)lds

= r2.

Based on it, we have ‖p̃o (t)‖ ≥ r, where t ≥ 0. If vTvo
‖v‖‖vo‖ =

−1, then the UAV and the obstacle are in the case shown in
Figure 2(b). Thus,

1

l2
ṽT

o ṽo = r2v .

Consequently, δ (t) = r2. Furthermore, if
∥∥∥ξ̃o (t)

∥∥∥ >√
r2 + r2v and ‖p̃o (0)‖ > r, then ‖p̃o (t)‖ > r, where t > 0.
(ii) Proof of necessity. Given any εo > 0, we will show if∥∥∥ξ̃o (t)

∥∥∥2 = r2 + r2v − εo,

and ‖p̃o (0)‖ = r, then there exists a case that ‖p̃o (t)‖ < r,

where t ≥ 0. Consider a case vTvo
‖v‖‖vo‖ = −1. Then the UAV

and the obstacle are in the case shown in Figure 2(b). Thus,

δ (t) = ξ̃
T
o ξ̃o −

1

l2
ṽT

o ṽo = r2 − εo.

According to (52), we have

p (t) = r2 −
∫ t

0

e−l(t−s)lεods

< r2.

Therefore, ‖p̃o (t)‖ < r, where t ≥ 0. �

D. Proof of Theorem 1

Proof of Conclusion (i). According to (19) in the proof of
Lemma 1, if and only if

eT
o ėo
∣∣
‖eo‖=rs+ro

≥ 0 (53)

then (23) holds with r̂s = rs for any ‖eo (0)‖ ≥ rs + ro. The
derivative of eo is

ėo = ξ̇ − ˙̂ξo + ε̇.

Then, the inequality (53) is rewritten as(
eT

o ξ̇ − eT
o

˙̂
ξo + eT

o ε̇
)∣∣∣
‖eo‖=rs+ro

≥ 0. (54)

i) Proof of Sufficiency. Since ‖ε̇‖ ≤ vb, we have(
eT

o ξ̇ − eT
o

˙̂ξo + eT
o ε̇
)∣∣∣
‖eo‖=rs+ro

≥
(
eT

o ξ̇ − eT
o

˙̂ξo−‖eo‖ ‖ε̇‖
)∣∣∣
‖eo‖=rs+ro

≥
(
eT

o ξ̇ − eT
o

˙̂ξo

)∣∣∣
‖eo‖=rs+ro

− (rs + ro) vb.

Therefore, if (30) holds, then (54) is satisfied.
ii) Proof of Necessity. The necessary condition is proved

by contradiction. Suppose (30) is not satisfied, namely there
exists an e∗o with ε > 0 such that(

e∗o
Tξ̇ − e∗To

˙̂ξo

)∣∣∣
‖e∗

o ‖=rs+ro

= (rs + ro) vb − ε.
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Then, choose ε̇ = −vb e∗
o

rs+ro
when eo = e∗o , which satisfies

‖ε̇‖ ≤ vb. As a result, at eo = e∗o , (54) becomes

(rs + ro) vb − ε− vbe∗To
e∗o

rs + ro
≥ 0

namely,
−ε ≥ 0.

This is a contradiction. This is implies that (54) and then (53)
will be violated.

Proof of Conclusion (ii). Under Assumption 3, according to
Lemma 1, we have

eT
o c (t, eo)

∣∣
‖eo‖=rs+ro

≥ (rs + ro) vm. (55)

Therefore, (30) becomes (31).
Proof of Conclusion (iii). In view of (9), according to

Lemma 2, we have∥∥∥ ˙̄ξo

∥∥∥ ≤ ∥∥∥ξ̇o (t− τd)
∥∥∥ ≤ vo.

Then

eT
o

˙̂ξo

∣∣∣
‖eo‖=rs+ro

≤
(
‖eo‖

∥∥∥ ˙̄ξo

∥∥∥+ ‖eo‖ ‖εo‖
)
‖eo‖=rs+ro

≤ (rs + ro) (vo + vbo) .

If (32) holds, then (31) holds. Therefore, (23) holds with r̂s =
rs. �

E. Proof of Proposition 3

Since eo in (21) can be written as

eo = ξ̃o + (λo − εo + ε) (56)

where
λo , ξo − ξ̄o.

Taking the norm on both sides of (56) results in

‖eo‖ ≤
∥∥∥ξ̃o

∥∥∥+ ‖λo‖+ ‖εo‖+ ‖ε‖ .

If (34) holds, then∥∥∥ξ̃o (t)
∥∥∥ ≥ r + re − (‖λo‖+ ‖εo‖+ ‖ε‖)

≥ r + θmTs

1− θm
vo + voτdm − ‖λo‖ (57)

where Assumptions 1-2 are utilized. The left work is to study
‖λo‖ . The derivative of λo is

λ̇o (t) = ξ̇o (t) +
1− θ
θTs

ξ̄o (t)−
1− θ
θTs

ξo (t− τd)

= −1− θ
θTs

λo (t)

+
1− θ
θTs

(
(ξo (t)− ξo (t− τd)) +

θTs

1− θ
ξ̇o (t)

)
.

(58)

As for term ξo (t)− ξo (t− τd) , by the mean value theorem,
we have

ξo (t)− ξo (t− τd) = ξ̇o (st+ (1− s) (t− τd)) τd, s ∈ [0, 1] .

Then
‖ξo (t− τd)− ξo (t)‖ ≤ voτd

where max
∥∥∥ξ̇o

∥∥∥ ≤ vo is utilized. Similarly, ‖λo (0)‖ ≤ voτd

by Assumption 2. Furthermore, based on the equation (58),
according to Lemma 2, we have

‖λo (t)‖ ≤ voτd +
θTs

1− θ
vo

≤ voτdm +
θmTs

1− θm
vo. (59)

Using (57) and (59) yields (35). �
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